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Abstract

Background: Cervical squamous cell carcinoma (CSCC), caused by the

infection of high‐risk human papillomavirus, is one of the most common

malignancies in women worldwide.

Methods: RNA expression data, including those from the Cancer Genome

Atlas, Gene Expression Omnibus, and Genotype‐Tissue Expression databases,

were used to identify the expression of RNAs in normal and tumor tissue.

Correlation analysis was performed to identify the immune‐related long non-

coding RNAs (IRLs) and hypoxia‐related genes (IRHs) that can influence the

activity of the immune system. Prognosis models of immune‐related RNAs

(IRRs) were used to construct a coexpression network of the immune system.

We identified the role of IRRs in immunotherapy by correlation analysis with

immune checkpoint genes (ICGs). We then validated the expression data by

integrating two single‐cell sequencing data sets of CSCC to identify the key

immune features.

Results: In total, six immune‐related gene (IRG), four IRL, and five IRH

signatures that can significantly influence the characteristics of the tumor

immune microenvironment (TIME) were selected using machine learning

methods. The expression level of ICGs was significantly upregulated in

GZMB+CD8+ T‐cells and tumor‐associated macrophages (TAMs) in tumor

tissues. TGFBI+ TAMs are a kind of blood‐derived monocyte‐derived M0‐like
TAM linked to hypoxia and a poor prognosis. IFI30+ M1‐like TAMs participate

in the process of immune‐regulation and showed a role in the promotion of

CD8+ T‐cells and Type 1 T helper (Th1)/Th2 cells in the coexpression network,

together with several IRLs, IRGs, and ICGs.

Conclusions: CD16+ monocyte‐derived IFI30+ TAMs participated in our

coexpression network to regulate the TIME, showing the potential to be a

novel immunotherapy target. The enrichment of M0‐like TAMs was associated
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with a worse prognosis in the high‐risk score group with IRH signatures.

Remarkably, M0‐like TAMs in tumor tissues overexpressed TGFBI and were

associated with several well‐known tumor‐proliferation pathways.
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1 | INTRODUCTION

Cervical cancer (CC) is one of the common types of
gynecological malignancies, ranking second only to
breast cancer.1 The incidence and mortality rates of CC
have increased year by year and more and more younger
individuals are being diagnosed in urban China.2 Viral
infection induces various immune responses in the host
to control viral replication, but it does not necessarily
lead to CC.3

Tumors are complex ecosystems defined by spatio-
temporal interactions between different cell types.4 The
tumor microenvironment (TME), which consists of
vascular vessels, fibroblasts, endothelial cells, distinct
infiltrating immune cell (IIC) subsets,5 bone marrow‐
derived progenitors, platelets, and inflammatory cyto-
kines,6,7 plays a vital role in the development of tumor
tissues.8‐10 The tumor immune microenvironment
(TIME) and certain IIC types could lead to a poor
prognosis.11,12 Immune checkpoint inhibitors (ICIs) are
one of the most effective anticancer treatment methods
available today.13‐15 However, the composition of the
TIME can directly reflect treatment efficacy.16 Proin-
flammatory cytokines secreted by tumor cells and IICs
have been shown to regulate tumor progression and
immune evasion.17 Hypoxia strongly stimulates the TME
of CC,18 inducing the trafficking of macrophages—
especially M2‐like phenotype macrophages19,20—into
tumor areas21 and contributing to cell–cell communica-
tion,22 thereby inducing immunosuppression.23 Long
noncoding RNAs (lncRNAs) of >200 nucleotides24 play
a key role in the pathogenesis of several kinds of
cancers.25‐28 Despite growing appreciation of the impor-
tance of lncRNAs in disease,26 our knowledge of the
contact between immune‐related lncRNAs (IRLs) and
the TIME in CC remains limited. The Cancer Genome
Atlas (TCGA) and Genotype‐Tissue Expression (GTEx)29

which generated matching normal tissue data for various
human tissues,30 provide a wide range of data mining
capabilities for gene functions.

In recent years, machine learning (ML) has become
widely used in various fields.31‐34 We sought to investi-
gate the roles of TIME in the development of CC,

adopting the use of a ML method for screening the
prognostic significance of some immune‐related RNAs
(IRRs) and IICs. Due to the TIME hypoxia circum-
stances, we analyzed the correlation between hypoxia‐
related genes (HRGs) and immune‐related genes (IRGs).
We observed decreased levels of CD8+ T‐cells and
increased fractions of M0‐like macrophages in the high‐
risk score group of immune‐related hypoxia‐related gene
(IRH) signatures compared to those in the low‐risk score
group. The coexpression network was constructed by
IRRs. Single‐cell analysis has revealed the heterogeneity
of immune cells in a variety of cancer types.35‐38 We
identified the expression of these genes and existing
immunotherapy sites in different states of cells by
pseudotime using single‐cell RNA sequencing (RNA‐
seq). CellPhoneDB revealed the importance of tumor‐
associated macrophages (TAMs) in TIME cell communi-
cations. We investigated a combination of multiple
immune biomarkers as a clinically relevant signature
that may predict prognosis, diagnosis, relapse, and
therapy in CC patients.

