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Abstract: Amyloid-beta (Aβ) plays a pivotal role in Alzheimer’s disease (AD) pathogenesis, and is 

the most promising disease-modifying target for AD. A succession of failures in Aβ-targeting clinical 

trials, however, has prompted questions on whether Aβ is the true cause of AD and a valid therapeutic 

target. Therefore, current therapeutic targets and intervention strategies must be reconsidered. In addi-

tion to Aβ, multiple pathological events such as tau hyperphosphorylation, oxidative stress and neu-

roinflammation are involved in the disease pathogenesis and cause cross-talk between these pathological pathways, which 

synergistically drive disease progression. Increasing evidence also reveals that the pathogenesis varies at different stages 

of the disease. Therefore, targeting Aβ alone at all stages of the disease would not be sufficient to halt or reverse disease 

progression. In the light of the pathophysiologic similarities between the development of ischemic stroke and AD, we can 

formulate management strategies for AD from the successful practice of ischemic stroke management, namely the tertiary 

prevention strategy. These new perspectives of tertiary prevention target both Aβ and different pathological pathways of 

AD pathogenesis at different stages of the disease, and may represent a promising avenue for the effective prevention and 

treatment of AD. 
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INTRODUCTION 

 Alzheimer’s disease (AD) is the most common type of 
dementia and is characterized by a progressive loss of mem-
ory and cognition [1]. Nearly 44 million people worldwide 
were living with dementia [2]. AD not only causes great 
stress and suffering to patients and caregivers but also adds a 
substantial economic burden to society. However, the avail-
able drugs only alleviate the symptoms of AD, and no thera-
pies currently prevent or effectively treat the disease. The 
exact etiology of the disease remains unclear. The widely 
accepted amyloid cascade hypothesis has made A β the pri-
mary therapeutic target. Despite tremendous investments in 
developing new drugs, nearly all Aβ-targeting clinical trials 
for symptomatic AD have failed in succession. Thus, there is 
an urgent need to re-think the current therapeutic target and 
intervention strategies for treating this devastating disease. 

 Brain Aβ begins to accumulate more than ten years prior 
to the onset of symptoms, and the neurodegeneration trig-
gered by Aβ is serious and irreversible at the dementia stage 
[3]. AD has proven to be a complicated disease with multiple 
aspects in its pathogenesis, such as Aβ toxicity, tau hyper-
phosphorylation, oxidative stress and neuroinflammation [4]. 
Notably, the pathogenesis varies during different stages of 
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the disease. Thus, a simple anti-Aβ intervention may be less 
likely to succeed in AD patients because this intervention 
targets only one of the multiple and complex pathways that 
interact in determining synaptic dysfunction and neuronal 
loss. Both AD and stroke are chronic and complicated dis-
eases, and stage-dependent treatment has been met with con-
siderable success in stroke. Thus, targeting multiple path-
ways at different disease stages may represent a promising 
intervention strategy in AD management.  

 At present, most multi-factorial and complex diseases 
are managed by tertiary prevention strategy, which includes 
the primary, secondary and tertiary prevention. Primary dis-
ease prevention aims to prevent disease or injury of before it 
occurs either through eliminating disease-modifiable risk 
factors or increasing resistance to disease, including immu-
nization against diseases, and maintaining a healthy diet and 
lifestyle. Secondary disease prevention aims to detect and 
address an existing disease or injury prior to the appearance 
of symptoms, including screening tests to detect disease in 
its earliest stages and treating the disease or injury to prevent 
further progression. Tertiary disease prevention aims to im-
prove the patient’s quality of life by softening the negative 
impacts of an ongoing symptomatic disease. This approach 
includes rehabilitation and treatment methods that halt dis-
ease progression. In line with this, we proposed the tertiary 
prevention strategy for AD (Fig. 1). Avoiding systemic dis-
eases, sleep disorders and environmental risk factors, main-
taining healthy diet and exercise, and preventing the produc-
tion of Aβ at the preclinical stage should represent the pri-
mary methods for AD prevention. Current therapeutics fo-
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cuses on the removal of Aβ plaques, the protection of synap-
tic function and neurons, and the attenuation of tau hyper-
phosphorylation at the MCI stage, called secondary preven-
tion. For symptomatic AD patients, not only Aβ but also 
other pathological pathways, such as tau hyperphosphoryla-
tion, neuroinflammation, oxidative stress and synaptic in-
jury, should be targeted (tertiary prevention or treatment). 

