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Accurate removal of magnetic resonance imaging (MRI) signal outside the brain, a.k.a.,
skull stripping, is a key step in the brain image pre-processing pipelines. In rodents,
this is mostly achieved by manually editing a brain mask, which is time-consuming
and operator dependent. Automating this step is particularly challenging in rodents as
compared to humans, because of differences in brain/scalp tissue geometry, image
resolution with respect to brain-scalp distance, and tissue contrast around the skull.
In this study, we proposed a deep-learning-based framework, U-Net, to automatically
identify the rodent brain boundaries in MR images. The U-Net method is robust
against inter-subject variability and eliminates operator dependence. To benchmark the
efficiency of this method, we trained and validated our model using both in-house
collected and publicly available datasets. In comparison to current state-of-the-art
methods, our approach achieved superior averaged Dice similarity coefficient to ground
truth T2-weighted rapid acquisition with relaxation enhancement and T2∗-weighted
echo planar imaging data in both rats and mice (all p < 0.05), demonstrating robust
performance of our approach across various MRI protocols.

Keywords: rat brain, mouse brain, MRI, U-net, segmentation, skull stripping, brain mask

INTRODUCTION

Magnetic resonance imaging (MRI) is a widely employed technique to study brain anatomy
and function in preclinical rodent models (Mandino et al., 2020). To achieve individual subject
data standardization and facilitate group level comparison, pre-processing must remove non-
brain tissue, a.k.a. skull strip; without it, the automatic registration process would likely fail due
to unwanted signal outside the brain. In many cases, skull stripping is achieved by manually
drawing brain masks for each individual slice, making it a time-consuming and operator-dependent
process. Ideally, an automatic skull stripping tool would streamline the pre-processing pipeline,
avoid personnel bias, and significantly improve research efficiency, especially when handling large
datasets (Babalola et al., 2009; Lu et al., 2010; Gaser et al., 2012; Feo and Giove, 2019). In
human MRI research, several automatic brain extraction tools have been developed and widely
utilized (Cox, 1996; Shattuck and Leahy, 2002; Leung et al., 2011; Doshi et al., 2013). However,
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these tools are not applicable to rodent applications because
of differences in brain/scalp tissue geometry, image resolution
with respect to brain-scalp distance, tissue contrast around the
skull, and sometimes signal artifacts from surgical manipulations.
Additionally, rodent brain MRI data is typically acquired at
higher magnetic fields (mostly >7T) with higher radiofrequency
(RF) coil inhomogeneity. The stronger susceptibility artifacts
and field biases represent further challenges to the rodent skull
stripping process.

To date, several attempts have been made to address rodent
skull-segmentation (Pfefferbaum et al., 2004; Sharief et al.,
2008; Bendazzoli et al., 2019; Feo and Giove, 2019; Lohmeier
et al., 2019; Liu et al., 2020). To date, the most prominent
tools for rodent MRI skull stripping are Pulse-Coupled Neural
Network (PCNN)-based brain extraction proposed by Chou et al.
(2011), Rapid Automatic Tissue Segmentation (RATS) pioneered
by Oguz et al. (2014), and, and SHape descriptor selected
External Regions after Morphologically filtering (SHERM)
by Liu et al. (2020). Pulse-Coupled Neural Network is a
biomimetic neural network initially developed for cat visual
cortex segmentation (Kuntimad and Ranganath, 1999) that
utilizes an iterative process to assign labels to adjacent pixels
with similar intensity profiles. The RATS technique is built
on mathematical morphology and LOGISMOS-based graph
segmentation methods (Yin et al., 2010). While the RATS
method has superior performance on T1-weighed images (T1w;
Oguz et al., 2014), it is worth noting that T2-weighted images
(T2w) and T2∗-weighted images (T2∗w) are also common
choices in high-field brain function studies. The recently
proposed SHape descriptor SHERM (Liu et al., 2020) method
identifies a set of brain mask candidates, extracted from MRI
images with multiple kernel sizes that matches the shape of
the brain template. One common limitation of these brain
segmentation methods is that the performance varies by brain
size, shape, texture, and contrast, and therefore the technique
needs to be optimized for each MRI protocol. Taken together,
the development of a rodent skull stripping tool capable
of performing on a variety of datatypes with accuracy and
consistency is highly desirable.

