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Abstract

Background: Structured RNAs play varied bioregulatory roles within microbes. To
date, hundreds of candidate structured RNAs have been predicted using informatic
approaches that search for motif structures in genomic sequence data. The human
microbiome contains thousands of species and strains of microbes. Yet, much of the
metagenomic data from the human microbiome remains unmined for structured
RNA motifs primarily due to computational limitations.

Results: We sought to apply a large-scale, comparative genomics approach to these
organisms to identify candidate structured RNAs. With a carefully constructed,
though computationally intensive automated analysis, we identify 3161 conserved
candidate structured RNAs in intergenic regions, as well as 2022 additional candidate
structured RNAs that may overlap coding regions. We validate the RNA expression of
177 of these candidate structures by analyzing small fragment RNA-seq data from
four human fecal samples.

Conclusions: This approach identifies a wide variety of candidate structured RNAs,
including tmRNAs, antitoxins, and likely ribosome protein leaders, from a wide variety
of taxa. Overall, our pipeline enables conservative predictions of thousands of novel
candidate structured RNAs from human microbiomes.

Background
Microbial structured RNAs are involved in biological processes ranging from cis-anti-

sense regulation to targeted regulation of diverse sets of genes [1]. We define struc-

tured RNAs as any non-coding RNA with a conserved secondary structure across taxa

[2]. Given the exciting demonstrated roles that structured RNAs play in bioregulation,

there is enthusiasm for developing methods to more comprehensively identify struc-

tured RNAs. Previously, comparative genomics was applied for this purpose to high ef-

fect, revealing hundreds of novel candidate structured RNA motifs [2]. In general,

these comparative genomic approaches involve extensive clustering of subsequences of

intergenic regions from many organisms followed by structural motif prediction [3, 4].

These motifs are then scored based on observance of nucleotide covariation; this
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covariation suggests that when one nucleotide of a predicted structured motif under-

goes mutation, a compensatory mutation of the complementary base-pairing nucleotide

is also observed, preserving the overall structure [3, 4]. In the last decade, hundreds of

structured RNAs in bacteria have been predicted using comparative genomics [2, 5].

The small subset of these RNAs that have been validated and carefully characterized

display an exciting array of activities, ranging from functioning as trans-acting ncRNAs

to self-cleaving ribozymes to riboswitches [6, 7].

While powerful, a drawback of this comparative genomics approach is that in any

given experiment only a select set of intergenic regions are typically considered; this is

done to accommodate computational limitations and reduce the false positive rate. For

example, comparative genomics approaches often subset intergenic regions to bias to-

wards known classes of structured RNAs, like ribozymes or specific types of ribos-

witches, which tend to be found in specific genomic contexts [2]. As a consequence of

computational limitations and subsetting of intergenic regions, much of the intergenic

search space in microbes remains unexplored. Thus, carefully investigating these re-

gions presents an opportunity to discover new structured RNAs; however, this must be

approached with caution as larger-scale studies can potentially introduce more false

positives and make prediction of rare RNAs difficult [2].

Though computationally expensive, mining intergenic regions of large metagenomic

datasets is necessary for us to find structured RNAs in these largely unexplored regions of

microbial genomes. One of the rate limiting steps in a pipeline to predict candidate struc-

tured RNAs is performing all-versus-all BLASTn against all intergenic regions of interest

[2, 5]. Developments such as high speed BLASTN (HS-BLASTN) [8] can make such a rate

limiting step more computationally feasible (in terms of CPU-hrs) to perform at large-

scale. In this work, we perform an all-versus-all HS-BLASTN [8] on hundreds of millions

of intergenic regions predicted from Human Microbiome Project phase 2 (HMP2) [9]

metagenomic data, resulting in billions of significant pairwise homologies between differ-

ent intergenic regions. We cluster these homologous regions and predict millions of pos-

sible structured motifs. Using conservative scoring methods, we propose thousands of

candidate structured RNAs and validate expression of hundreds of them.

Results
Workflow of high-throughput predictions of candidate structured RNAs

To identify candidate structured RNAs, we created the following workflow (Fig. 1a).

First, we predicted 214,794,089 intergenic regions (~ 20 million base pairs) from HMP2

[9] by identifying coding regions using Prodigal [10] and considering those regions not

predicted to be coding. To determine which regions shared homology with each other,

we performed all-versus-all HS-BLASTN [8] on all intergenic regions (E value 0.05).

