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Abstract

Background: Inflammation is a highly complex biological response evoked by many stimuli. A persistent challenge in
modeling this dynamic process has been the (nonlinear) nature of the response that precludes the single-variable
assumption. Systems-based approaches offer a promising possibility for understanding inflammation in its homeostatic
context. In order to study the underlying complexity of the acute inflammatory response, an agent-based framework is
developed that models the emerging host response as the outcome of orchestrated interactions associated with intricate
signaling cascades and intercellular immune system interactions.

Methodology/Principal Findings: An agent-based modeling (ABM) framework is proposed to study the nonlinear dynamics
of acute human inflammation. The model is implemented using NetLogo software. Interacting agents involve either
inflammation-specific molecules or cells essential for the propagation of the inflammatory reaction across the system.
Spatial orientation of molecule interactions involved in signaling cascades coupled with the cellular heterogeneity are
further taken into account. The proposed in silico model is evaluated through its ability to successfully reproduce a self-
limited inflammatory response as well as a series of scenarios indicative of the nonlinear dynamics of the response. Such
scenarios involve either a persistent (non)infectious response or innate immune tolerance and potentiation effects followed
by perturbations in intracellular signaling molecules and cascades.

Conclusions/Significance: The ABM framework developed in this study provides insight on the stochastic interactions of
the mediators involved in the propagation of endotoxin signaling at the cellular response level. The simulation results are in
accordance with our prior research effort associated with the development of deterministic human inflammation models
that include transcriptional dynamics, signaling, and physiological components. The hypothetical scenarios explored in this
study would potentially improve our understanding of how manipulating the behavior of the molecular species could
manifest into emergent behavior of the overall system.
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Introduction

The acute inflammatory response (AIR) is the initial response of

the host to a diverse array of biological stressors including

infection, burns, trauma and invasive surgery. Under normal

circumstances the dynamics of acute inflammation are tightly

regulated and self-limited [1]; however when anti-inflammatory

processes fail an amplified inflammatory state is characterized by

severe, uncontrolled systemic inflammation and multiple organ

dysfunction can develop [2].

Despite the growing understanding of the cellular and

molecular mechanisms of systemic inflammation [3] the

complexity of the response has challenged therapeutic develop-

ment [4,5]. A key reason for this conundrum has been speculated

to be the difficulty of predicting the impact of manipulating

individual components of the highly complex, non-linear and

redundant inflammatory response [6]. Thus progress would

require a greater understanding of how components are organ-

ized to generate a behavior thus making systems based

approaches appealing. Mathematical modeling as a dynamic

knowledge representation offers a promising possibility for

understanding complex physiologic responses in their homeo-

static context. As a result, various approaches have been

proposed to simulate the underlying complexity of the inflam-

matory response including both equation based models (EBM)

and agent based models (ABM) [7,8].

Although both modeling approaches (EBM and ABM) have

both advantages and disadvantages [8], agent based modeling has

emerged as an alternative for addressing features of complex

biological systems [9]. The recognition that EBM are predicated

on the assumption of a homogeneously distributed system has

made it less applicable in situations where spatial effects are

important [10]. On the other hand, ABM has an intrinsically

spatial component based on its reliance upon local interactions
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and environmental heterogeneity. To examine the effects of the

assumption of spatial heterogeneity, there is a growing body of

research probing the effects of spatial distribution in the innate

immune system [11,12]. Biological systems, unlike physical or

chemical systems are characterized by the emergence of inhomo-

geneous distribution of their components [13]. Thus, a central

premise of ABM is that they map intuitively to biological

phenomena such as cells within tissues and organs capturing the

stochastic nature and dynamic transitional states in biological

systems [14,15,16,17]. In addition to this, the ABM approach

provides a very intuitive means of translation of basic science data

on the innate immune response through a series of simple rules

that dictate their behaviors. Accordingly, a number of excellent

prior studies have placed significant emphasis on simulating the

dynamics of inflammation predicated upon the principles of agent

based models [18,19,20,21,22]. Specifically, in the studies

conducted by An and collaborators [10,23,24,25], the applications

of ABM in inflammation models have been effectively demon-

strated. Their work showed the considerable potential of agent-

based modeling of biological systems and has motivated the design

of the model in this paper.