2 | MATERIALS AND METHODS

2.1 | Data acquisition

TCGA and GTEx count data, TCGA–cervical squamous
cells carcinoma (CESC) fragments per kilobase of
transcript per million mapped reads (FPKM) data, and
corresponding clinical information were downloaded
from the Xena database (https://xenabrowser.net/) of
the University of California. The TCGA–CESC FPKM
sequence data were translated to TPM sequence data.
Meanwhile, RNA‐seq microarray datasets (GSE138080
and GSE63514) and clinical information of cervical
squamous cell carcinoma (CSCC) were downloaded from
Gene Expression Omnibus (GEO) (https://www.ncbi.
nlm.nih.gov/gds). GSE138080 obtained 10 healthy cervi-
cal tissues and 10 CSCC. GSE63514 obtained 24 healthy
cervical tissues and 28 tumor tissues (27 CSCC and 1
missing). GSE168652 includes two samples (CSCC
tissues and adjacent normal tissues). GSE171894 contains
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four fresh samples from patients with CSCC. Also,
Ensembl identifiers were translated to gene symbols by
annotation files (gencode.v22.annotation.gtf3.gz) down-
loaded from Gencode (https://www.gencodegene.org/) to
distinguish between the messenger RNA (mRNA),
microRNA, and lncRNA.

2.2 | Estimation of TME signatures

CIBERSORT is a gene‐based deconvolution algorithm39

that can infer 22 human immune cell types. The TPM
expression datasets were uploaded to R software, and we
used the characteristics of 547 marker genes and 1000
permutations to quantify the proportion of each cell type.

2.3 | Identification of IRGs in
TCGA–GTEx and GEO datasets

The IRGs were downloaded from the IMMPORT
database (https://www.IMMPORT.org/). The common
Cuffdiff analysis packages (DESeq. 2) were used to
identify the differentially expressed genes (DEGs)
(|LogFC| > 1, false discovery rate < 0.05) in the
TCGA–GTEx cohort. The GEO chip microarray data
(GSE138080 and GSE63514) were analyzed using the R
limma package.

2.4 | Coexpression to define the
immune‐related lncRNAs and hypoxia
genes

A coexpression strategy (p< .001, F> 0.4) was applied to
confirm the correlation efficiency in screening the IRLs
and IRHs in TPM sequence data. A total of 200 HRGs
were downloaded from MSigdb hallmark gene sets
(http://www.gsea-msigdb.org/gsea/msigdb/).

2.5 | Establishment and validation of
IRG signatures

We used traditional ways to construct IRG prognosis
models to predict the prognosis of cervical patients.
Those patients with full survival information were
randomly divided into training and testing sets. Same
as in the above method, the IRGs were selected by
univariate Cox regression and Lasso regression. The risk
score models were constructed by multivariable Cox
regression. The TCGA cohort was stratified into high‐risk
and low‐risk groups based on the median risk score. The

difference in overall survival (OS) between the two
groups was calculated by the Kaplan–Meier method. The
receiver operating characteristic (ROC) curve was con-
structed using the survival ROC package in R to analyze
the predictive accuracy. The prediction of it was analyzed
by the Kaplan–Meier logrank test and time‐dependent
ROC curve analysis. Hazard ratios (HRs) <1 indicated
protective genes, while HRs of <1 indicated risk genes.
Then, the risk models were built based on multivariable
Cox models. The formula of risk score calculation was as
follows:

Riskscore= βigenei × expression(genei).

2.6 | Analysis of the correlation
between immune checkpoint
gene expression and immune profiles

Immune checkpoint genes (ICGs) associated with IRRs
were downloaded from the TISIDB database (http://cis.
hku.hk/TISIDB/) with the goal of analyzing the interac-
tions between tumors and the immune system. Immu-
noinhibitors and immunostimulators that were signifi-
cantly correlated with IRRs in terms of gene expression
were selected (p< .05).

2.7 | Quality control of single‐cell
sequencing data and cell types defined

GSE168652 includes two samples (CSCC tissues and
adjacent normal tissues) from a 53‐year‐old patient with
human papillomavirus 18‐positive CSCC. GSE171894
contains four fresh samples from patients with CSCC
who underwent concurrent chemoradiotherapy.

The top 2000 variable genes were used in the follow‐
up analysis. Cell markers were downloaded from
cellsMarker (https://www.labome.com/method/cells-
Markers.html) and existing literature to distinguish
different cell types. The R package Seurat was used to
complete the initial quality control process (i.e., to screen
for a gene expressed in ≥3 cells, mitochondrial gene
expression <10%, and select cells with ≥200 genes).

2.8 | Pseudotime trajectory analysis

The Monocle2 package (version 2.8.0) was used to analyze
single‐cell trajectories to discover the cell state transitions.
The trajectory was visualized as a two‐dimensional t‐
distributed stochastic neighbor embedding (t‐SNE) graph,
and dynamically expressed heatmaps were constructed using
the plot_pseudo‐time_heatmap function.
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2.9 | Cell–Cell interaction analysis

CellPhoneDB40,41 is a Python‐based computational anal-
ysis tool; it can be used to analyze cell–cell communica-
tions between cells at the molecular level. Considering
the cell types or clusters, CellPhoneDB was used to
analyze the major cell types and cell subclusters in
normal tissues and TME.

2.10 | Protein–protein interaction
network

A protein–protein interaction (PPI) network was created
using the STRING database (https://string-db.org/). The
output data were entered into Cytoscape (version 3.8.2)
to construct the PPI network.

2.11 | Statistical analysis

Data were analyzed by R (version 3.6.3). The Venn plot
was drawn by Venny (https://bioinfogp.cnb.csic.es/tools/
venny).