We filtered out conserved regions that were short (< 30 base pairs) or too similar to

each other (BLAST bit-score > 100 or percent identity = 100) [5]; the latter filter was

used as closely related sequences are unlikely to provide valuable covariation informa-

tion. Many of these thresholds were inspired by Weinburg et al. [5]. From the resulting

6,241,850,878 pairwise homologies from HS-BLASTN [8], we clustered homologous re-

gions using overcluster2 [2] with default settings, yielding 7,878,825 clusters. We struc-

turally aligned these regions using CMfinder (version 0.4.1) [17].
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To assess the quality of these structured RNA predictions, we performed two scoring

methods. First, we performed RNAPhylo [2], which uses a phylogenetic model to assign

probabilistic scores to alignments, narrowing the alignment files down to 52,830 motifs

(RNAPhylo p score > 10). Second, we assessed which structured motifs exhibited sig-

nificant covariation in nucleotides (E < 0.05) using R-scape [11], resulting in 23,105 mo-

tifs with significant covariation. To further determine if any of these potential

structured RNAs could encode a protein, we performed RNAcode [12], a comparative

genomics approach to predict coding regions using multiple sequence alignments. We

found that 16,703 possible structured RNAs were unlikely to be coding (RNAcode p

value < 0.05). We performed cmsearch from Infernal [14] across intergenic regions

against Rfam 14.3 [13] and found that 221 of the possible structured RNAs are previ-

ously known (GA cutoff or E value < 1 × 10−6). Candidate structured RNAs overlapping

Fig. 1 Prediction and characterization of candidate structured RNAs. a Workflow of candidate structured
RNA prediction. Genes in HMP2 [9] are annotated with Prodigal [10]. Homologous intergenic regions are
identified using HS-BLASTN [8]. Conserved regions are clustered and scored using RNAphylo [2], R-scape
[11], and RNAcode [12]. These putative structured RNAs are filtered to exclude those already found in Rfam
14.3 [13]. Candidate structured RNAs are searched against HMP2 using cmsearch [14] to ensure strong,
unique hits were observed for each proposed structure. To triple check candidate structured RNAs are in
non-coding regions, we search regions against the nr database using BLASTx [15]. This results in 3161
candidate structured RNAs, in addition to 2022 candidate structured RNAs with regions overlapping the nr
database. b Histogram displaying the ten protein domains that are most commonly found in the genomic
neighborhoods (within 5 kilobases) of the 3161 candidate structured RNAs. c Venn diagram displaying the
taxonomic distributions of the 3161 candidate structured RNAs at the domain level based on One Codex
[16] analysis of contigs on which they are found
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with any region with a known structure in Rfam [13] were discarded, finally yielding

16,482 putative models of structured RNAs (Additional file 1: Table S1). To ensure

these models were of high quality when used as search queries, we performed cmsearch

[14] for these 16,482 possible structured RNAs against HMP2 [9] intergenic regions.

We aimed to avoid proposing the same models multiple times or proposing structures

not yielding significant cmsearch [14] results. For example, it is possible that two clus-

ters formed by overcluster2 in our pipeline, though distinct based on HS-BLASTN [8]

thresholds, are similar enough sequences to yield roughly the same structure and hit

the same regions. We ultimately proposed 5183 possible structured RNAs that uniquely

and significantly hit intergenic regions (cmsearch E value < 1 × 10−6).

As a final measure to ensure these predictions are in non-coding regions, we per-

formed BLASTx [15] on all of these regions against the nr database (non-redundant

reference protein sequences). This resulted in 3161 candidate structured motifs

(BLASTx E value < 1 × 10−10) that were not found in regions predicted to be coding per

the nr database. To calculate the false discovery rate (FDR) of these predictions, we first

shuffled these alignments using SISSlz [18]. We subjected these shuffled alignments to

the complete pipeline including CMfinder [17], RNAphylo [2] (p-score > 10), and R-

scape [11] (E < 0.05) to determine the likelihood that these regions might satisfy our

thresholds for being predicted as a candidate structured RNA. Only 89 of these 3161

shuffled alignments were predicted to be structured RNAs, suggesting an FDR of 0.028.