The key elements in ABMs are the agents, which are entities

that represent a certain aspect of the system, for instance a family

of cells and/or molecules that are able to adapt and interact with

the environment and with each other based on a specific set of

rules [26]. While agents within a class will have the same rules for

behavior, the behavior of individual agents varies because of

differences in local conditions. The individual interactions then

aggregate to engender the overall behavior observed in an

experimental setting. The advantage of ABMs lies in the fact that

the interactions of agents are derived from fundamental

occurrences in biological processes, like the binding of molecules,

and as such, they are more intuitive to implement and easier to

understand. Additionally, the instructions that describe the

interactions are taken from published literature and translated

into programming language. Furthermore, the model is naturally

stochastic in that the interactions can be designed to be based

upon probabilities and some of the agent dynamics can be highly

random.

The work discussed in this report seeks to address the possibility

of an agent based modeling approach that defines the propagation

of a perturbation across the system taking into account spatial

orientation at the molecular level as well as cellular interactions

and heterogeneity. Driven by the premise that peripheral blood

leukocytes (PBLs) are major effectors in response to endotoxin and

that PBLs represent a composite mixture of several cellular

subpopulations we opted to simulate the stochastic interactions

particularly in the macrophages and T helper cells. During the

onset of the inflammatory response, the secretion of pro-

inflammatory cytokines from macrophages stimulates the activa-

tion of precursor T helper cells (Th0) and induce them to exhibit

the type 1 T helper cell (Th1) phenotype thatin turn facilitates the

secretion of various pro-inflammatory cytokines [27]. The other

fate of Th0 is to become type 2 T helper cells (Th2) and pro-

duce anti-inflammatory cytokines that are essential for restoring

homeostasis [28]. Physiologically, the recruitment of macrophages

and the differentiation of Th cells occur in separate locations. Yet

they retain strong interconnectivity facilitated by the inflammatory

cytokines. Due to limitation of the framework, the proposed model

did not separate the aforementioned cell types into different

topological compartments. We assumed however that the

movement of the cytokine agents from the macrophages to the

Th cells would signify the transportation of the cytokines between

different biological tissues. Previous agent based studies have

placed emphasis on simulating either intercellular interactions

between a multitude of such cell types [29] or the spatial

orientation of molecules involved in the NF-kB signaling pathway

[30] while considerable attention has been also given to modeling

the transcriptional regulatory network of TH differentiation [31].

In this paper we have taken an integrative approach to elucidate

molecular interactions involved in the NF-kB signaling pathway,

coupled with the spatial orientation of various inflammation

specific molecules and cell populations such as macrophages and

T-helper cells. At the transcriptional response level, we have

previously demonstrated that the transcriptional dynamics of

human leukocytes exposed to bacterial endotoxin can be

decomposed into to three elementary comprehensive responses

[32,33]. These responses defined the major (essential) transcrip-

tional elements of the host response to endotoxin that subsequently

manifest the integrated systemic response. In an attempt to

establish quantifiable relationships among these essential compo-

nents of human endotoxemia we have proposed the development

of deterministic, semi-mechanistic based host response models that

include transcriptional dynamics, signaling and physiological

components for the modulation of the response [33,34].

Our agents of choice reflected the characteristics of biological

molecules. This allowed us to focus on the intracellular dynamics

of the NF-kB signaling module and further illustrate the

subsequent intercellular interactions through the up-regulation of

inflammatory mediators. The stochastic behavior of the agents was

partially attributed to the random motion of the molecules. The

probability that determined whether an interaction should occur

relied on the spatial configuration of the participants. Cells were

not considered as reactor spaces with an even distribution of

molecules. To accommodate for this, some of the agent-based

rules regarding the mobilization of molecules were implemented

(Table 1), in order to ensure that a specific interaction occurs

within an allocated time frame and the network topology of the

model. A key characteristic of our approach was to represent the

cellular interactions as the aggregated output of an intricate

process that influenced the cellular behavior and therefore the

overall systemic response.