2.12 | mRNA and protein expression
and immunochemistry analysis

The protein expression immunochemistry image was
obtained from online datasets The Human Protein Atlas
(THPA, https://www.proteinatlas.org/). CancerSEA is a
database designed to decode 14 functional states of
cancer cells at a single‐cell resolution, which includes
41,900 cancer single cells from 25 cancer types.42

3 | RESULTS

3.1 | Clinic information and the study
process flow

The workflow of this study is shown in Figure 1. The
transcriptome profiling data of CC included datasets
from the TCGA database, which contains 306 tumor data
and 3 adjacent normal tissue data, and 10 normal tissues
from the GTEx database. Chip microarray datasets
(GSE138080 and GSE63514) were downloaded from the
GEO database. The CIBERSORT deconvolution algo-
rithm was used to quantify the fraction and infiltration of
22 kinds of immune cells in CC. Machine learning (ML)
methods were used for the screening of IRGs with
prognostic value (Figure 1A). We also used Cytoscape

and R packages to analyze the coexpression network and
gene enrichment pathway to trace down genes related to
inflammation and immune‐regulation. Single‐cell
sequencing raw data (GSE16852 and GSE171894) were
downloaded from GEO. Then, we manually divided the
cell clusters according to different cell types to identify
the expression of IRRs in the TME (Figure 1B) and
quantify the difference between normal and tumor
tissues.

In Figure 1C, the pseudotime trajectory analysis was
applied to CD8+ T‐cells and macrophages in two single‐
cell sequencing datasets to analyze the genetic changes of
CD8+ T‐cells and macrophages in normal and tumor
tissues and at different stages of tumor development.
CellPhoneDB was used to calculate the differences in
ligand–receptors between different cells in the TME.
Then, we calculated the correlations between ICGs and
immune cells. In this study, we aimed to discern the
differences in IRR expression between the TCGA–GTEx
and GEO databases to determine the potential prognostic
value of the DEGs between tumor and normal tissues.

3.2 | Identification of IRGs in CC

There were 36 overlappings differentially expressed
IRGs between normal and tumor tissues in three
cohorts (TCGA–GTEx, GSE138080, and GSE63514).
First, 11 DEIs associated with OS were selected by
univariate Cox regression (p < .05). Second, we
removed DEIs (p > .05) that showed no significant
effect on prognosis in public online databases (Gene
Expression Profiling Interactive Analysis [GEPIA]).
Finally, we built a diagnosis signature by logistic
regression based on eight DEIs, and area under the
ROC curve (AUC) values (best models) were selected
by a Gaussian mixture model (GMM‐based cluster-
ing). There were a total of 255 different gene‐
combination formulas and a total of 255 logistic
regression models (Figure 2A,B). We calculated the
best diagnosis models by GMM with the R mclust
package (Figure 2A) in the TCGA–GTEx cohort, and
the AUC (T = 305, N = 13) was 1 (Figure 2H). We
predicted the model in the validation sets (GSE138080
and GSE63514), and the AUCs were 0.87 and 0.64
(Figure 2I,J). We used the same six genes
(Figure 2C–E) to build a logistic regression model to
predict the relapse rate (Figure 2B). A total of 292
patients were divided into a training set (n = 153) and
a testing set (n = 152) randomly; then, we calculated
the Gaussian distribution of the relapse rates of the
two sets and found that, in Cluster 9 of the training
set, the prediction rate was 0.69, while the prediction
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rate of the testing set was 0.62 (Figure 2F,G). Through
the construction of the diagnostic model and the
construction of the prediction model, we found that
there were six IRGs with good rates in predicting
recurrence and distinguishing normal tissues from

tumor tissues. Logistic regression models were calcu-
lated according to the combination of the following
genes to predict the relapse: GZMB + SPP1 + EREG +
ISG20 + FAM3B + IFI30. These six IRG signatures can
also predict diagnosis and prognosis.

FIGURE 1 The workflow of this study. (A) Screening of immune‐related RNAs (IRRs) and immune cells with prognostic value. (B)
Single‐cell sequencing to identify the location of the IRRs. (C) IRRs between cell–cell communications. GEO, Gene Expression Omnibus;
GMM, Gaussian mixture model; GO, Gene Ontology; GTEx, Genotype‐Tissue Expression; IRG, immune‐related gene; IRH, immune‐related
hypoxia‐related gene; IRL, immune‐related long non‐coding RNA; NK, natural killer; PPI, protein–protein interaction; TAM, tumor‐
associated macrophage; TCGA, The Cancer Genome Atlas; TSNE, t‐distributed stochastic neighbor embedding; UMAP, uniform manifold
approximation and projection
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FIGURE 2 Receiver operating characteristic (ROC) curve plot of each Gaussian regression to distinguish the tumor and normal tissues.
(A) The logistic regression of immune‐related gene (IRG) diagnosis models in the Cancer Genome Atlas (TCGA) cohort. (B) The logistic
regression of IRG collapse models in the TCGA cohort. (C–E) ROC curve plot of each immune gene to distinguish tumor and normal tissues.
TCGA–Genotype‐Tissue expression (GTEx), GSE138080, and GSE62514. (F,G) ROC curve plot showing the predictive value of diagnosis
models for cervical squamous cell carcinoma recurrence. (H–J) ROC curve plot showing the diagnosis models to distinguish the tumor from
normal tissues and predict the relapse. AUC, area under the ROC curve
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3.3 | IRH prognosis models in the TCGA
cohort