CURRENT Aβ-TARGETING CLINICAL TRIALS FOR 
AD 

 There are currently no disease-modifying therapies for 
AD, although acetylcholinesterase inhibitors and the NMDA 
receptor antagonist memantine are clinically applicable 
pharmacological treatment options. The preclinical stage, 
MCI stage and dementia stage have been established to rep-
resent the course of AD [5]. However, these clinically avail-
able agents have been developed for AD patients with de-
mentia, and no drugs are currently indicated for patients who 
are in the MCI stage or even the preclinical stage. More im-
portantly, all available drugs only alleviate the symptoms of 
AD patients for a short period of time and do not halt or re-
verse the relentless process of AD progression. The limited 
efficacy of these drugs means that they are not in full accor-
dance with prevention and treatment principles throughout 
the entire course of the disease. 

 The current understanding of AD pathogenesis is pri-
marily based on the Aβ cascade hypothesis [6]. At present, 
disease-modifying therapeutic strategies for AD primarily 
focus on reducing Aβ production, inhibiting A β deposition 
and facilitating Aβ clearance. However, all of these efforts 
thus far have failed at the clinical trial stage. 

Reducing Aβ Production 

The inhibition of Aβ production using β- or γ-secretase 
inhibitors has proven unsuccessful in clinical trials. Taren-
flurbil, semagacestat and avagacestat are γ-secretase inhibi-
tors, but all were abandoned after failed phase 2 or 3 trials 
[7-9]. Although cerebrospinal fluid (CSF) and plasma levels 
of Aβ were reduced, these agents failed to improve cognitive 
status in patients with mild-to-moderate AD. Furthermore, 
AD patients administered semagacestat showed a further 
decline in cognition and a higher risk of skin cancers and 
infections [8]. The BACE-1 inhibitor LY2886721 reduced 
CSF Aβ40 and Aβ42 by 75% in a phase 1 study, but it also 
failed in a phase 2 trial due to liver toxicity [10]. To reduce 
the toxicity observed in clinical trials, safer secretase inhibi-
tors or modulators that do not alter the physiological func-
tions of the secretases are being sought. However, this repre-
sents a substantial challenge. 

Facilitating Aβ Clearance 

Over the last decade, Aβ immunotherapy has been the 
most attractive and promising Aβ clearing strategy for AD; 
however, human trials have produced disappointing results. 
The first active Aβ vaccine AN1792 lowered brain Aβ 
plaques, but did not provide benefits in synaptic integrity or 
cognitive performance [11]. Bapineuzumab is a monoclonal 
antibody that targets N-terminal Aβ and recognises both 
soluble and aggregated Aβ species. Although it decreased 
the level of cortical fibrillary Aβ [12, 13], treatment with 
bapineuzumab did not improve clinical outcomes in a phase 
3 trial [14, 15]. Solanezumab, a monoclonal antibody that 
targets the central domain of Aβ and only recognises soluble 

 

Fig. (1). Pathophysiological abnormalities and management of stroke and AD. The development of AD is similar to that of stroke. Both 

diseases start at mid-life and affect the elderly and can be divided into presymptomatic, TIA/MCI and stroke/AD dementia stages. Aβ and 

various risk factors for AD are analogous to the vascular risk factors for stroke; they, like vascular risk factors, represent the etiology of the 

disease. Both diseases have different pathophysiological abnormalities and, correspondingly, different therapeutic targets at different stages 

of the diseases. Abbreviations: Aβ, amyloid-β; TIA, transient ischemic attack; MCI, mild cognitive impairment; phos-Tau, phosphorylated 

Tau 
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Aβ, captured both peripheral and central soluble forms of Aβ 
but also failed to show clinical efficacy in patients with 
moderate AD [16]. Crenezumab is a monoclonal antibody 
that binds all forms of Aβ, including monomers, oligomers 
and fibrils. In phase 2 clinical trials, crenezumab failed to 
meet its goals in patients with mild to moderate AD. The 
phase 2 trial of another antibody, Ponezumab, which targets 
the C terminal of Aβ, was also discontinued due to lack of 
efficacy on the primary endpoints of change in the brains or 
CSF Aβ burden in mild to moderate AD patients. Because 
there are natural anti-Aβ antibodies in the blood, immuno-
globulin (IVIg) is expected to shift Aβ from the central nerv-
ous system (CNS) to peripheral blood and subsequently to 
lower brain Aβ levels. However, IVIg failed to improve the 
deterioration of cognition in patients with mild to moderate 
AD [17]. 