Inevitably there is a level of abstraction that needs to be

considered when representing molecular reactions as discrete events

that follow somewhat arbitrary rules. The validity of our approach

will be demonstrated through its potential to reproduce biologically

relevant scenarios indicative of the non–linear dynamics of systemic

inflammation described as the following scenarios: (1) a self-limited

response where the inflammatory stimulus was cleared successfully,

(2) a persistent infectious response where the inflammatory stimulus

was not eliminated, leading to an aberrant inflammatory response,

(3) a persistent non-infectious inflammatory response that can be

elicited under high concentrations of the inflammatory stimulus,

causing an inflammatory insult that can disturb the dynamics of the

host response leading to an unconstrained inflammatory response;

and finally, (4) two scenarios associated with endotoxin tolerance

and potentiation effects followed by perturbations in the regulatory

(NF-kB) signaling module.

Results and Discussion

Elements of the Agent Based Host Response Model of
Human Inflammation

In an effort to study the non-linear dynamics of an in vivo human

response to endotoxin, we recently proposed a receptor mediated

indirect response model that couples extracellular signals with the

transcriptional response [32,33]. The proposed model established

quantifiable relationships among the essential components of

Agent-Based Modeling
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human inflammation that included the pro-inflammatory response

(P) consisting of the early increased expression of cytokines and

chemokines; the anti-inflammatory response (A) that served as the

immunoregulatory arm of the host defense system; and the

energetic response (E) that involved the expression of genes that

participate in cellular bioenergetic processes. Driven by the

premise that intracellular signaling cascades activated inflamma-

tion-specific transcriptional responses, a NF-kB dependent phys-

icochemical host response model was further proposed in [34].

Such a model captured biological information in the form of

kinetic rules and signaling cascades for the onset, resolution and

control of the inflammatory process. Further, the immune

response could be triggered by the activation of the NF-kB

signaling module resulting from an activating signal associated

with the binding of extracellular signals (LPS) to appropriate

receptors (TLR4) [35]. In this study we have sought to describe the

host response to endotoxin via interacting molecules and cells

based on an integrated ABM framework as shown in Figure 1.

Accordingly, each macrophage possessed a cell membrane

comprised of agents arranged in a circle around the center of

the cell which constitutes the nucleus. Receptors for LPS, IL-4,

and TNF-alpha were embedded in the membrane while the

inhibitor protein IkBa, IKK, and NF-kB are located in the cytosol.

Prior to any external perturbation, NF-kB is inactive in the

cytoplasm forming a complex with its primary inhibitor, IkBa.

Upon stimulation, NF-kB translocates to the nucleus activating the

transcriptional machinery for the up-regulation of the critical

transcriptional events [27–29]. During the recognition process of

Table 1. List of agent based rules.

Agents Agent rules

Macrophages Produce 1 unit of IKK every 5 ticks

Move towards the direction that has the highest LPS count within 5 + cell radius

Bind free LPS molecules with unoccupied receptors

IKK Activated by the formed TNF-TNFR complex

70% chance to bind to inactive NF-kB

Dissociate from the complex after 10 ticks

Stimulates Nf- kB, IkBa is ubiquitinated

Deactivated by activated IkBa as a result of the transcriptional activity of NF-kB

Degrades after a random of 1 to 799 ticks

NF-kB If activated and translocates to the nucleus, asks the macrophage to produce 1 IkBa every 10 ticks, 1 unit of IL-12 with 80% chance and 1
unit of TNF-a

IkBa If activated, seek out activated NF-kB within radius of 1

Bind to any activated NF-kB, form a complex and both members of the complex become inactivated