Pearson's analysis (corFilter = 0.4, p < .001) revealed
that most (65/76 DEGs) of the HRGs had a very strong
association with 597 differentially expressed IRGs in
TCGA corhorts. These IRHs include 32 downregu-
lated genes and 44 upregulated genes. With the
univariate Cox regression and Lasso algorithm
(Figure 3B), we finally established an IRH signature
risk model by finding five IRH signatures to predict
the prognosis of CC. The risk score formula was as
follows: [BCL2 expression × (−0.6179)] + [ISG20 ex-
pression × (−0.3295)] + [TGFBI expression × (0.2535)]
+ [PLIN2 expression × (0.2101)] + [LOX expression ×
(0.2065)]. Patients in the training set and testing set
were divided into two high‐ and low‐risk groups
according to the median risk score. Kaplan–Meier
survival analysis (Figure 3C) indicated that patients in
the high‐risk group had the worst survival in the
training (p = .0013) and testing (p = .023) sets. The
AUC values were 0.808 and 0.794, respectively, for the
training set and testing set (Figure 3D). The signifi-
cance of the risk score was proved in the multivariate
Cox analysis (Figure 3G). BCL2 and ISG20 were low‐
risk immune genes in CC, while TGFBI, PLIN2, and
LOX were high‐risk immune genes. Among these
genes, TGFBI, PLIN2, and LOX showed interactions
with IRHs (Figure 3A).

3.4 | Constructed coexpression network

Following univariate Cox regression analysis, 4
prognosis‐related IRLs and 51 prognosis‐related IRGs
were selected and analyzed to construct the coexpression
network (Figure 4A,B). It could be seen that hub
lncRNAs (AC002331.1, AC017002.1, AC092580.4, and
AC124944.5) and IRGs (IFI30 and ISG20) were positively
correlated with a variety of ICGs (CTLA4, TNFRSF9,
CD86, TNFRSF13B, PDCD1, and CD48) and marker
genes of different immune cells, such as CD8+ T‐cells
(CD8A, CD3D, CD79A, and CD3E) and B‐cells (CD19),
forming a network of connections between myeloid cells
and T‐cells. This indicates that the complexity of IFI30+

TAMs in promoting immune effects, which may cause
T‐cells to fatigue while stimulating T‐cell toxicity. A
boxplot (Figure 4C) shows the correlation between
multiple IRRs and immune infiltration cells; the blue
box indicates a negative correlation, whereas the red box
indicate a positive correlation. ISG20, IFI30, GZMB,
AC092580.4, AC017002.1, AC002331.1, and CD8+ T‐cells
are positively correlated. SPP1 is positively correlated

(p< .01) with M2‐like macrophages. IFI30 is positively
correlated (p< .01) with M1‐like macrophages. TGFBI is
positively correlated (p< .01) with M0‐like macrophages.
For IRHs (Figure 4E), CIBERSORT analysis results
showed that significantly higher M0‐like macrophage
cell counts (p< .001) appeared in the high‐risk score
group relative to the whole cohort, with a lower
percentage of CD8+ T‐cells (p< .001). A total of 14,852
lncRNA expression profiles in the TCGA–GTEx dataset
were obtained in this study. A total of 305 IRLs were
screened out by coexpression analysis from 1187
differentially expressed lncRNAs. The correlations
between IRGs and ICG are shown in Figure 4C,
indicating that IFI30, GZMB, ISG20, AC092580.4,
AC017002.1, and AC002331.1 are strongly correlated
with ICGs (most of them p< .01, cor > .7). The correla-
tions (Figure 4F) between the eight IRG signatures and
CIQC‐TAM signatures are shown in Figure 4F, indicat-
ing that IFI30 and GZMB are significantly positively
correlated with CIQC‐TAMs and many IRGs, while SPP1
had no significant correlation with IRGs.

3.5 | The relationship between IRRs and
immune cells

The corplot (Figure 5A) indicated that CD8+ T‐cells are
negatively correlated with CD4+ memory T‐cells and
M0‐like TAMs. The high expression levels of TGFBI and
SPP1 are related to a poor prognosis, while the high
expression level of IFI30 is related to a good prognosis
via the GEPIA database (Figure 5B,C). The GSEA plots
of IFI30, SPP1, and TGFBI are shown in Figure 5D–F.
The immune process‐related pathway was significantly
enriched in subgroups divided by the midexpression of
IFI30. In particular, pathways that promote the differ-
entiation of Th1, Th2, B‐cells, and cells of a hematopoi-
etic lineage are enriched in the high‐level group of
IFI30. Meanwhile, in subgroups divided by the expres-
sion level of SPP1, tumor proliferation‐related path-
ways, such as P53 signaling pathways or cell cycle
pathways, were enriched in high‐expressed level groups.
In subgroups divided by the expression levels of
TGFBI, tumor immunosuppression‐related pathways,
such as P53 signaling pathways, phosphoinositide
3‐kinase–protein kinase B (PI3K–AKT) signaling path-
ways, cell cycle pathways, tumor necrosis factor (TNF)‐
κB signaling pathways, Janus kinase–signal transducer
and activator of transcription signaling pathways, and
apoptosis pathways, were enriched in high‐level expres-
sion groups. The expressions of IFI30 and TGFBI in
tumor and normal tissues were verified by THPA
database (Figure 5G,H).
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FIGURE 3 Immune‐related hypoxia gene signatures in The Cancer Genome Atlas (TCGA) cohort. (A) STRING‐based protein–protein
interaction network of proteins of immune‐related hypoxia‐related genes (IRHs). (B) Cross‐validation in the Lasso analysis; Lasso coefficient
profiles of the IRHs in the training set. (C) Kaplan–Meier analysis (survival plot) for risk groups. (D) The 1‐year time–receiver operating
characteristic (ROC) curve plot of hypoxia‐related signatures. (E) Distribution, survival status, and heatmap of high‐ and low‐risk patient
groups in the training set. (F) Distribution, survival status, and heatmap of high‐ and low‐risk patient groups in the testing set. (G) Forest
plot of IRH signatures in the training set. AUC, area under the ROC curve; CI, confidence interval; HR, hazard ratio; RFS, recurrence‐free
survival
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FIGURE 4 (A) The workflow of the coexpression network. (B) Coexpression network between immune‐related long noncoding RNAs
(IRLs) and immune‐related gene (IRGs). (C) Correlations between the immune‐related RNAs and infiltrating immune cell subtypes: IRGs,
immune‐related hypoxia‐related genes, and IRLs. (D) The Kaplan–Meier survival plots of SPP1, IFI30, and TGFBI. (E) Comparisons of
immune cells between high‐ and low‐risk score groups. (F) The boxplot showing that the correlations between the eight IRGs and CIQC‐
TAM signatures. DEG, differentially expressed gene; DEL, differentially expressed lncRNAs; TAM, tumor‐associated macrophage