Instead of using rules designed by users, learning-based
methods acquire mapping functions from inbuilt feature
engineering and classifiers, which would likely be more robust
to various imaging modalities. Specifically, deep-learning-based
methods combine feature engineering and classifiers into a
uniform framework, and have achieved outstanding performance
on many medical imaging identification tasks (Kleesiek et al.,
2016; Havaei et al., 2017; Roy et al., 2018). Here we propose
a novel model that adopts a fully convolutional deep-learning
network, U-Net (Ronneberger et al., 2015; Yogananda et al.,
2019), to perform dense feature extraction. The whole network
is implemented using Keras (Chollet, 2015) with TensorFlow
(Abadi et al., 2016) as the backend. We trained and tested
the U-Net model for skull stripping performance using rat
and mouse datasets that contained different imaging contrasts
[i.e., T2w rapid acquisition with relaxation enhancement (T2w
RARE) and T2∗w using echo planar imaging (T2w EPI)]. The
performance of our proposed model was then compared with

existing rodent skull stripping tools, including RATS, PCNN, and
SHERM across different available datasets.

MATERIALS AND METHODS

Dataset Descriptions
This study includes two separate datasets: an in-house collected
dataset (CAMRI dataset) and an open source dataset (Online
dataset) downloaded from http://openneuro.org. The CAMRI
dataset consisted of 132 adult male rats of different strains
[94 Sprague Dawley (SD), 22 Long-Evans (LE), and 16 Wistar:
this dataset is available at https://doi.org/10.18112/openneuro.
ds002870.v1.0.0] and 16 wild-type adult C57Bl/6J strain mice
(the dataset is available at https://doi.org/10.18112/openneuro.
ds002868.v1.0.0). For each animal, a T2w RARE and an T2∗w
EPI were acquired. Among the 132 rats, 69 rats’ T2w RARE
and T2∗w EPI resolutions were 0.1 mm × 0.1 mm × 1 mm
and 0.32 mm × 0.32 mm × 1 mm, respectively, and the other
63 rats’ T2w RARE and T2∗w EPI resolutions were 0.2 mm
isotropic and 0.4 mm isotropic, respectively. For the mice, the
T2WI and T2∗w EPI resolutions were 0.16 mm isotropic and
0.32 mm isotropic, respectively. All CAMRI data were acquired
on a Bruker 9.4T system. The Online dataset consisted of 24
rats and 36 mice. Specifically, T2w RARE of 24 female adult
Wistar strain rats (Sirmpilatze et al., 2019),1 T2w RARE of
16 male and female B6.Cg-Tg(Fev-cre)1Esd/J mice (ePet-cre;
RRID:IMSR_JAX:012712) (Grandjean et al., 2019),2 and T2∗w
EPI images of 20 C57Bl/6J male and female mice (Grandjean
et al., 2020).3 To train our U-Net model, we first established
training dataset by randomly selecting 80% of the T2w RARE
and T2∗w EPI images in the CAMRI rat data (78 SD, 15 LE,
and 12 Wistar) as well as all CAMRI mouse data, leaving the
remaining 20% of the rats as final performance testing dataset. In
the training process, we further randomly selected 80% of the rat
data from the training dataset (62 SD, 12 LE, and 10 Wistar) and
included all mouse data for inner training. The remaining 20%
of the rat data from the training dataset was used to validate the
U-Net model. We repeated the training-validation process five
times to avoid randomness in the data splitting. The U-Net model
with the highest averaged validation accuracy was then used as
the final model for testing.

To further illustrate the robustness and wide applicability of
our proposed model in separate rat and mouse datasets, we tested
our trained U-Net model on the Online dataset that was acquired
from different scanners and with different imaging parameters.

U-Net
We used U-Net (Ronneberger et al., 2015), a method with
excellent performance in many medical image segmentation
tasks (Ronneberger et al., 2015; Zhou et al., 2018; Alom et al.,
2019; Yogananda et al., 2019; Wang et al., 2020b), to perform
skull stripping on rodent brain MR images (Figure 1). In

1https://doi.org/10.18112/openneuro.ds001981.v1.0.3
2https://doi.org/10.18112/openneuro.ds001541.v1.1.2
3https://doi.org/10.18112/openneuro.ds001720.v1.0.2
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FIGURE 1 | U-Net architecture. Boxes represent cross-sections of square feature maps. Individual map dimensions indicated on lower left, and number of channels
indicated below dimensions. The leftmost map is a 128 × 128 normalized MRI image patched from the original MRI map, and the rightmost represents binary ring
mask prediction. Red arrows represent operations, specified by the colored box, while black arrows represent copying skip connections.

the contracting path, there are 32 feature maps in the first
convolutional block, 64 in the second, then 96, 128, and 256
in the third, fourth, and fifth, respectively. Compared to the
configuration described by Ronneberger et al. (2015), we replaced
the cross-entropy loss function with the Dice coefficient loss
(Wang et al., 2020a) to free the optimization process from a
class-imbalance problem (Milletari et al., 2016).