Inhibiting Aβ Deposition 

Aβ aggregation is a critical event in AD pathogenesis 
[18]. Numerous compounds that inhibit Aβ oligomerization 
and block Aβ toxicity have been tested in AD patients. PBT2 
is an anti-aggregation agent that affects the copper and zinc-
mediated toxic oligomerization of Aβ. AD patients adminis-
tered PBT2 had a dose-dependent reduction in CSF Aβ lev-
els but failed to demonstrate clinical benefit [19]. Another 
anti-aggregation agent, scyllo-inositol, was also of no benefit 
to cognition in a phase 2 trial [20]. 

Thus, once symptoms are present, interventions that tar-
get Aβ alone show few or no benefits in cognition. Despite 
the adverse effects of these therapies, which compromise the 
therapeutic effects [21, 22], the failures of these human trials 
are primarily attributed to the intervention time, which is too 
late to reverse the disease. Furthermore, targeting Aβ alone 
may not be sufficient to halt or reverse disease progression 
when the disease becomes full blown. Although the current 
therapeutic focus is shifting from treatment at middle or late 
stages toward prevention at early stages of the disease, there 
is also an acute need to develop treatments for patients at late 
stages of the disease. Many critical questions regarding the 
etiology and pathogenesis of AD remain to be answered. A 
better understanding of the pathogenesis of the disease is 
required to design appropriate therapeutic strategies for AD. 

THE COMPARISON BETWEEN STROKE AND AD 

 Both ischemic stroke and AD are prominent age-related 
diseases in the elderly. The pathology of these two disorders 
is quite different. However, they share some common patho-
genesis such as those mediated by inflammation, oxidative 
stress, immune exhaustion and cerebrovascular changes [23]. 
Stroke was demonstrated to convey an increased risk of AD 
[24], and in turn AD increases the risk of stroke [25]. Vascu-
lar risk factors can cause endothelium dysfunction accelerat-
ing the progression of AD [26-28]. Numerous studies indi-
cate that decreased endothelial nitric oxide in stroke may 
contribute to AD-related pathology and cognitive decline 
[29-33]. 

 There are several pathophysiologic similarities between 
the development of ischemic stroke and AD. The compari-
son between stroke and AD may help us better understand 
the cause of AD. Both diseases start in mid-life and affect 

the elderly. In this comparison, vascular risk factors for 
stroke such as hypertension are analogous to Aβ and various 
risk factors for AD; each represents possible etiologies of 
their respective diseases. Atherosclerosis is analogous to tau 
hyperphosphorylation and represents vascular or neuronal 
injuries, respectively. The symptoms of transient ischemic 
attack (TIA) would be analogous to mild cognitive impair-
ment (MCI); both indicate functional impairment prior to 
stroke or dementia. Finally, stroke would be an analogue to 
AD dementia and represents the final stages of the respective 
diseases. This comparison makes it easier to understand the 
roles of Aβ and tau in the etiology of AD. 

IS Aβ THE REAL CAUSE AND VALID THERAPEU-
TIC TARGET OF AD? 

 In addition to the succession of failures of Aβ-targeting 
therapies in phase 2 and 3 clinical trials, autopsy studies 
demonstrate that neurofibrillary tangles (NFTs) - but not Aβ 
deposition - correlate well with cognitive status in AD pa-
tients [34]. Whether Aβ is the true cause of AD and a valid 
therapeutic target is under scrutiny. Skeptics propose that Aβ 
is the downstream result of AD [35] and that the therapeutic 
target should move from Aβ to tau [36]. A comprehensive 
understanding of the roles of Aβ and tau in the etiology of 
AD is a necessary prerequisite in developing effective inter-
vention strategies. 

As discussed above, there are several pathophysiologic 
similarities between the development of ischemic stroke and 
AD. In stroke, atherosclerosis of the brain arteries (but not 
the etiology-related vascular risk factors) is closely corre-
lated with the disease severity; in this scenario, phosphory-
lated tau but not Aβ is closely associated with AD severity. 
Thus, we cannot deny a causative role for Aβ in AD patho-
genesis. 