YIN ET AL. | 9



FIGURE 5 Characteristic of immune‐related RNAs in tumor‐associated macrophages. (A) Correlations between different infiltrating
immune cell subtypes. (B,C) The Kaplan–Meier survival plots of IFI30, TGFBI, and SPP1 (Gene Expression Profiling Interactive Analysis).
(D) The gene set enrichment analysis (GSEA) plot of IFI30. (E) The GSEA plot of SPP1. (F) The GSEA plot of TGFBI. (G)
Immunohistochemical map of IFI30 protein. (H) Immunohistochemical map of TGFBI protein. CESC, cervical squamous cells carcinoma;
ECM, extracellular matrix; HR, hazard ratio; IgA, immunoglobulin A; IL‐17, interleukin 17; JAK, Janus kinase; MAPK, mitogen‐activated
protein kinase; NF‐κB, nuclear factor‐κB; NK, natural killer; NOD, nucleotide oligomerization domain; PPAR, peroxisome proliferator‐
activated receptor; STAT, signal transducer and activator of transcription; Th1, Type 1 T helper; TNF, tumour necrosis factor
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3.6 | Single‐cell sequencing to define
the expressions of IRRs and ICGs of
immune‐infiltrating cells in TME

GSE171894 included four fresh samples obtained from
patients with CSCC who underwent concurrent chemor-
adiotherapy. We had a total of 182,230 cells collected
from the quality control process. We selected 30 principal
components (Figure 6A,B) to subdivide these cells into 20
different clusters. These clusters were then divided into
nine cell groups using the abovementioned cell markers
(Figure 6C). The cell composition of these samples was
primarily T‐cells and squamous epithelial tumor cells.
The cell markers of the main cell lineages were
visualized as a bubble chart according to the 20 clusters
and 9 cell types (Figure 6D, right). A scatterplot was used
to check the expression of an IRG signature in tumor
tissues. The expression of TNFAIP3 was higher in
immune cells, especially in epithelial carcinoma, macro-
phages, and CD8+ T‐cells (Figure 6D, left), while TGFBI,
IFI30, SPP1, and EREG were expressed more highly in
macrophages than other cells.

We examined the expression of 70 common ICGs in
TCGA–GTEx datasets. We tested the expression levels of
40 differentially expressed ICGs in the single‐cell
sequencing data of GSE171884. The ratios of these 40
genes, including 36 upregulated genes and 4 down-
regulated genes, as well as 25 stimulators and 15
inhibitors, are presented in Figure 6E. The expressions
of 40 ICGs in tumor tissues are visualized as a bubble
chart according to 9 different cell types (Figure 6F,G).
The average expression of ICGs can also be seen in
Figure 9E (tumor vs. adjacent normal tissue). T‐cell
exhaustion‐related ICIs (CTLA4, CD96, HAVCR2, and
TIGIT) tended to be expressed in CD8+ T‐cells, natural
killer (NK) cells, and Treg cells. LGALS9, HAVCR2, and
IL10RB tended to be expressed in macrophages. The
expressions of CTLA4, TIGIT, and HAVCR2 in this
depleted T‐cell subset were significantly higher than
those of PD‐L1 (CD274) and LAG3, indicating that
TNFRSF9, CTLA4, TIGIT, and HAVCR2 could be better
targeted for CC immunotherapy.

3.7 | Single‐cell sequencing to defined
the proposition of cells in tumor tissues
and normal tissues

GSE168652 contained two samples, including adjacent
normal tissues and tumor tissues, from the same patient
with cervical squamous carcinoma. The raw data
included 20,277 unique features and 11,394 cells from
normal tissues and 13,104 cells from tumor cells.