Interestingly, the 2022 possible structured RNAs with significant BLASTx [15] hits to

the nr database also had a low FDR rate of 0.056 (113/2022). These calculations of FDR

are likely an underestimation or lower bound of the true FDR. Finally, we sought to ad-

dress the possibility that candidate structured RNAs may overlap with possible small

proteins, which are often unannotated by standard annotation pipelines. To investigate

this, we applied SmORFinder [19], a machine learning approach to predict small pro-

teins based on characteristics of previously predicted small proteins, and found that 99

of the candidate structured RNAs may overlap small genes (Additional file 2: Table S2).

Next, we characterized the 3161 candidate structured RNAs and the 2022 candidate

structures that overlapped with the nr database by their length, taxonomy, and genomic

neighborhood (Additional file 1: Table S1). The 3161 candidate structured RNAs

ranged from 27 to 219 base pairs in length (Additional file 1: Table S1). To determine

if certain genes were more often present in the vicinity of structured RNAs, we per-

formed a genomic neighborhood analysis. Specifically, we determined which genes were

present within 5 kilobases of every candidate structured RNA; we found that the pro-

tein domains cbiO and HTH-XRE were the most frequently annotated genes found

within close proximity to our novel structured RNAs (Fig. 1b), with 219 and 100 re-

spective candidate structured RNAs found in these genomic contexts. Genomic con-

text, while occasionally useful, does not suggest function of candidate structured RNAs.

While these 3161 candidate structured RNAs were predominantly found in bacteria,

some were identified in other domains: 12 structures were found in viruses, 5 in ar-

chaea, and 117 in eukaryota (Fig. 1c). Notably, the number of structures classified to vi-

ruses is likely underestimated as many structures encoded in phage genomes may

classify to their host bacteria. The genomic neighborhood analysis can be a useful way

to determine if structured RNAs may be found on phage as these structures are often

surrounded by phage-specific protein domains. For example, there are 28 candidate
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structured RNAs most commonly found near protein domains with “integrase,” “sor-

tase,” or “phage” in their names (Additional file 1: Table S1). Though we are showing

all classified structures (Fig. 1c), there is variability in accuracy of classifications; this is

reflected in the percentage of mapped k-mers from One Codex [16] (Additional file 1:

Table S1). Finally, we carried out a similar analysis on the 2022 structures that over-

lapped the nr database and we report these results as a separate, supplemental resource

(Additional file 1: Table S1).

Comparative genomics reveals a diverse collection of candidate structured RNAs

Due to the large size of this collection, it is unfortunately not feasible to discuss every

candidate structured RNA in great detail. Thousands of interesting structures can be

found in our collection (Additional file 1: Table S1) and can be filtered to focus on spe-

cific organisms and genomic contexts of interest. To showcase diversity within the

3161 candidate structured RNA, we highlight a few examples from this resource. For

example, HMP2_2419 is a 126 base pair (bp) candidate structured RNA (Fig. 2a) that

Fig. 2 Diversity of candidate structured RNAs. a Structure diagram, showing the consensus features of
HMP2_2419, a candidate structured RNA that associates with tRNA-ligases. b Structure diagrams of
HMP2_6893 and HMP2_905, candidate structured RNAs that overlap in opposing orientations that are in
the genomic neighborhood of uvrC. c Structure diagram of HMP2_13866, a candidate structured RNA
found in Malassezia. d Structured diagram of HMP2_734, a candidate structured RNA that is likely a novel
tmRNA. The legend in d applies to all structure diagrams in this manuscript to indicate nucleotide
presence, nucleotide identity, and covariation. Yellow shading indicates the start and stop site of the small
gene within the tmRNA
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was taxonomically difficult to classify as only 1.5% of k-mers on average could be classi-

fied from the contigs it was found on using One Codex [16]. HMP2_2419 was most

commonly found near (within 5 kilobases) of Valine tRNA-ligase (valS) in 290 in-

stances, Leucine tRNA-ligase (leuS) in 146 instances, and Isoleucine tRNA-ligase (ileS)

in 143 instances (Additional file 1: Table S1). Although structurally distinct, seven other

candidate structured RNAs were found near valS and other tRNA-ligases, including

HMP2_2187, HMP2_2353, HMP2_2391, HMP2_3524, HMP2_6788, HMP2_8154, and

HMP2_9059 (Additional file 1: Table S1).