Where tau is to be placed in the amyloid cascade is con-
troversial. Autopsy studies indicate that tau pathology pre-
cedes Aβ pathology [37]. Numerous studies demonstrate a 
high incidence of atherosclerosis-related histological 
changes, regarded as age-related change, in the intima of the 
peripheral arteries of children, adolescents and even neonates 
[38]. However, ischemic stroke predominantly occurs in old 
age with characteristic atherosclerosis, which is caused by 
various vascular risk factors and progresses with aging. The 
different causes and outcomes of atherosclerosis in youth 
and in the elderly may help in understanding the course of 
tau phosphorylation in AD progression. Just as early age-
related atherosclerosis differs from atherosclerosis in the 
elderly (which is caused by various risk factors and most 
likely leads to stroke), the detectable changes in CSF phos-
phorylated tau prior to Aβ accumulation in preclinical stages 
are also different from the drastically hyperphosphorylated 
tau at later stages that correlates well with the severity of 
neurodegeneration. The earlier tau pathology (prior to Aβ 
pathology) may represent age-related neuronal degeneration, 
whereas later changes in tau phosphorylation most likely 
result from Aβ as well as AD-related pathogenic pathways. 
Thus, Aβ should be located upstream of tau in AD patho-
genesis. 

Brain Aβ deposition is estimated to begin two decades 
prior to signs of cognitive impairment [39]. Pathological, 
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biologic, genetic, and animal modelling studies provide 
strong scientific underpinning for the Aβ etiology hypothesis 
[6]. The compelling finding that a rare mutation in the APP 
gene decreases Aβ production and protects against late-onset 
AD also confirms the causative role of Aβ in AD pathogene-
sis [40]. Aβ trigger, Aβ threshold and Aβ driver scenarios 
provide a more thorough understanding of the temporal rela-
tionship by which Aβ mediates neuronal death and initiates 
and facilitates the progressive neurodegenerative changes of 
AD via several mechanisms, whereas tau pathology is a piv-
otal pathway [41]. Excessive brain Aβ generation and accu-
mulation, especially Aβ oligomerization, lead to tau hyper-
phosphorylation, neuroinflammation, and oxidative stress 
and finally result in synaptic degeneration, neuronal loss and 
subsequent cognitive decline [6, 42]. Therefore, Aβ is a valid 
therapeutic target and should have a prominent role in AD 
therapy. 

TARGETING MULTIPLE PATHOLOGICAL CAS-
CADES FOR AD MANAGEMENT 

 Less than 5% of AD patients are of the early onset form 
associated with certain mutations in amyloid precursor pro-
tein (APP), presenilin 1 (PSEN1) and presenilin 2 (PSEN2) 
[43]. Most AD patients suffer from the sporadic form with 
onset over age 65 years old. Their etiology and pathogenesis 
is complex. Individuals with pathological aging usually have 
relatively large amounts of Aβ in the brain, and limited neu-
rofibrillary tau pathologies and cognitive impairments are 
found [44-46]. Thus, Aβ explains part of the clinic-
anatomical heterogeneity in AD [47], and Aβ accumulation 
may be necessary but not sufficient to induce the associated 
neurodegenerative changes and cognitive impairment. Con-
sequently, we must increase our understanding of down-
stream pathological events at later stages of the disease. 

Tau Phosphorylation 

 Tau phosphorylation is a clinical feature of several neu-
rodegenerative diseases [48]. Tau is about three or four fold 
more hyperphosphorylated in AD brain [49]. Tau hyper-
phosphorylation seems to initiate and promote tau aggrega-
tion into NFTs [50, 51]. Additionally, tau aggregates can 
spread from one neuron to a neighbouring one [52, 53], and 
NFT staging increases over time [54]. Abnormally hyper-
phosphorylated tau contributes to neuronal dysfunction and 
behaviour impairment in P301L tau transgenic mice [55]. 
Numerous studies reveal that the hyperphosphorylated tau 
could sequester normal microtubule-associated proteins, dis-
rupt microtubule dynamics, block intracellular trafficking of 
the neurons, promotes cell cycle re-entry, inhibit proteinase, 
facilitate tau aggregation, and induce apoptotic escape, all of 
which synergistically lead to the neurodegeneration in AD 
(reviewed in [56, 57]). Evidence also showed that Aβ can 
trigger tau hyperphosphorylation and Aβ toxicity is tau-
dependent in the dendritic compartment of neurons [58, 59]. 
Tau seems to act downstream of Aβ to drive neuronal death 
[58, 60]. In APP/PS1 mice, tau inactivation not only im-
proved neuronal death and cognitive decline but also de-
creased Aβ load [61], implying that downstream tau may 
increase Aβ toxicity via a feedback loop. Methylene blue, a 
tau aggregation inhibitor, could suppress abnormal tau ac-
cumulation in mice [62] and prevent disease progression in a 