Through the quality control process, we determined 30
principal components used for clustering and t‐SNE with
an elbow plot (Figure 7A). The top 10 highly variable
genes (S100A7, SPRR3, SPP1, FABP4, KRTDAP, APOD,
SPRR2A, LYPD2, YZ, and C1QB) are pictured in
Figure 7B. Cells were first clustered into 13 clusters
(Figure 7D), then finally defined as 6 different cell types
(Figure 7C,E). Cervix tissue is composed of epithelial
cells, smooth muscle cells, endothelial cells, and CD8+

T‐cells, and macrophages. The top five markers of the
main cell lineages were visualized using a dot plot
(Figure 7H). Most of the top variable genes in each group
were IRGs, such as SPP1, which was most upregulated in
macrophages, and PI3, which was downregulated in all
epithelial cell groups (Figure 7F). The content of smooth
muscle cells and stromal cells was decreased and the
number of squamous epithelial cancer cells was
increased greatly in cancer tissues. The contents of
immune cells (CD8+ T‐cells and macrophages) in tumor
tissues were higher than those in normal tissues
(Figure 7G). The most specifically expressed gene's
functional analysis (Figure 7I) of each cells type was
conducted by Gene Ontology (GO) in online datasets
Toppgene (https://toppgene.cchmc.org/enrichment.jsp).
The GO terms showed “regulation of apoptotic process”
and “cell migration” were enriched for macrophages. GO
terms including “regulation of cell differentiation” and
“regulation of cell death” were enriched for fibroblast
cells. GO terms “regulation of hypoxia” and “regulation
of programmed cells death” were enriched in epithelial
cells (most of which were tumor cells). In smooth muscle
cells, GO terms included “epithelium development” and
“positive regulation of developmental process.” GO terms
including “innate immune response” and “immune
effector process” were enriched in T‐cells. GO terms
“cell–cell signaling” and “positive regulation of signal-
ing” were enriched in endo cells. The death of T‐cells was
related to the prognosis of patients.

3.8 | Analysis of CD8+ t‐cell transition
states in normal and tumor samples

We next utilizedMonocle2 to perform a pseudotime analysis,
exploring the cell transitions and dynamic immune states in
all immune cells (Figure 8A,B) and CD8+ T‐cell subgroups
(Figure 8D–F) by inferring the state trajectories in
GSE171894. CD8+ T‐cells were divided into two clusters
(Figure 8C, including Clusters 4 and 10), which expressed
high levels of GZMB (GZMB+ CD8+ T‐cells) and GZMK
(GZMK+ CD8+ T‐cells). GZMB is an apoptosis‐related gene,
which cleaves and activates GSDME and caspase‐3, NK cells,
and CD8+ killer lymphocytes, while chimeric antigen
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FIGURE 6 Single‐cell RNA sequencing profiling of the expression of immune checkpoint genes in the tumor microenvironment. (A)
Three‐dimensional PCA plot of single‐cell sequence data in GSE171894. (B) t‐SNE plot showing the components of four patients' tissues. (C)
Unsupervised clustering of viable cells from cervical squamous cell carcinoma tissues represented as an t‐SNE plot. (D) On left, dot plot of
expression of immune‐related RNAs in nine clusters; on right, nine cell types. (E) The composition of 40 immune checkpoint genes (ICGs).
(F) Dot plot showing the 40 ICGs in each cell type. (G) Boxplot showing the expression of 40 ICGs in 20 (0–19) clusters. (H) Violin plot of the
most representative ICGs in nine cell types: left, inhibitor; right, stimulator. DC, dendritic cell; NK, natural killer; PCA, principal component
analysis; t‐SNE, t‐distributed stochastic neighbor embedding
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FIGURE 7 Single‐cell RNA sequencing profiling of the ecosystem in adjacent normal and cervical squamous cell carcinoma (CSCC)
tumor tissues. (A) An elbow plot of 50 principal components for the clustering results. (B) Top 10 highly variable genes in GSE168652. (C)
Unsupervised clustering of viable cells from CSCC and adjacent normal cervix tissues represented as a t‐SNE plot. (D) Dot plot showing the
expression of cell markers in 13 clusters. (E) Dot plot showing the expression of cell markers in six cell types. (F) Dot plot showing the top
variable genes in each cluster. (G) Histogram showing the proportion of each cell type in GSE168652: normal, green; tumor, blue. (H,I)
Heatmap showing the expression of the specifically expressed gene in six cell types and the corresponding representative GO terms (on the
right). GO, Gene Ontology; SMC, smooth muscle cell; t‐SNE, t‐distributed stochastic neighbor embedding
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FIGURE 8 Pseudotime‐ordered analysis of CD8+ T‐cells. (A,B) Pseudotime‐ordered analysis of CD8+ T‐cells in GSE168652; different
cell types are labeled by color. (C) t‐SNE plot showing the CD8+ T‐cells in GSE17184. (D–F) Pseudotime‐ordered analysis of CD8+ T cells;
different stages and T‐cell subtypes (Clusters 4 and 10) are labeled by color. (G) Three‐dimensional heatmap showing the dynamic
expression of genes along the pseudotime. (H) GSVA shows the pathway enrichment of Clusters 4 and 10. (I) Heatmap showing the
expression of selected gene sets (inhibitory, cytokines) in T‐/natural killer subtypes. (J) Pseudotime–ordered analysis of CD8+ T‐cells in
GSE17184. (K) Heatmap showing the dynamic expression of genes along the pseudotime. DC, dendritic cell; GSVA, gene set variation
analysis; t‐SNE, t‐distributed stochastic neighbor embedding
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receptor T‐cells trigger pyrolysis. The trajectory of CD8+