HMP2_6893 (139 bp) and HMP2_905 (205 bp) are candidate structured RNAs that

overlap each other in opposing strand orientations (Fig. 2b). In fact, 301 candidate

structured RNAs overlapped one or more other candidate structured RNAs in the op-

posing orientation (Additional file 3: Table S3). This may be a system in which one

candidate structured RNA regulates the other, as is seen in the SdsR and RyeA toxin-

antitoxin system [20, 21]. HMP2_6893 and HMP2_905 appeared to be exclusive to Pre-

votella in HMP29 and were mostly found near UvrABC endonuclease subunit C (uvrC).

Four other candidate structured RNAs, HMP2_3411, HMP2_3634, HMP2_598, and

HMP2_7697, were also most commonly found near uvrC in other organisms, though

they are not associated with an overlapping structure given our prediction thresholds

(Additional file 1: Table S1).

HMP2_13866 (121 bp) is a candidate structured RNA that appears exclusively in Malas-

sezia, a fungal member of the microbiome, in HMP2 [9]. HMP2_13866 was mostly found

near NADH dehydrogenase subunit 2 (Fig. 2c, Additional file 1: Table S1). HMP2_734

(84 bp) is a candidate structured RNA that is taxonomically difficult to classify with an

average k-mer mapping of 2.29% (Fig. 2d, Additional file 1: Table S1). Interestingly

HMP2_734 occurred 36 times in HMP2 [9]; however, in only one of those instances was

it predicted to be the tmRNA ssrA by Aragorn [22]. Upon inspecting the structure, it in-

deed appears to be a novel tmRNA with a target peptide code VGTTGLAW*.

Candidate structured RNAs that are likely cis-acting

To identify candidate structured RNAs that may be cis-acting, we determined which can-

didate structured RNAs were found in the potential 5′ UTR of genes. Though we do not

know the outermost boundaries of 5′ UTRs, we hypothesized that candidate structured

RNAs often found within 25 base pairs of the 5′ end of genes may regulate the down-

stream gene [2] (Additional file 4: Table S4). The most commonly identified protein do-

main directly downstream of candidate structured RNAs was HTH_XRE, with 15

candidate structured RNAs found in the potential 5′ UTR of genes with the HTH_XRE

domain (Additional file 4: Table S4). Overall, we identified 508 candidate structured

RNAs that occur directly upstream (within 25 bp) of genes. For example, HMP2_2105

(86 bp) and HMP2_254 (51 bp) are candidate structured RNAs found in Treponema and

Collinsella, respectively, directly upstream of the 50S ribosomal protein L7/L12 (Fig. 3a).

HMP2_39 (49 bp) and HMP2_3043 (57 bp) are candidate structured RNAs found in

mostly Alistipes and Treponema, respectively, directly upstream of the 50S ribosomal pro-

tein L20 (Fig. 3b). HMP2_1435 (64 bp) is a candidate structured RNAs found in Cardio-

bacterium directly upstream of the 50S ribosomal protein L10 (Fig. 3c). These 50S

ribosomal proteins are known to contain ribosome protein leaders in their 5′ UTRs to
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regulate their expression in other bacteria [23, 24], suggesting that these candidate struc-

tured RNAs may be ribosome protein leaders. HMP2_3156 (106 bp), HMP2_5421 (68 bp),

and HMP2_14852 (38 bp) are candidate structured RNAs found in Clostridiales and Lep-

totrichia, respectively, found directly upstream of the ToxN toxin (Additional file 4: Table

S4, Fig. 3d). The antitoxin, ToxI, is a structured RNA often found directly upstream of

ToxN [25], suggesting that these candidate structured RNAs may be the antitoxin ToxI.