Receptors TLR4 (LPS receptors) become activated when bind to LPS molecules. If activated, then produce 1 unit of TNF-a every 100 clicks

IL-4 and IL-12 receptors receive their respective targets (receptors)

IL-4 In the presence of free IL-12, 3 units of IL-4 are produced by 86% for every 1 to 5 clicks

Bind to IL-4 receptors on Th-0 cells or macrophages. On macrophages, the binding rate increases the energetic level of the macrophage
by 1

IL-12 Produced by macrophages and Th-1 cells

Bind to IL-12 receptors on Th-0 directing the differentiation towards either Th-1 orTh-2

Th cells Th-0 cells count the unit of interleukins on its surface receptors. Once the number of interleukins reaches 25, then differentiate into either
Th-1 or Th-2. If more IL-12 molecules are present than IL-4, then become Th-1. Otherwise, it becomes a Th-2 type

LPS Frequency of movement: 800 times more frequent than other cellular agents

Collides with LPS receptors on the surface of macrophages

Activates the receptor while the ‘‘sensitivity value’’ decreases by 1

A successful binding occurs if a random value between 1 and the maximum value of sensitivity (which equals to 5) is less than the current
sensitivity

Activated endotoxin receptors produce 1 unit of TNF-a

If binds to its receptor, then degrade 1 to 2 ticks

TNF-a Start with 600 ticks

Binds to TNFR on the surface of macrophages

Amplifies intracellular IKK activity

If it binds to a receptor, then degrade in 50 clicks or in 200 clicks if there is nearby bound IL-4. Degrades by 1 click naturally

Movement restrictions Intracellular molecules e.g. NF-kB, IkBa, IKK are confined inside the agents of the plasma membrane. Only activated NF-kB and IkBa can
enter the nucleus. Before these agents perform any rule based movement, a check is made whether they are facing the membrane, other
molecules or the nucleus. If the destination is inaccessible, then they will face another direction until the next move is achieved. Their
positions are further updated as the macrophage moves

Extracellular molecules cannot enter the nucleus have similar restrictions with the plasma membrane agents

doi:10.1371/journal.pone.0009249.t001

Agent-Based Modeling
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LPS from its signaling receptor (R), a signal transduction cascade is

triggered that up-regulates the transcription of TNF-a. Since pro-

inflammatory cytokines might be responsible for perpetuating and

amplifying the inflammatory reaction through the critical node

(IKK) [36], such interaction is simulated via the positive

interaction between TNF-a, and the kinase activity (IKK).

Consequently, the presence of pro-inflammatory mediators (P)

promoted the migration of mature T helper cells [37] where Th0

cells become Th1, while the production of anti-inflammatory

mediators (A) incited formation of Th2 cells which further

potentiate the anti-inflammatory response (A) [28]. Since the

anti-inflammatory arm of the host defense system restores

homeostasis, the anti-inflammatory component of the model,

including anti-inflammatory mediator agents (A), was assumed to

exert its counter-regulatory properties by stimulating the degra-

dation rate of the early potent pro-inflammatory mediator TNF-a,

coupled with the active populations of T helper cells. In particular,

the Th2 agents continuously produced anti-inflammatory media-

tors to ensure that the population of (A) agents was sufficient to

attenuate TNF-a production in macrophages. Since circulating

pro-inflammatory (P) agents have the ability to turn Th0 into Th1,

instead of Th2, the population of Th2 cells is primarily affected by

the concentration of (P) agents. Therefore, the resolution of the

inflammatory response is highly dependent on the balance

between pro- and anti-inflammatory mediators that are addition-

ally regulated by the energetic state of macrophages. To establish

the link between the inflammatory response and the cellular

energetic state, we assumed that upon activation of a pre-defined

threshold the essential energetic response was assumed to

subsequently modulate the degradation rate of TNF-a [38]. The

production rate of the inflammatory mediator TNF-a increased

when the energetic state was lowered during the progression of the

inflammatory reaction by NF-kB. Meanwhile, the presence of anti-

inflammatory mediators leads to a decrease in the proximal

inflammatory mediator, TNF-a. All the interacting components

that constitute the agent based model of inflammation were shown

in Figure 2.