T‐cells was visualized as a t‐SNE plot. GZMB+ CD8+ T‐cells
were downstream in the development time, showing a state
of decay. However, GZMK+ CD8+ T‐cells also tend to
convert into GZMB+ CD8+ T‐cells. It was found that the
expressions of CTLA4 and TIGIT in GZMB+ CD8+ T‐cells
were relatively higher than those in GZMK+ CD8+ T‐cells
(Figure 8I). GZMB+ CD8+ T‐cells expressed high cytotoxic or
exhausted signals (CTLA‐4, TIGIT, and PDCD1). According
to reports, these molecules can inhibit the activity of CD8+

T‐cells by communicating with dendritic cells and macro-
phages. To observe the process of T‐cell exhaustion (time
trajectory), we found through chronological analysis that
CD8+ T‐cells from the active Cluster 2 tend to transform into
debilitating T‐cells. In addition, clusters of T‐cells (Clusters 2,
4, and 5) representing exhaustion appeared at the end of the
differentiation trajectory, during this process. TIM‐3 and
TIGIT have been reported as marker molecules of T‐cell
exhaustion in chronic viral infections and cancer models. To
investigate molecular interaction networks, we found that
the high expression of theHavcr2 gene in Cluster 9 may lead
to immunosuppression, culminating in the failure of
immunotherapy. Interestingly, we noticed that the toxicity
gene and CXCL13, which dictates effective responses to
programmed death ligand 1 blockade genes, are upregulated
during tumor cell evolution (Figure 8G,H).

3.9 | Macrophages play a vital role in
cell–cell communication

CellPhoneDB was used to calculate potential
ligand–receptor pairs (GSE171884) and the cell–cell
communication molecules in the TME. The interaction
network was visualized by R. Macrophages possessed the
most interaction pairs with cells from other lineages
(Figure 9A), revealing the dominant role of macrophages
in the TME. CD8+ T‐cells had the most connections with
the macrophages, while macrophages had more connec-
tions with CD8+ T‐cells (especially GZMB+CD8+ T cells)
and tumor epithelial cells. The macrophages in
GSE168652 were divided into normal and tumor groups.
Through a pseudotime analysis, we found that macro-
phages in adjacent normal tissues tended to convert into
tumor‐infiltration macrophages (Figure 9B,C). The vol-
cano plot shows that SPP1 was highly expressed in
tumor‐infiltration macrophages (Figure 9D). The immu-
nohistochemical map of a marker of SPP1+ TAMs was
also highly expressed in tumor tissues (Figure 9H). We
calculated the average expression of ICGs in normal and
tumor tissues and found that the average expression of
ICGs in normal tissues was lower than that in tumor
tissues (Figure 9E, upper). The average expression of

ICGs in macrophages selected from normal tissues was
lower than in tumor tissues (Figure 9E, lower). The gene
set variation analysis results (Figure 9F) of normally
arrived macrophages and TAMs indicate that TAMs are
related to hypoxia, glycolysis, fatty metabolism, and
inflammatory pathways. The top 27 ligand–receptors of
macrophage immune cells are visualized in Figure 9I.
SPP1‐CD44 plays a vital factor in cell–cell communica-
tions between macrophages and CD8+ T‐cells.

3.10 | Examining the expressions and
functions of five genes in pan‐cancer
analysis

The expressions of four genes (SPP1, TGFBI, IFI30, and
C1QC) in myeloid cell clusters from colon cancer
(GSE146771) are shown by a TSNE plot in Figure 10C,
indicating that TGFBI+ M0‐like TAMs are a kind of
CD14+ CD16− blood‐derived monocytes. The expressions
of five genes (SPP1, TGFBI, IFI30, C1QC, and EREG) are
shown by a t‐SNE plot in Figure S2, indicating that
TGFBI+ TAMs, SPP1+ TAMs, and CD16+ blood‐derived
monocyte IFI30+ TAMs are three significantly different
TAM subgroups in six cancers (AML, BRCA, GBM,
HNSCC, LUAD, and MEL). The correlations between
these genes and 14 functional states indicate that TGFBI
has a strong positive correlation with EMT, hypoxia,
metastasis, invasion, and angiogenesis. SPP1 is found to
be mainly involved in EMT, metastasis, and hypoxia.

4 | DISCUSSION

Immunosuppression in the TME is the main obstacle to
effective antitumor therapy for patients.43 Immune cells
inhibit and kill tumor cells' antitumor immunity on the
one hand, and promote tumor development and immune
escape on the other hand. IRGs and expressed related
proteins also play an important role in inhibiting or
promoting tumor proliferation in the TME. Single‐cell
genomes provide a viable strategy to understand heredity
and phenotypic diversity at the single‐cell level, which
may also help us to understand the complex ecosystem in
tumors. The study showed that intratumor hypoxia was
negatively correlated with tumor‐invasive T‐cell motility
in a mouse fibrosarcoma model, especially at the core of
solid tumors compared to their margins. TAMs constitute
an important part of the plasticity and heterogeneity of
TME,44 and the number of macrophages can account for
up to 50% of some solid tumors.44