Candidate structured RNAs with palindromic characteristics

We identified candidate RNA structures that are found on both the forward and re-

verse strand of the same region, suggesting the structures are palindromic. In the final-

ized set of 3161 candidate structured RNAs, 250 of them were palindromic (Additional file 3:

Table S3). There are a few known classes of structured RNAs known to be palindromic, such

Fig. 3 Potentially cis-regulatory candidate structured RNAs. a Structure diagrams of HMP2_2105 and
HMP2_254, candidate structured RNAs typically found directly upstream of 50S ribosomal protein L7/L12,
possibly ribosome protein leaders. b Structure diagrams of HMP2_39 and HMP2_3043, candidate structured
RNAs typically found directly upstream of the 50S ribosomal protein L20, possibly ribosome protein leaders.
c Structure diagram of HMP2_1435, a candidate structured RNAs typically found directly upstream of the
50 S ribosomal protein L10, possibly a ribosome protein leader. d Structure diagrams of HMP2_3156,
HMP2_5421, and HMP2_14852, candidate structured RNAs often found directly upstream of the ToxN toxin,
possibly ToxI antitoxins
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as repetitive extragenic palindromic (REP) sequences [26] and Rho-independent terminators

[27, 28]. We predicted that 230 of the 250 palindromic candidate structured RNAs could form

terminator stem-loop structures using ARNold [27, 28] (Additional file 3: Table S3), which

predicts rho-independent terminators in nucleic acid sequences. This suggests that a majority

of these palindromic candidates may contain intrinsic terminators. The remaining 20 candi-

date structured RNAs may be REP sequences or another class of structured RNAs. For ex-

ample, HMP_4078 (109 bp) is a palindromic candidate structured RNA (Fig. 4a) that was not

predicted to contain an intrinsic terminator (Additional file 3: Table S3). It was most com-

monly found in Bacteroidetes and located near bacteriophage related protein domains such as

the D5 N terminal domain and phage integrase domain. HMP2_4205, HMP2_1065, and

HMP2_1032 were all predicted to be Rho-independent terminators and may transcriptionally

control the genes they associate with (Fig. 4b–d). HMP2_4205 (132 bp) is a palindromic can-

didate structured RNA (Fig. 4b) mostly found in Bacteroidetes and commonly located near

genes that contain tetratricopeptide repeats (TPR). HMP2_1065 (80 bp) is a palindromic can-

didate structured RNA (Fig. 4c) entirely found in Bacteroidetes and most commonly found

near the Holliday junction branch migration protein (RuvA). HMP2_1032 (106 bp) is a palin-

dromic candidate structured RNA (Fig. 4d) also entirely found in Bacteroidetes and most com-

monly found near periplasmic protein TonB.

Fig. 4 Candidate structured RNAs with palindromic characteristics. a–d Structure diagrams of HMP2_4078,
HMP2_4205, HMP2_1065, and HMP2_1032, respectively, which are candidate structured RNAs that exist on
both strands of the same region
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Expressed candidate structured RNAs in fecal microbiomes

To prioritize interesting candidate structured RNAs, we leveraged RNA-Seq, a powerful

method to determine which structures are expressed in the fecal microbiome. In this

study, we analyzed metagenomic sequencing data and RNA-Seq data without fragment

size selection performed on four taxonomically diverse fecal samples from four differ-

ent human subjects (A—healthy adult, B—patient with hematological disorder under-

going treatment, C—patient with cancer undergoing treatment, D—patient with

Alzheimer’s disease) [29]. First, metagenomic DNA sequencing data from four human

fecal samples was obtained; these data had previously been subjected to computational

assembly and the resultant contigs (longer contiguous DNA sequences that are assem-

bled “in silico” from smaller DNA fragments) were collected [29]. RNA-Seq without

fragment size selection was previously performed on these same samples and the re-

sultant reads were aligned to the de novo assemblies [29].

First, we searched for the 2022 candidate structured RNAs that contained significant

hits to the nr database across these assemblies. We identified 352 of these candidate

structured RNAs in the metagenomic assemblies from these samples and found that 59

of them were transcribed at or above an arbitrary threshold of 20 reads per kilobase

million (RPKM) (Additional file 5: Table S5). For example, HMP2_8626 (40 bp) is a

candidate structured RNA found both in Firmicutes and Bacteroidetes that overlaps

with plfA, pyruvate formate-lyase 1-activating enzyme (Fig. 5a). We next searched for

expression of the 3161 candidate structured RNAs. We identified 564 of these candi-

date structured RNAs in the assemblies [29] and calculated that 98 of them were tran-

scribed at RPKM > 20 (Additional file 5: Table S5). For example, HMP2_1881 (108 bp)

is a candidate structured RNA predominantly found in Bacteroidetes commonly found

near radical SAM protein domains. We found HMP2_1881 13 times in our assemblies

and it was expressed all 13 times (Additional file 5: Table S5, Fig. 5b). HMP2_7457 (67

bp) is a candidate structured RNA predominantly found in Firmicutes and is most often

found near the transcriptional repressor domain PBP1_LacI-like as well as commonly

found near phage domains like integrases (Additional file 1: Table S1, Fig. 5c). HMP2_