Qualitative Assessment of the Model
A self-limited inflammatory response to the endotoxin stimulus

corresponds to resolved dynamic profiles for all the elements

constituting the model. The objective was to produce the dynamic

profiles of a successful inflammatory resolution as shown in

Figure 3 that qualitatively agreed with the previously models

using a deterministic approach [33,34]. While the inflammatory

stimulus, namely LPS agents were successfully cleared within 1 h,

the activation of anti-inflammatory cytokines expedited the

attenuation of the early pro-inflammatory cytokine TNF-a with

subsequent termination of the pro-inflammatory signaling cascade.

The correctness of the model was evaluated based on its ability to

qualitatively predict the uncontrolled responses as below.

Implications of increased insult. High concentrations of

LPS, corresponding to an increase in the strength of the

inflammatory insult, can be responsible for the amplification of

the host immune response [39]. This event is followed by a

dysregulation in host defense intrinsic dynamics leading to an

unconstrained inflammatory response even after the circulating

levels of LPS have been cleared. The model predicted the situation

where the initial levels of LPS are increased in Figure 4. We

observed that when the concentration of the inflammatory

Figure 1. Interacting components/agents involved in the propagation of LPS signaling on macrophages. Yellow triangles reflect the
extracellular signal (LPS) and white circles represent the plasma membrane. Red polygons refer to the endotoxin (LPS) receptor and blue polygons
refer to the TNF-a receptor. Light green polygons correspond to IL-4 receptors and dark green polygons reflect the presence of kinase (IKK).
Blue+orange squares represent the inactive (bound) NF-kB with its inhibitor, IkBa while the grey area refers to the nucleus.
doi:10.1371/journal.pone.0009249.g001

Agent-Based Modeling
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stimulus exceeded a critical threshold, the inflammatory response

did not abate. Such a response is characterized by overwhelming

production of the pro-inflammatory instigator, TNF-a, which

amplifies the activity of NF-kB. In particular, high LPS con-

centration potentiates the secretion of pro-inflammatory mediators

(P) which in turn may increase the probability of Th0 cells to

differentiate into Th1 cells rather than into Th2 cells. Additionally

Th1 cells further increase (P) population; thus disturbing the

balance between Th1/Th2 accounted for the progression of an

unconstrained inflammatory response.

Malfunction in LPS clearance rate. An acute pro-

inflammatory cytokine ‘‘burst’’ results from intravenous adminis-

tration of high concentration of LPS into the system of healthy

subjects. The subsequent effect is associated with the host’s inability

to resolve the inflammatory reaction followed by the persistent

infectious challenge (unsuccessful clearance of endotoxin) [40,41].

Accordingly, the prolonged exposure of the system to bacterial

infection leads to a significant down-regulation of the endotoxin

signaling receptor which further accounts for a slower decay rate

causing a dysregulation in the phagocytic capabilities of macro-

phages [42]. The relevant agent rule that captured such scenario

was the ‘‘sensitivity’’ parameter of the endotoxin signaling receptors.