We tried to use Gaussian regression models to select
the best logistic regression models to diagnose and
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FIGURE 9 Analysis of macrophage transition states in tumor and adjacent normal samples. (A) The cell–cell communications network.
(B,C) Pseudotime‐ordered analysis of macrophages from normal and tumor groups, which are labeled by color. (D) Volcano plot showing
differentially expressed genes between macrophages in normal and tumor tissues; p< .05. (E) The average expressions of differentially
expressed immune checkpoint genes: top, GSE171884; bottom, macrophages. (F) The GSVA of pathways enriched in macrophages in
normal and tumor groups. (G) Violin plot showing the pathway enrichment of macrophages in normal and tumor groups. (H)
Immunohistochemical map of four marker genes of SPP1+ tumor‐associated macrophages in normal and tumor tissues. (I,J) Bubble
heatmap showing the mean attraction strength for selected ligand–receptor pairs between T‐cells, epithelial cells, and macrophages.
GSVA, gene set variation analysis; SMC, smooth muscle cell; TAM, tumor‐associated macrophages
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FIGURE 10 Single‐cell RNA sequencing profiling of the ecosystem in myeloid cell clusters. (A) Violin plots displaying the number of
RNA features (nFeature_RNA) and absolute UMI counts (nCount_RNA). (B) Unsupervised clustering of myeloid cells represented as a
t‐SNE plot. (C) Dimplot showing the expression of four genes (C1QC, IFI30, SPP1, and TGFBI). (D) The correlations between C1QC, IFI30,
SPP1, TGFBI, and EREG and 14 different functional states. t‐SNE, t‐distributed stochastic neighbor embedding
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predict the relapse of TCGA CC patients. Finally, we had
a combination of six genes (IFI30, SPP1, GZMB, EREG,
ISG20, and FAM3B). We also examined the expression of
HRGs, most of which had a strong correlation with IRGs.
PPI network analysis showed that IRHs had strong
correlations with each other, except ISG20 (which was
overlapped in IRG models). This study constructed risk
score models for the IRHs. Patients in the low‐risk IRH
group had a longer median OS than those in the high‐
risk group, indicating that a hypoxic environment leads
to a poor prognosis. The risk score showed that
regulatory T‐cells, Th cells, and M0 and M1 macrophages
were related to OS. We built a coexpression network
between IRMs and IRLs. The IRLs associated with a good
prognosis were AC092580.4, AC017002.1, and
AC002331.1. The IRHs associated with a good prognosis
were ISG20 and BCL2. Finally, the IRHs associated with
a bad prognosis were LOX, PLIN2, and TGFBI.

In comparing the occurrence and development of
normal tissues and tumor tissues, we found that the
expression levels of genes encoding activation and
cytotoxic molecules, such as GZMB, GZMH, GZMK,
GZMA, and NKG7, increased significantly and had
strong correlations with signs of exhaustion. In terms
of treatment, apart from traditional chemotherapy,
targeted therapy, and antiangiogenesis therapy, novel
immunotherapy based on ICGs has attracted increas-
ing attention.45‐47 We used a scatterplot to examine
the expression of ICGs and found that it was
expressed not only on T‐cells but also many immune
cells, especially TAMs. Since the expressions of
TNFRSF9, CTLA4, TIGIT, and HAVCR2 in this
depleted T‐cell subset were significantly higher than
that of CD274 (PD‐L1), this indicates that TNFRSF9,
CTLA4, TIGIT, and HAVCR2 may be better targets for
immunotherapy, while CXCL12 is upregulated during
the evolution of CD8+ T‐cells and may be a marker of
effective response to programmed death ligand 1
blockade. GZMB, IFI30, AC092580.4, AC017002.1,
and AC002331.1 had strong correlations with ICGs
(CTLA4, TNFRSF9, CD86, TNFRSF13B, PDCD1, and
CD48), which are highly expressed in CD8+ T‐cells
and TAMs.

In this study, we used single‐cell sequencing to
identify the expression of IRRs in normal and tumor
tissues. The expressions of SPP1, IFI30, and TGFBI in
macrophages were higher than in other cells. SPP1 and
TGFBI were also poor prognostic markers and IFI30 was
a good prognostic marker of CC, respectively. The
proportions of immune cells in tumor tissues appear
higher than those in normal tissues. We checked the
correlations between IRRs and macrophages, especially
C1QC+ TAMs and SPP1+ TAMs. IFI30 participates in the

process of immune‐regulation, which plays a role in the
promotion of C1QC+ TAMs to CD8+ T‐cells in the co‐
expression network. The influence of C1QC+ TAMs and
CD8+ T‐cells was not only affected by the interaction of
ligands and receptors but also the regulation of the
mRNA and lncRNA coexpression network. TGFBI+ M0‐
like TAMs are a kind of blood‐derived monocyte‐derived
TAMs gradually polarized to M2 under the influence of
hypoxia‐influencing factors after entering tumor tissue.
CD14+ TGFBI+ M0‐like TAMs compose the greatest
proportion of total TAMs and are related to tumor
angiogenesis, hypoxic necrosis, and tumor necrosis factor
signaling and PI3K–AKT signaling pathways.

From the perspective of IRRs and immune‐related
cells, we established immune‐related hypoxia prognosis,
immune‐related lncRNA, and immune cell prognosis
models. We also used Gaussian distribution to develop
IRG models that have significant predictive properties for
recurrence and diagnosis. We analyzed the interaction
network of IRGs and lncRNA related to OS and analyzed
the impact of hypoxia factors on the immune environ-
ment. Through two single‐cell sequencing analyses of
CSCC, we identified the expression of these genes on
tumors and normal cells. The GZMK+CD8+ T‐cells,
GZMB+CD8+ T‐cells, IFI30+C1QC+ TAMs, and TAMs
play vital roles in TME. We analyzed the communication
relationship between tumor cells, then finally assessed
the immune microenvironment formed by these IRRs
and immune cells and the impact of these on the
patient's recurrence, prognosis, and diagnosis. Immune
system deficiency plays an important role in the
progression of CC and the immune microenvironment
of CC tissue is the key to personalized cancer treatment.
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