13009 (56 bp) is a candidate structured RNA found in Firmicutes and most often near

Cas1 and Cas2 protein domains (Additional file 5: Table S5, Fig. 5d). It is a repeating

structure and was predicted by minCED (https://github.com/ctSkennerton/minced) to

overlap a CRISPR array. This suggests HMP2_13009 is a new model for the structured

RNA repeat of a CRISPR/Cas9 system.

Discussion
Even though structured RNAs in microbes play key roles in bioregulation, many struc-

tured RNAs remain undiscovered. It is computationally expensive to build models for

new structured RNAs at a large-scale without substantially limiting the search to spe-

cific intergenic regions [2]. In this work, we performed computationally intensive,

large-scale predictions of candidate structured RNAs across all intergenic regions pre-

dicted from HMP2 [9]. Our pipeline analyzed hundreds of millions of intergenic re-

gions, identified millions of clusters of conserved intergenic regions, created millions of

candidate motifs, and conservatively scored those motifs with phylogenetic models and

covariation statistics to predict thousands of candidate structured RNAs.
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A key tool that enabled us to predict candidate structured RNAs at a large-scale was

HS-BLASTN. A key distinction between HS-BLASTN and BLASTn is that HS-

BLASTN utilizes a new database-derived lookup table. Unlike BLASTn, it loads the

resulting index into memory and thus requires significantly more RAM. To perform all

vs. all HS-BLASTN in the workflow required roughly 35,000 CPU-hrs at 90 GB of

RAM. We estimated that BLASTn would have required an order of magnitude less

RAM but also over an order of magnitude more CPU-hrs. Though this work was still

computationally intensive, it would have otherwise been too intensive to realistically

perform in our high performance computing environment without HS-BLASTN.

While infeasible to discuss thousands of candidate structured RNAs in detail, we in-

stead highlighted some interesting predictions. We discovered candidate structured

RNAs across all taxonomic domains within the human microbiome. We were able to

identify many different classes of candidate structured RNAs, including tmRNAs, cis-

regulatory structured RNAs including putative ribosome protein leaders and antitoxins,

Fig. 5 Candidate structured RNAs that are expressed in the fecal microbiome. a Structure diagram and
RNA-Seq IGV plot of HMP2_8626, a candidate structured RNA from the 2022 set that overlaps the nr
database, specifically overlapping the gene plfA. Black arrows indicate candidate structured RNAs. Gray
arrows indicate predicted genes. Unlabeled genes are those predicted to be hypothetical. b Structure
diagram and RNA-Seq IGV plot of HMP2_1881, a candidate structured RNA from the 3161 set often found
near radical SAM protein domains. c Structure diagram and RNA-Seq IGV plot of the candidate structured
RNA HMP2_7457 often found near PBP1_LacI-like and integrase protein domains. d Structure diagram and
MetaRibo-Seq [30] IGV plot of HMP2_13009, a candidate structured RNA found near Cas proteins likely
representing the repeats in a CRISPR array

Fremin and Bhatt Genome Biology          (2021) 22:100 Page 10 of 16



intrinsic terminators, and repeat regions in CRISPR arrays. We further use RNA-Seq

from human fecal microbiomes [29] to validate expression and highlight interesting

candidate structured RNAs.

While this approach has the advantage of being high throughput, it does have several

limitations. First, it can be difficult to distinguish between non-coding and coding re-

gions in microbial genomes. This is evident even in our existing analyses: regions that

were not predicted to be coding by Prodigal [10] or RNAcode [12] still contained sig-

nificant homology to proteins in the nr database, suggesting that the region could, in-

deed, encode a protein. Of course, significant homology to the nr database also does

not necessarily guarantee a region is coding. Additionally, it is also possible that regions

that share no homology to the nr database could still be coding. Small genes, for ex-

ample, are often overlooked and absent in databases. We cannot guarantee if a candi-

date structure RNA is truly in an intergenic region. Second, this work does not validate