As these receptors become saturated during the presence of high

amounts of endotoxin, the sensitivity parameter decreases which

thereby influences the probability of LPS receptors to be occupied

with LPS molecules. During an overwhelming endotoxin challenge,

the LPS receptors eventually lose their capability to form additional

complexes with LPS, and therefore the LPS agents remain in the

system. Although decreased degradation of LPS is not associated

with a distinct, well-defined, clinical condition, it is possible that

this phenomenon may exist. It is known that triglyceride-rich

lipoproteins bind to LPS and that these complexes are cleared by

binding to lipoprotein receptors [43]. Furthermore, these receptors

are abundant in the liver where ,70% of lipoproteins are cleared

from the circulation. Such malfunction in LPS clearance rate was

simulated in Figure 5. Similar to the progression of the increased

insult scenario as shown in Figure 4, the progression of a persistent

infectious response was simulated due to the activation of the

feedforward loop regarding the activation of IKK which drives

downstream an aberrant transcriptional activity of NF-kB and

thereby affecting the transcriptional rate of the critical pro-

inflammatory mediators, e.g. TNF-a. The secretion of TNF-a

further amplified the activity of NF-kB through the critical IKK

node [44]. These interactions perturb the dynamics associated with

the energetic state of the system. Furthermore, we speculated that a

switch-like rule related to the energetic state of the cell can be

responsible for the disturbance of the homeostatic production of

anti-inflammatory mediators. Such rule has been implemented in

the ABM framework in that when the energetic state is below 25%

of its original value the production of the anti-inflammatory

mediators should increase.

Endotoxin hypo-responsiveness. The pre-exposure of the

host to controlled levels of inflammatory agents affects the eventual

fate of the response. It has been observed that repeated doses of

endotoxin insult might lead to a less vigorous innate immune

response [45]. Such an effect can reverse the lethal outcome of a

high dose of the inflammatory stimulus. That is to say, in spite of the

potent efficacy of LPS, if the system is pre-exposed to lower sub–

lethal doses of LPS then this induces an acquired state of resistance

to a subsequent endotoxin challenge [46]. This phenomenon,

known as endotoxin hypo-responsiveness is a multifactorial problem

that can be associated with decreased TLR signaling by proteins

that negatively regulate LPS-induced inflammatory responses [47].

From a modeling standpoint, small dose of LPS is administered

8 hours prior to the main endotoxin insult. Such perturbation

modulates the dynamic profiles of both pro-inflammatory and anti-

inflammatory mediators as well as the energetic state of the

macrophage populations towards resolution within 24 hours. The

endotoxin hyporesponsiveness was simulated in Figure 6 where

pre-existing infection caused a profound reduction in cells’ capacity

to respond to the main (high) endotoxin challenge. There were no

agent rules that specified the time interval between the injections

that would yield the emergent attenuated response. From a

biological standpoint the prior inflammatory insult desensitizes the

endotoxin signaling receptors in a manner that these receptors

become less sensitive to the subsequent infectious challenge and

therefore the cells have enough time to mitigate the endotoxin

challenge and resolve the inflammatory reaction.

‘‘Lethal’’ potentiation. Endotoxin hypo-responsiveness is

associated with an emergent acquired dynamic state of the system

that modulates the response of the system not to respond

rigorously to the primary endotoxin challenge. On the other

hand, the successive administration of sublethal doses of endotoxin

can potentiate the system in that, because of the lack of an

acquired state in the dynamics of the system, such an insult may

dysregulate the host response dynamics leading to an exacerbated

inflammation that cannot resolve. Thus, based on our agent-based

model we further explore the behavior of the system when it is

either pre-exposed to lower levels of endotoxin for ‘‘adequate’’

time as well as when the system has not manifested its ‘‘dynamic

memory’’ to tolerate the second endotoxin challenge [48]. In

particular, we simulate such a case administering at t = 0 hr low

dose of endotoxin which is shortly followed within 2 hr by another

‘‘sub-lethal’’ insult. From a modeling standpoint, this short time

interval was characterized by the accumulation of both pro-

Figure 2. Schematic illustration of elements and interactions
involved in the agent based model of endotoxin induced
inflammation.
doi:10.1371/journal.pone.0009249.g002

Agent-Based Modeling
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inflammatory (P) and anti-inflammatory (A) mediators. The response

was exaggerated under conditions of the second endotoxin

stimulation due to the priming of various inflammation-specific

intracellular signaling molecules which further propagated the

inflammatory reaction to nearby cells/agents. The effect of this

lethal potentiation scenario was demonstrated in Figure 7.