In this study, since we include various rats and mice dataset
(CAMRI and online dataset) with different image resolutions,
we performed two different normalizations to improve the
capabilities of the model: spatial normalization and intensity
normalization. For spatial normalization, we resampled all
images into the same spatial resolution at 0.1 mm × 0.1 mm
slice-by-slice using nearest-neighbor interpolation. The nearest-
neighbor interpolation was chosen to keep consistency in the
processing pipeline because both brain-mask (binary) and brain
image (grayscale) need to be resampled. Resampling was not
performed across slices because we performed 2D U-Net slice-
by-slice. For intensity normalization, we performed the min-max
normalization for each image to range intensities from 0 to 1 and
stored them as single precision (float-32). In U-Net training, the
voxels belonging to the rat brain are labeled as 1 and other voxels
(background) are labeled as 0. Our network was implemented
using Keras (Chollet, 2015) with TensorFlow (Abadi et al., 2016)
as the backend. The initial learning rate and batch size were
1e−3 and 16, respectively. We used Adam (Kingma and Ba,
2015) as the optimizer and clipped all parameter gradients to
a maximum norm of 1. In training, we randomly cropped the
128 × 128 sized patches from all axial slices as the input. In the
inference, the overlapped patches extracted from each axial slice

were input into the trained model with a 16 × 16 × 1 stride. The
overlapped predictions were averaged and then resampled back
to the original resolution using nearest-neighbor interpolation
for the final output.

Evaluation Methods
To demonstrate the reliability of our proposed method, we
compared our U-Net method with the most prominently used
methods for rat brain segmentation: RATS (Oguz et al., 2014),
PCNN (Chou et al., 2011), and SHERM (Liu et al., 2020).
All images were bias-corrected for field inhomogeneities using
Advanced Normalization Tools (ANTs).4 Since we included
multiple datasets in this study, the parameters were chosen
according to best parameters suggested in the publication to
maintain consistency. For the RATS algorithm, the intensity
threshold (T) was set to the average intensity in the entire image
and the brain size values Vt was set to 1650 mm3 for the rat
images and 380 mm3 for mouse images (Oguz et al., 2014).
For the PCNN algorithm, the brain size range was set to 1000–
3000 mm3 for rat images and 350–550 mm3 for mouse images
(Chou et al., 2011). For SHERM, the brain size range was set
to 500–1900 mm3 for rat images and 300–550 mm3 for mouse
images (Liu et al., 2020). The default convexity threshold in
SHERM, defined as the ratio between the volume of a region
and that of its convex hull, was set to 0.85 to discard brain mask
candidates. We adjusted the convexity threshold to 0.7 because
brain mask candidate did not survive in half of the rodent images

4http://stnava.github.io/ANTs/
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from CAMRI and online datasets, likely due to differences in raw
data dimensions.

To quantitatively evaluate the segmentation performance of
U-Net, RATS, PCNN, and SHERM, we estimated the similarity
of the brain segmentation results generated by each method
compared to manual drawing of brain masks by an anatomical
expert according to the Paxinos and Watson rat atlas (Paxinos
and Watson, 2014) and Konsman mouse atlas (Konsman,
2003). The manual segmentation was performed at the original
MRI resolution before data resampling to 0.1 mm × 0.1 mm
for U-Net training. To evaluate the reliability of the manual
delineations (ground truth), we included two additional
experts with profound knowledge of rodent brain anatomy and
estimated the inter-rater accuracy compared to ground truth
using 20 randomly selected rats (both T2w RARE and T2∗w
EPI images). High reliability (accuracy > 0.95, Supplementary
Figure 2) of the ground truth was found. Evaluations included:
(1) volumetric overlap assessments via Dice, the similarity of
two samples; (2) Jaccard, the similarity of two samples where
Dice doesn’t satisfy the triangle inequality; (3) positive predictive
value (PPV), the rate of true positives in prediction results;
and (4) sensitivity (SEN), the rate of true positives in manual
delineation; as well as (5) a surface distance assessment by
Hausdorff distance, the distance of two samples. The following
definitions were used for each: Dice = 2(|A ∩ B|)/(|A| + |B|),
Jaccard = (|A ∩ B|)/(|A ∪ B|), PPV = (|A ∩ B|)/B,
SEN = (|A ∩ B|)/A, and Hausdorff = max