RNA structures using methods like FragSeq or SHAPE-Seq [31–33]. We only validate

expression in fecal microbiomes of some candidate structured RNAs. Third, the false-

negative rate of our work is likely high as we disregard many structures based on our

conservative cutoffs. Fourth, the true FDR of these candidate structured RNAs is likely

higher than our estimations. Since we predict a diverse set of candidate structured

RNAs, we cannot expect shuffling of alignments to adequately control for all biological

features. Additionally, we are only shuffling alignments specific to candidated struc-

tured RNAs and not shuffling the entire intergenic space. The FDR we estimate in this

work is best interpreted as a lower bound of the true FDR. Finally, unlike previous

structured RNA discovery approaches, which use comparative genomics along with

genomic neighborhood information to select for specific predicted functions such as

riboswitches, the candidate structured RNAs we predict in this work can be less

straightforward to functionally characterize. For example, the candidate structured

RNAs we propose could be trans-regulatory and regulate genes found on different con-

tigs in the sample. The genomic neighborhood analyses (5 kb both directions and 25 bp

upstream of genes) are biased towards protein domains of higher frequencies in meta-

genomes and provide no insight on candidate structured RNAs that are trans-regula-

tory. Unless we can make very strong cases for specific classes of candidate structured

RNAs, such as the tmRNA and CRISPR repeat examples in this manuscript, most func-

tional assignments would be speculative, at best, and further investigation is certainly

warranted.

These limitations notwithstanding, this work provides a resource of 3161 candidate

structured RNAs (FDR = 0.028). We provide an additional 2022 candidate structured

RNAs that may overlap genes present in the nr database (FDR = 0.056). For all of these

candidate structured RNAs, we further characterized them by length, taxonomy, gen-

omic neighborhood, proximity to 5′ of genes, and expression levels, which we antici-

pate researchers will use to prioritize structures of interest to their lab. Future work

will include validating these overlapping candidate structures to determine what roles

they play. We proposed 508 structures directly upstream of specific genes, which sug-

gests a role in possible cis-regulation, although follow-up work is necessary to deter-

mine whether or not cis-regulation actually occurs. Being able to truly classify these

candidate structures into ribozymes, riboswitches, tRNAs, antitoxins, trans-acting

ncRNAs, or many other structures will require combined efforts of many labs. We
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additionally anticipate researchers will take inspiration from this approach to predict

additional candidate structured RNAs employing exciting new additional approaches

for clustering candidate RNA structures, such as using GraphClust2 [34], on a large-

scale. Overall, we hope that this resource of thousands of structured RNAs enables fu-

ture functional characterization and mechanistic dissection of a wide range of new

structured RNAs from previously unexplored microbial genomic regions.

Methods
Data download

All data used in this study are publicly available. Contigs from the 1773 HMP2 meta-

genomes containing at least 5 Mbp of total contig sequence were downloaded from

https://www.hmpdacc.org/hmasm2. The samples used for the RNA-Seq analysis can be

found under BioProject accession no. PRJNA510123.

Comparative genomics workflow

We predicted genes in HMP2 [9] using Prodigal [10]. We inferred which regions were

intergenic using bedtools [35]. We performed all-versus-all HS-BLASTN [8] on these

intergenic regions using default settings, filtering out regions that were shorter than 30

base pairs, 100% identity to each other, were assigned E values greater than 0.05, or

were assigned bit-scores greater than 100. HS-BLASTN [8] requires more RAM as the

database size increases. To make HS-BLASTN [8] more computationally feasible, we

split the intergenic regions into 100 roughly equally sized smaller fasta files in an un-

biased manner and created 100 smaller databases. We ran HS-BLASTN [8], querying

all intergenic sequences against all 100 databases. We combined the results from all

searches and then clustered similar subsequences based on HS-BLASTN [8] scores

using a single-linkage clustering algorithm called overcluster2 (Weinberg, Z., unpub-

lished open-source software, available at http://weinberg-overcluster2.sourceforge.io)

using default settings. Clusters were structurally aligned using CMfinder version 0.4.1

[17]. Motifs were scored using RNAPhylo [2] with a p-score cutoff of greater than 10.