phase 2 clinical trial on AD patients [63]. Therefore, Aβ and 
tau may interact with each other, thereby accelerating synap-
tic and neuronal dysfunction. Thus, Aβ serves as the disease 
initiator in the preclinical stage, whereas tau-related patho-
logical changes contribute more to the neurodegeneration at 
later stages.  

Inflammation 

Increased levels of serum inflammatory cytokines are ob-
served in AD patients [64, 65]. Longitudinal studies show 
that both acute and chronic inflammation are involved in 
disease progression [66, 67]. Animal studies also demon-
strate that systemic inflammation leads to AD-like pathology 
[68]. Infections caused by various pathogens have been 
proven to increase the risk of cognitive impairment [69], and 
inflammation may partially account for the association be-
tween infections and cognitive decline [70]. The major 
routes by which peripheral inflammation communicates with 
CNS have been clearly elucidated [71]. ‘Inflammaging’ re-
fers to aging that is accompanied by a low-grade chronic up-
regulation of certain inflammatory responses that may exac-
erbate AD progression [72]. Inflammation was demonstrated 
to cause blood-brain barrier (BBB) dysfunction [73], which 
may inhibit Aβ clearance from the brain. Additionally, the 
exposure of microglia to systemic inflammatory factors may 
lead to the excessive activation of microglia and subse-
quently drive neuronal degeneration (reviewed in [74]). Neu-
roinflammation also involves tau-related neurodegeneration 
and promotes the development of senile plaques and NFTs 
(reviewed in [75]). A recent notable finding shows that mi-
croglia-associated neuroinflammation induced by Aβ deposi-
tion leads to epigenetic suppression of neuroligin 1 expres-
sion and subsequent synaptic dysfunction [76]. Inflamma-
some is an intracellular multiprotein complex, and it in-
volves in IL-1β and IL-18 secretion and pyroptotic cell death 
[77, 78]. Recently, accumulating evidence demonstrates that 
microglia-specific activation of the inflammasomes, such as 
nucleotide binding and oligomerization domain-like receptor 
family pyrin domain containing 3 (NLRP3) inflammasome, 
contributes to AD pathogenesis [78, 79]. A compelling study 
shows that NLRP3 deficiency switches microglial cell from 
M1 to the M2 phenotype and thereby increases Aβ clearance 
[80]. These studies indicate that inflammation plays an im-
portant role in AD progression. The modulation of inflam-
masome complex activation could be a promising strategy 
for AD therapy. 

Oxidative Stress 

Numerous studies have shown that excessive oxidative 
stress is present in the brains of AD patients [81]. A post-
mortem study found that oxidative stress was more localized 
in synapses and was significantly correlated with cognitive 
status [82]. Mitochondrial dysfunction and transition metals 
are known to be involved in disease etiology. Mitochondrial 
dysfunction due to soluble Aβ in mitochondria and the inter-
action of transition metal (copper, zinc and iron) with Aβ 
could lead to the overproduction of reactive oxygen species 
(ROS) [83-87]. Oxidative stress could promote Aβ produc-
tion, increase Aβ oligomerization, mediate Aβ-induced cyto-
toxicity, facilitate tau phosphorylation, and lead to synaptic 
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loss (reviewed in [88]). Antioxidants, e.g., vitamin E, could 
slow progression in mild to moderate AD patients [89]. 
Oxygen radical scavenger Edaravone can significantly at-
tenuate AD-type pathologies and cognitive deficits [90]. 
Therefore, the interactions between oxidative stress and Aβ, 
tau, mitochondria, and transition metal facilitate ROS over-
production and subsequently cause synaptic dysfunctions, 
forming a cross-talk that promotes AD progression. 