{
h (A, B) , h(B, A)

}
and h(A, B) = max

a ∈ A
{ min

b ∈ B
d(a, b)} where A denotes the voxel

set of the manually delineated volume, B denotes the voxel set
of the predicted volume, and d(a, b) as the Euclidian distance
between a and b. The Hausdorff distance was only estimated
in-plane to avoid confounds from non-uniformly sampled
data. The maximal Hausdorff distance (i.e., worst matching)
across slices for each subject was then used for comparison.
Superior performance was indicated by higher Dice, Jaccard,
PPV, and SEN, and lower Hausdorff values. We also reported the
computation time on a Linux-based [Red Hat Enterprise Linux
Server release 7.4 (Maipo)] computing system (Intel E5-2680
v3 processor, 2.50 GHz, 256-GB RAM) for each method. The
computation times reported do not include any preprocessing
steps (i.e., signal normalization, image resampling, and bias
correction). Paired t-tests were used for statistical comparisons
between different algorithms, and two-sample t-tests were
used to compare T2w RARE and T2∗w EPI images in each
algorithm. The threshold for significance was set to the alpha
level (p < 0.05).

RESULTS

Figure 2 illustrates the performance of our trained U-Net
algorithm compared to RATS (Oguz et al., 2014) and PCNN
(Chou et al., 2011) for rat brain segmentation in the CAMRI
dataset. In all measures, U-Net performed significantly better
than the other two methods, except PPV was slightly inferior to

RATS on the T2∗w EPI dataset. Notably, U-Net produced near-
perfect results with all measures of volumetric overlap > 0.90. In
contrast, the high PPV (0.98 on T2w RARE and 0.99 on T2∗w
EPI) but low SEN (0.85 on T2w RARE and 0.75 on T2∗w EPI)
from RATS indicates segmentation was underestimated, while
the low PPV (0.85 on T2w RARE and 0.72 on T2∗w EPI) and
high SEN (0.90 on T2w RARE and 0.93 on T2∗w EPI) in PCNN
indicates segmentation was overestimated. The significantly
lower Hausdorff distance in U-Net (4.27 on anisotropic T2w
RARE and 4.60 on anisotropic T2∗w EPI) further indicates
its best match segmentation. However, the U-Net algorithm
had longer computation time than others using the same
computational environment (67.66 s on T2w RARE and 64.70 s
T2∗w EPI). In summary, the high accuracy (Dice > 0.95)
of U-Net in training, validating (Supplementary Figure 1),
and final performance testing demonstrates the reliability and
consistency of our method.

There were no significant differences in segmentation
performance between T2w RARE and T2∗w EPI with U-Net,
but a significant decrease in performance was found with the
other three algorithms (All p < 0.05, Figure 2). Specifically,
the Dice, Jaccard, PPV, and SEN from RATS, the Dice, Jaccard,
and PPV from PCNN, and the Dice, Jaccard, PPV, and SEN
from SHERM were lower for T2∗w EPI than T2w RARE. The
compromised performance in the T2∗w EPI image compared
with T2w RARE indicates the challenges these three methods
have with low resolution images.

Figure 3 illustrates the best, median, and worst cases on
T2w RARE and T2∗w EPI from the CAMRI dataset using all
four algorithms. These chosen rats had the highest, median, and
lowest Dice score averages over the four methods. Note that in
the worst case the RATS, PCNN, and SHERM algorithms failed to
identify the brainstem, olfactory bulb, and inferior brain regions
where the MRI signal was weaker. Supplementary Figure 3
illustrates more results for T2∗w EPI images. Importantly, U-Net
could still achieve a satisfactory segmentation in the worst
cases with Dice > 0.95 for both T2w RARE and T2∗w EPI.
Compromised MRI signal intensity causes problems for RATS,
PCNN, and SHERM algorithms, while U-Net still produces near-
perfect results.