Motifs were further scored for significant covariation (E < 0.05) using R-scape [11] with

default settings. When CMfinder [17] proposed multiple motifs for a region that met

p-score and covariation cutoffs, the motif with the highest p-score was chosen. To re-

move conservation that can be explained as coding, RNAcode [12] was applied using

default settings and regions with p values greater than 0.05 were retained. We per-

formed cmsearch [14] across the HMP2 [9] intergenic regions against Rfam 14.3 [13]

using the GA cutoff or E value greater than 1 × 10−6 of a known structure. If any region

contained an overlap with Rfam [13] structures and a candidate structured RNA, we

discarded the candidate. We similarly performed cmsearch of candidate motifs against

HMP2 [9] to ensure they uniquely and significantly (E value < 1 × 10−6) hit regions in

HMP2 [9]. We performed BLASTx [15] on all of these regions against the nr database,

filtering out those with E values greater than 1−10. RNA structures were drawn using

R2R [36], which was run by default using R-scape [11] previously. These diagrams only

highlight covariation that was predicted to be significant by R-scape [11]. Finally,

Prokka v1.12 [37] was used on HMP2 [9] using the –meta option, primarily to identify
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if candidate structured RNAs may be tRNAs, rRNAs, or CRISPR arrays. Transfer RNAs

were predicted by Aragorn [22].

False discovery rate (FDR) estimates

We shuffled these alignments using SISSlz [18]. To the shuffled alignments, we per-

formed the same pipeline, including CMfinder [17], RNAphylo [2], and R-scape [11]

with the same thresholds as above. The number of shuffled alignments that met the

thresholds of a candidate structured RNA was divided by the number of alignments

considered to calculate the FDR.

RNA-Seq analysis

RNA-Seq reads were trimmed with trim galore version 0.4.0 using cutadapt 1.8.1 [38]

with flags –q 30 and –illumina. RNA-Seq reads were mapped to the annotated metage-

nomic assembly using bowtie version 1.1.1 [39]. Candidate structured RNAs as well as

those present in Rfam [13] were identified on these assemblies using cmsearch [14] (E

value < 1 × 10−6). The number of reads mapping to each structure was calculated using

bedtools [35]. If an RNA-Seq read mapped to any position that overlapped with a pre-

dicted structured RNA (even at a single position), the read was counted. RPKM values

for candidate structured RNAs were calculated based on read counts from all candidate

and known structured RNAs. IGV [40] was used to visualize coverage.

Predicting small genes in HMP2

We predicted small genes using SmORFinder [19] with default settings on HMP2 [9]

contigs. We then used bedtools [35] to determine which candidate structured RNAs

may overlap with predicted small genes.

Length of candidate structured RNAs

The lengths of candidate structured RNAs were reported based on the length given in

the calibrated cm file for each structure. This represents the maximum length of the

structure.

Taxonomic classification

The contigs in which predictions were identified were classified using One Codex [16].

For every candidate structured RNA, we counted the number of contigs that classified

to each taxon at the levels of domain, phylum, class, order, family, genus, and species.

We also provide the average percent of k-mers that were classifiable for each candidate

structured RNA.

Genomic neighborhood analysis

To determine the genes that are present within the vicinity of candidate structured

RNAs, amino acid sequences of genes that existed within 5 kb of each predicted struc-

tured RNA were identified. We then compared these sequences against the Conserved

Domain Database (CDD) [41], using RPS-blast [15]. A hit was considered significant if:

E value ≤ 0.05 and the protein aligns to at least 80% of the PSSM’s length. To identify

protein domains directly downstream of candidate structured RNAs, we performed the
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same analysis as above except only considered genes that were within 25 base pairs

downstream of candidate structured RNAs.

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s13059-021-02319-w.
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genomic assemblies from our previous study [29], we provided the RNA-Seq RPKM values of those expressed as
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Additional file 6. Visualization of the 3161 candidate structured RNAs. We show R2R [36] visualizations of the
3161 candidate structured RNAs as a pdf.

Additional file 7. Visualization of the set of 2022 candidate structured RNAs that overlap the nr database. We
show R2R [36] visualizations of the 2022 candidate structured RNAs with significant hits to the nr database as a
pdf.

Additional file 8. Alignment files of the 3161 candidate structured RNAs. We provide alignment files for each of
the 3161 candidate structured RNAs as well as the calibrated cm file that can be used to search for them.

Additional file 9. Alignment files of the 2022 candidate structured RNAs that overlap the nr database. We provide
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Additional file 10. BLASTx results of the 2022 candidate structured RNAs to the nr database. We display the
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