Cerebrovascular Changes 

An autopsy study showed that cerebrovascular lesions are 
more frequent in AD patients than in normal controls [91]. 
Moreover, the incidence and severity of cerebrovascular le-
sions are strongly correlated with Braak stages [92]. Thus, 
there may be an association between cerebrovascular lesions 
and AD. Vascular risk factors such as diabetes mellitus and 
cerebrovascular diseases promote conversion from mild cog-
nitive impairment (MCI) to AD [93, 94]. Both diabetes mel-
litus and stroke have similar endothelial dysfunction promot-
ing AD occurrence and development [26, 95, 96]. In vitro 
and in vivo studies prove that pathological cerebrovascular 
changes affect cerebral ischemia, Aβ production and Aβ 
clearance in the AD brain (reviewed in [97]). Thus, cere-
brovascular changes should be important target in the pre-
vention and treatment of AD. 

In the light of this, AD is likely to have multiple patho-
genic pathways downstream of Aβ accumulation. These 
pathways, including tau hyperphosphorylation, neuroin-
flammation, oxidative stress and cerebrovascular changes, 
may promote each other and form cross-talk during disease 
progression. All serve as important contributors and syner-
gistically produce the clinical syndromes at later AD stages. 
Thus, these non-amyloid pathogenic pathways should also be 
targeted for successful AD treatment.  

PATHOGENESIS ACCORDING TO AD STAGE 

 AD has been divided into three continuous stages, in-
cluding the preclinical stage, MCI stage and dementia stage 
[5]. The trajectory of the pathogenesis is very important for 
defining the therapeutic targets at different disease stages 
and thus successful AD management. AD biomarkers (CSF 
assays and neuroimaging) help in identifying the patho-
physiological processes underlying AD development [3]. 
Additionally, there may be a temporal order to these markers 
[98]. A better understanding of when these biomarkers 
change is critical for understanding which targets are appro-
priate for halting or reversing the neurodegenerative process. 

In the Presymptomatic Phase 

When individuals are in the presymptomatic phase with 
normal cognition, biomarkers of brain Aβ are the first to 
become abnormal. These biomarkers include reductions in 
CSF Aβ42 and increases in positron emission tomography 
(PET) amyloid imaging. CSF Aβ was estimated to be re-
duced 10 to 20 years prior to the clinical symptoms of de-
mentia; Aβ deposition could be detected 15 years prior [99]. 
These abnormalities of Aβ biomarkers are the earliest detect-
able signs in presymptomatic AD [3, 100]. The development 
of Aβ biomarkers also enables an early presymptomatic di-
agnosis and differentiation from other types of neurodegen-
erative disorders, which provides a critical opportunity for 

anti-Aβ drugs to prevent AD onset in presymptomatic indi-
viduals who are at the highest imminent risk of progressing 
to symptomatic AD [101]. 

At MCI Stages 

 The biomarkers of increased CSF tau, fluorodeoxyglu-
cose (FDG) PET and structural magnetic resonance imaging 
(MRI) become positive only when synaptic injuries and neu-
rodegeneration sharply increase during AD. CSF total tau 
and hippocampal volume become abnormal less frequently 
than CSF Aβ42 [102]. Hypometabolism and hippocampal 
atrophy are later events that present after Aβ deposition; they 
present significantly sooner in patients with MCI and AD 
than in individuals with normal cognition [103]. Using vari-
ous imaging modalities, hippocampus and entorhinal cortex 
volumes [104] and FDG-PET-assessed glucose uptake [105] 
were proven to be the best biomarker candidates for predict-
ing conversion to AD. Similar to the total CSF and phos-
phorylated tau, FDG PET and structural MRI are biomarkers 
that are used to measure downstream neurodegeneration (re-
viewed in [3]), and tau hyperphosphorylation together with 
Aβ contributes to the synaptic injuries and neuronal degen-
eration at MCI stages. 

During Dementia Stages 

Several other biomarkers appear in patients with clinical 
cognitive impairment. Amyloid PET has been shown to 
change little over time, whereas FDG PET hypometabolism 
expands significantly in AD patients with dementia [106]. 
Molecular PET imaging with specific radioligands targeting 
biological processes such as microglial activation and reac-
tive astrocytes could help us visualize the progression and 
the severity of neuroinflammation in AD [107]. These meth-
ods show that tau hyperphosphorylation and non-amyloid 
pathologies substantially accelerate disease progression dur-
ing the stages that present with dementia. 