We included the Online dataset to illustrate the performance
of our proposed algorithm on independent rat and mouse
datasets. Table 1 indicates segmentation performance for rat T2w
RARE. U-Net performed significantly better than RATS, PCNN,
and SHERM on nearly all measures except PPV. Both T2w RARE
(Table 2) and T2∗w EPI (Table 3) skull stripping in the mouse
dataset were significantly improved in U-Net versus the other
two methods except for PPV and Hausdorff distance. Overall,
these results indicate that the proposed U-Net method is a highly
competitive alternative to other existing skull stripping tools.

DISCUSSION

Our results indicate that our proposed skull stripping
framework based on U-Net represents a robust method for
the accurate and automatic extraction of rodent brain tissue
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FIGURE 2 | Segmentation performance for U-Net, RATS, PCNN, and SHERM on the T2w RARE (upper row) and T2*w EPI (lower row) images from CAMRI
dataset. Average value is above each bar. Two-tailed paired t-tests were used for statistical comparison between U-Net with RATS, PCNN, and SHERM. Best
performance results in bold (*p < 0.05 and **p < 0.01).

FIGURE 3 | Best, median, and worst segmentation comparisons for T2w RARE and T2*w EPI images from CAMRI dataset. These rats were chosen as they had the
highest, median, and lowest mean Dice score (listed below the brain map) averaged over the four methods (U-Net, RATS, PCNN, and SHERM). Posterior and inferior
slices (arrowhead) are more susceptible to error in RATS, PCNN, and SHERM, whereas U-Net performs similarly to the ground truth.

from MR images. While existing rodent skull stripping
methods are robust when used with high-resolution
anatomical images, most of them face challenges with low

resolution, low contrast T2∗w EPI datasets. Overall, the
U-Net based method showed consistent performance in
both T2w RARE and T2∗w EPI, likely attributed to the
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TABLE 1 | Quantitative comparison of U-Net, RATS, PCNN, and SHERM for segmentations on rat T2w RARE from Online dataset.

Methods Dice Jaccard PPV SEN Hausdorff (voxels)

U-Net 0.94 (0.00) 0.88 (0.01) 0.94 (0.00) 0.98 (0.01) 6.81 (0.44)

RATS 0.89 (0.02) 0.82 (0.03) 0.95 (0.01) 0.86 (0.02) 8.38 (0.40)

PCNN 0.85 (0.02) 0.75 (0.03) 0.84 (0.03) 0.88 (0.02) 9.16 (0.91)

SHERM 0.85 (0.02) 0.75 (0.02) 0.95 (0.01) 0.78 (0.03) 9.81 (0.88)

p-value (U-Net vs. RATS) <0.05 <0.05 N.S. <0.05 <0.005

p-value (U-Net vs. PCNN) <0.001 <0.001 <0.005 <0.005 <0.05

p-value (U-Net vs. SHERM) <0.001 <0.001 N.S. <0.001 <0.005

The p-value indicates the result of two-tailed paired t-test comparison (best performance results in bold).

TABLE 2 | Quantitative comparison of U-Net, RATS, PCNN, and SHERM for segmentations on mouse T2w RARE from Online dataset.

Methods Dice Jaccard PPV SEN Hausdorff (voxels)

U-Net 0.85 (0.01) 0.74 (0.01) 0.74 (0.01) 0.98 (0.00) 5.23 (0.37)

RATS 0.82 (0.01) 0.70 (0.01) 0.76 (0.01) 0.91 (0.01) 5.07 (0.31)

PCNN 0.79 (0.00) 0.65 (0.01) 0.76 (0.01) 0.83 (0.01) 7.07 (0.47)

SHERM 0.80 (0.01) 0.67 (0.01) 0.72 (0.01) 0.90 (0.01) 7.03 (0.41)

p-value (U-Net vs. RATS) <0.05 <0.05 N.S. <0.001 N.S.

p-value (U-Net vs. PCNN) <0.001 <0.001 N.S. <0.001 <0.005

p-value (U-Net vs. SHERM) <0.001 <0.001 N.S. <0.001 <0.005

The p-value indicates the result of two-tailed paired t-test comparison (best performance results in bold).

TABLE 3 | Quantitative comparison of U-Net, RATS, PCNN, and SHERM for segmentations on mouse T2∗w EPI images from Online dataset.

Methods Dice Jaccard PPV SEN Hausdorff (voxels)

U-Net 0.92 (0.01) 0.85 (0.01) 0.91 (0.01) 0.93 (0.01) 3.57 (0.14)

RATS 0.85 (0.01) 0.75 (0.01) 0.97 (0.00) 0.76 (0.01) 3.85 (0.11)

PCNN 0.87 (0.01) 0.77 (0.01) 0.86 (0.01) 0.88 (0.01) 3.79 (0.16)

SHERM 0.87 (0.01) 0.77 (0.01) 0.92 (0.01) 0.82 (0.01) 3.39 (0.10)

p-value (U-Net vs. RATS) <0.001 <0.001 <0.001 <0.001 N.S.

p-value (U-Net vs. PCNN) <0.001 <0.001 <0.005 <0.001 N.S.

p-value (U-Net vs. SHERM) <0.001 <0.001 N.S. <0.001 N.S.

The p-value indicates the result of two-tailed paired t-test comparison (best performance results in bold).

use of both T2w RARE and T2∗w EPI images to train our
U-Net architecture.

Compared to the pioneering techniques RATS (Oguz et al.,
2014), PCNN (Chou et al., 2011), and SHERM (Liu et al., 2020),
our proposed U-Net architecture is more robust, likely due
to its capability to explore and learn the hierarchical features
from the training dataset without requiring additional parameter
adjustments. U-Net combines the location information from
the downsampling path with the contextual information in the
upsampling path to obtain a combination of localization and
contextualization necessary to predict a reliable segmentation
(Ronneberger et al., 2015). One clear advantage of the U-Net
algorithm is that it is parameter free in the segmentation process,
as all parameters are automatically learned from the data itself.
The only parameters to learn on convolution layers in U-Net
are the kernel. The size of the kernel is independent from
the input image size, so images of different sizes can be used
as input. In contrast, both RATS and PCNN need to select
the appropriate brain size for rat or mouse brain for accurate

justification. In RATS, the intensity threshold also needs to
be adjusted to remove low signal intensity as potential non-
brain signal. In practice, users need to adjust these parameters
once per study based on the acquisition protocol, which affects
the intensity profile, and the age/species/strain of the animals,
which affects expected brain sizes. Note that, RATS, PCNN, and
SHERM still reach an accurate (Dice > 0.8) and fast segmentation
performance whereas the U-Net architecture requires longer
processing time and needs a higher level of computational
power for architecture training. Typically, deep learning-based
methods are time-consuming in central processing units (CPU)
but are significantly more time-efficient in graphics processing
units (GPU). Indeed, the computation time of our proposed
U-Net application can benefit significantly by using GPU
(Supplementary Figure 4). Besides, conventional rodent brain
extraction algorithms were based on prior knowledge of rodent
brain anatomy, or adapting a general-purpose segmentation
method, so an image covering the complete rat brain is necessary
for basic functioning. In contrast, since the U-Net architecture
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learns the features for each slice, it could still work with images
covering a limited brain section.

The robustness of U-Net is clearly illustrated in the
segmentation performance of selected-cases across different
protocols. Due to relatively poor signal intensity in the brainstem,
olfactory bulb, and inferior part of brain, RATS, PCNN, and
SHERM displayed lower segmentation accuracy in these areas
in T2w RARE and T2∗w EPI. Although all methods provided
outstanding segmentation performance (Dice > 0.9), the best
T2w RARE and T2∗w EPI segmentation comparisons still showed
mismatches in the inferior part of brain in RATS, PCNN, and
SHERM. Furthermore, outcome assessments using different MRI
protocols (T2w RARE and T2∗w EPI images) indicate that U-Net
has high accuracy and consistency across various resolutions.
Notably, while most brain segmentation was performed in the
anatomical image (T2w RARE), our proposed U-Net architecture
also shows accuracy in the T2∗w EPI images. When comparing
the skull stripping results between T2w RARE and T2∗w EPI
images in the CAMRI dataset, PCNN, RATS, and SHERM
showed significantly lower segmentation accuracy in T2∗w EPI
images while no significant difference was displayed in the U-Net
algorithm. Specifically, in the worst case of T2w RARE image
(Figure 3), the RATS displayed PPV = 0.99 and SEN = 0.79,
which indicated the identified brain tissue has a high rate of
true positive but low rate of false negative predictions, and
the opposite performance was found in PCNN (PPV = 0.79
and SEN = 0.82). A similar trend was also found in the worst
case of T2∗w EPI image (Figure 3). The T2∗w EPI outcome in
RATS is underestimated and in PCNN is overestimated, which
makes U-Net the superior choice for skull stripping these lower
resolution images (PPV = 0.99 and SEN = 0.94). We observed the
similar skull stripping performance for T2 W (Dice = 0.97) and
EPI (Dice = 0.96), indicating that the model is adequately trained
and not susceptible to ghosting artifacts in EPI. Rodent EPI data
is also less prone to motion because the subjects are either under
anesthesia and secured with ear and tooth bars (Atay et al., 2008;
Albaugh et al., 2016; Van Den Berge et al., 2017; Broadwater
et al., 2018; Grandjean et al., 2019, 2020; Sirmpilatze et al., 2019;
Mandino et al., 2020) or awake and tightly restrained (Madularu
et al., 2017; Ma et al., 2018). Indeed, none of the dataset available
on online repository suffers from severe EPI ghosting.