Temporal ordering of biomarker abnormalities tracks the 
pathophysiological changes versus time, implying that AD 
pathogenesis varies according to the stages of the disease 
[108]. The excessive accumulation of Aβ and age-related 
early synaptic injuries initiates pathophysiological changes 
in the preclinical stage. The cross-talk between Aβ and tau 
leads to synaptic injuries and neurodegenerative changes 
after an Aβ trigger event at the mild cognitive impairment 
stage. During the stages that present with dementia, clinical 
cognitive deficits are the consequences of progressive neu-
rodegeneration caused by a sequence of events, including Aβ 
toxicity, tau phosphorylation, inflammation, oxidative stress 
and other pathological events. 

The current understanding of the AD pathogenesis is lim-
ited. Further efforts should elucidate the trajectory of AD 
pathogenesis and establish practical diagnostic criteria for 
clinical use, which is key in developing effective strategies 
for AD prevention and treatment. 

PERSPECTIVE ON TERTIARY PREVENTION 
STRATEGY FOR AD 

Because of the similarities between AD and stroke, we 
can apply successful stroke management strategies for AD 
management. 
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The Successful Management of Ischemic Stroke 

The major strategy for stroke management, named the 
tertiary prevention strategy, has proven to be successful. Im-
proving the modifiable risk factors, such as diet, lifestyle 
(e.g., physical activity and smoking), hypertension, diabetes 
and hypercholesterolemia, represent the primary factors in 
stroke prevention [109]. Secondary prevention by controlling 
risk factors plus targeting atherosclerosis at the TIA stage is 
also an effective measure to prevent stroke occurrence [110]. 
When primary prevention and secondary prevention have 
failed, treatment or tertiary prevention becomes the most 
useful approach to fight the disease. Composite therapeutics 
targeting vascular risk factors, atherosclerosis, neuronal pro-
tection, and rehabilitation represent treatment or tertiary pre-
vention option following stroke [111]. The accurate under-
standing of the pathogenesis of ischemic stroke and a strat-
egy targeting different pathological pathways at different 
stages of the disease (the tertiary prevention strategy) greatly 
reduces the incidence and outcomes of this disease. 

A Tertiary Prevention Strategy for AD 

 As discussed above, the course of ischemic stroke can be 
divided into the pre-symptom stage, the TIA stage and the 
stroke stage by the appearance of vascular risk factors, athe-
rosclerosis and stroke. Similarly, AD dementia is divided 
into the preclinical stage, the MCI stage and the dementia 
stage by the revised diagnostic criteria, which shifted from 
the diagnosis of a single syndrome to the staging of a com-
plex disease and clinical manifestations. Although the cur-
rent criteria for AD staging are primarily used in research, 
biomarker development could assist in detecting presymp-
tomatic AD pathology and in conducting prevention trials in 
early AD stages. 

Because several etiopathogenic mechanisms are involved 
in AD and the pathogenesis varies at different stages of the 
disease, the current single target of Aβ at any stage of the 
disease may be far from sufficient to halt or reverse disease 
progression. Different targets should be targeted at different 
stages of AD in a manner similar to that in the tertiary pre-
vention strategy for ischemic stroke. Current drug studies 
rely on molecular approaches wedded to the Aβ cascade hy-
pothesis; however, adjusting the modifiable risk factors, such 
as those associated with diet, smoking, sleep and exercise, 
are likely to play significant roles in preventing AD [112-
116]. According to the “Latent Early-Life Association Regu-
lation” (LEARn) model, environmental agents (e.g., drugs, 
diet, and toxicological exposure) perturb AD-associated gene 
regulation at very early stage, leading to delayed Aβ over-
production [117-120]. Furthermore, chronic hypoxia [121-
123] and systemic diseases [70, 124-128] may also be risk 
factors and contribute to AD pathogenesis. Therefore, suc-
cess in the primary prevention of stroke via controlling vas-
cular risk factors at the presymptomatic stage implies that 
controlling modifiable factors (e.g., diet, smoking, sleep, 
exercise, hypoxia, systemic diseases and environmental fac-
tors), preventing the production of Aβ, protecting synaptic 
function and inhibiting tau hyperphosphorylation at the pre-
clinical stage should represent the primary prevention of AD.  