To illustrate the reliability of our proposed U-Net architecture,
we included independently generated rat and mouse public
datasets (Online dataset), including images acquired from
different sites, scanners, and protocols. The presented results
showed that U-Net produced stable and satisfactory results for
both T2w RARE and T2∗w EPI images. Although segmentation
performance was not as robust in the mouse dataset, U-Net still
reached significantly higher segmentation accuracy with averaged
Dice > 0.85 for both T2w RARE and T2∗w EPI compared to
other methods, whereas the lowest averaged accuracy on all
images was found in RATS (Dice = 0.82), PCNN (Dice = 0.79),
and SHERM (Dice = 0.80) for mouse T2w RARE. This result
highlights the reliable performance of the U-Net architecture for
mouse brain MRI data.

There are several limitations of the U-Net architecture. First,
deep learning is a data driven classification, so segmentation

accuracy highly relies on the training dataset. Indeed, we
observed in Supplementary Figures S1, S2 that manual
segmentation accuracy is approximately the same as validation
accuracy. Because we trained our U-Net algorithm by using
only T2w RARE and T2∗w EPI images in rats and mice,
additional training and optimization will be needed to use our
current U-Net architecture to skull-strip rodent brain images
with different contrast (e.g., T1-weighted images). There are
many challenges with conducting deep learning algorithm in
multimodality datasets (i.e., heterogeneous sources, different
levels of noise) (Ngiam et al., 2011; Baltrusaitis et al., 2019) as the
features have to relate multiple data sources. Our future work will
focus on developing rodent brain extraction tool specifically for
T1w images. Second, deep learning methods require substantial
amounts of manually labeled data (Verbraeken et al., 2020), and
their performance can be affected by similarities between the
training dataset and the unanalyzed dataset. The use of massive
data augmentation is important in domains like biomedical
segmentation, since the number of annotated samples is usually
limited. More training datasets are needed to further improve
our current U-Net architecture (e.g., including an additional
mouse dataset with ground truth labels to improve our U-Net
performance in mice). Third, our current U-Net architecture
image patch limits the testing image to a matrix size of at
least 128 × 128. Image resampling to a finer resolution is
required if the image matrix size is smaller than 128 × 128.
Fourth, whether 2D or 3D framework would yield better skull
stripping or segmentation results remain an active topic of
research (Baumgartner et al., 2018; Hänsch et al., 2018; Meine
et al., 2018; Yu et al., 2019). Practically, each framework has
its own advantages and disadvantages. For example, though 2D
frameworks do not utilize information across slice direction and
may only be suitable when slice resolution is coarse, they are
also operationally efficient due to lower computational demands.
Our results indeed support the feasibility of performing 2D
U-Net framework in regular laptop CPU. The 3D framework,
in contrast, preserves 3D context in training but suffers from
inaccuracy when only limited number of slices is available.
Finally, our future work will extend this study with more detailed
classification of brain area labels so that automatic segmentation
of brain nuclei using U-Net can be achieved.

CONCLUSION

The robustness of U-Net for delineating rodent brain boundaries
are demonstrated in T2w RARE and T2∗w EPI data acquired
at multiple sites. Our proposed method demonstrated improved
performance compared to current skull stripping methods, as
determined using the qualitative metrics (Dice, Jaccard, PPV,
SEN, and Hausdorff). We believe this tool will be useful to
avoid parameter-selection bias and streamline pre-processing
steps when analyzing rodent brain MRI data. Information
about the CAMRI dataset used in this manuscript and our
U-Net skull stripping tool can be found at https://github.com/
CAMRIatUNC/RodentMRISkullStripping.
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