However, these strategies may show limited efficacy in 
MCI and symptomatic AD patients; similarly, targeting vas-

cular risk factors alone is an ineffective approach to treat-
ment for TIA and stroke. Atherosclerosis and TIA could be 
analogous to tau hyperphosphorylation and MCI, respec-
tively; thus, therapeutics should focus on the removal of Aβ 
plaques, the protection of synaptic function and neurons, and 
the attenuation of tau hyperphosphorylation at the MCI 
stage, called secondary prevention. Because these compre-
hensive therapeutics targeting the root cause and all secon-
dary lesions are the treatments or tertiary prevention for 
stroke, we should give priority not only to Aβ but also to 
other pathological pathways, such as tau hyperphosphoryla-
tion, neuroinflammation, oxidative stress, synaptic injury 
and neuronal protection, in the treatment or tertiary preven-
tion of symptomatic AD. Besides the pharmacological treat-
ment, the non-pharmacological treatment such as acupunc-
ture [129], transcranial magnetic stimulation [130-132] and 
deep brain stimulation [133, 134] might be also beneficial. 
(Fig. 1). 

Several primary and secondary prevention trials for AD 
are underway. Two studies note that relative reductions in 
the prevalence of several modifiable risk factors (e.g., physi-
cal inactivity, smoking, midlife hypertension, midlife obe-
sity, diabetes, and depression) significantly reduce the inci-
dence of AD, which implies great potential for AD preven-
tion [135, 136]. The Alzheimer’s Prevention Initiative (API) 
trial enrolled 300 cognitively normal individuals over the age 
of 30 from families carrying the PSEN1 mutation to test the 
preventative effects of the anti-Aβ monoclonal antibody 
crenezumab in AD [137]. The Dominantly Inherited Alz-
heimer Network Trials Unit (DIAN-TU) is another preven-
tive trial that seeks to enroll 400 cognitively normal younger 
individuals with dominantly inherited AD and aims to test 
two monoclonal antibodies (gantenerumab and solanezu-
mab) targeting different forms of Aβ [138]. The Anti-
Amyloid Treatment in Asymptomatic Alzheimer’s (A4) 
study, proposed as a secondary prevention trial, focuses on 
clinically normal individuals aged 65 to 85 years with amy-
loid accumulation on screening PET scans and those with 
subtle cognitive symptoms [139]. The therapeutic agent for 
this trial is the monoclonal antibody solanezumab. Whether 
solanezumab can slow the rate of cognitive decline remains 
unknown. Most current and past clinical trials for AD treat-
ment that target at Aβ or other targets alone represent tertiary 
prevention, and all have failed up to now. Comprehensive 
therapies targeting Aβ as well as non-amyloid pathological 
pathways should be developed for future tertiary preventa-
tive trials. 

The tertiary prevention strategy holds promise for AD 
management; however, the creation of such a strategy for 
AD faces numerous hurdles, including a complete under-
standing of the disease pathogenesis, the establishment of 
highly sensitive and specific methods to detect AD patients 
at the early stage of the disease, the identification of bio-
markers that are pathogenesis-specific and can reflect the 
severity and stage of the disease, the validation of the patho-
geneses downstream to Aβ as therapeutic targets, and the 
development of effective drugs or interventions. Related 
efforts are urgently needed to fight the disease. 

CONCLUSION 

 AD is a slowly evolving disorder in which Aβ acts as a 
trigger of several pathophysiological processes and cognitive 
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dysfunctions. In addition to Aβ, multiple events involved in 
this progressive neurodegenerative disorder and their patho-
genesis vary according to the stage of the disease. AD is a 
heterogeneous, multi-factorial, and age-related disease and is 
perhaps better represented by terms such as “systemic dis-
ease” or “Alzheimer’s syndrome” [124, 140]. The current 
intervention strategy that targets Aβ alone in AD treatment is 
far from sufficient to halt or reverse disease progression. To 
achieve success in AD management, an accurate understand-
ing of the pathogenesis and identification of modifiable risk 
factors of the disease are necessary. The tertiary prevention 
strategy should represent a promising avenue in AD man-
agement. 
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