Additionally, if the second dosage was administered when the

inflammatory mediators are diminishing, then the effect is less

prominent due to both the lack of cytokines and the receptor

desensitization which occurs due to pre-existing infection.

Modulation in the dynamics of NF-kB signaling

module. Another mode of perturbation of the underlying

dynamics of the probed system was related to the presence of a

‘‘prior’’ insult that coupled with the LPS stimulus. It accounted for

an increased production of pro-inflammatory mediators as shown

in Figure 8. Such a sustained pro-inflammatory signaling was

possible to deregulate the NF-kB signaling module and led to a

persistent NF-kB activity [49]. The elevated NF-kB activity

implied that the nuclear concentration of NF-kB cannot be

further constrained by its primary inhibitor, IkBa and eventually

settled to a steady state far away from their equilibrium

(homeostasis). We simulated this scenario by pre-conditioning

the system with low-dose of TNF-a. Since TNF-a is a potent

inflammatory instigator that stimulates IKK activity it can perturb

the behavior of the system towards an unbalanced immune

response. Clinically, such an increased rate in the production of

pro-inflammatory mediators might be the outcome of a surgical

trauma followed by bacterial infection, a so called two hit scenario

[50].

We have demonstrated the ability of our model to simulate the

trajectory of an unconstrained inflammatory response. Further,

the potential of the proposed model was also demonstrated

through its capability to respond to an intervention strategy that

intended to modulate the dynamics in favor of a balanced immune

response. In Figure 9 the effectiveness of a molecule that

inhibited IKK activity (IKK-inhibitor) was simulated. From a

biological standpoint, these molecules diffuse into the cytoplasm

and bind to IKK triggering its deactivation. This process directly

competed with the activation of the NF-kB complex through

IKK and therefore attenuation in the pro-inflammatory response

was observed. As such, despite the implications of high LPS

concentration, the dynamics were reversed towards homeostasis.

Qualitatively, this result agreed with experimental data that

documented the potential of IKK inhibitors in treating inflam-

matory disorders [51].

Our model exhibited a bistable behavior which implied the co-

existence of two steady states. Physiologically, such dynamics

would reflect either a successful inflammatory resolution or the

progression of a systemic inflammatory response syndrome. Such

bistability is an essential characteristic of the non-linear dynamics

of inflammation as suggested from various animal studies [36]. In

an attempt to simulate the bistable behavior, a ‘‘switch’’ in the

agent rules was employed. A switch was defined as a conditional

procedure under which the output could diverge into different

states based on a current set of inputs. In our simulation the switch

was the production rate of TNF-a with regard to the energetic

state of the macrophage. As the current energy value become

lower than a certain threshold, the production of TNF-a via the

transcription factor NF-kB was amplified, activating the switch.

The rationale behind this rule was predicated upon the hypothesis

that the activation of NF-kB, followed by the production of (P)

response ultimately decrease the expression of genes that are

Figure 3. A self-limited inflammatory response (LPS(0) = 350 units). Temporal profiles of essential components that constitute the agent
based model resolved within 24 hr.
doi:10.1371/journal.pone.0009249.g003

Agent-Based Modeling
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involved in bio-energetic cellular processes [52]. On the other

hand the number of anti-inflammatory (A) molecules raised the

energy level and drove the cells to the ‘‘healthy’’ state, deactivating

the switch. Many switch-like phenomena have been observed in

biological systems [53].

In conclusion, an agent based modeling framework is proposed

as an alternative modeling approach to study the complex, non-

linear dynamics of acute human inflammation. We specifically

proposed an agent based model that couples critical aspects of the

host response to endotoxin. Predicated upon our prior research

effort where a deterministic approach has been taken to couple

extracellular signals and intricate signaling cascades with the

transcriptional response level, the work discussed in this study

explored the potential of an agent based modeling approach to

improve our understanding of how a system gives rise to a

response through its interacting molecules (or cells). Agent based

models offer a promising approach in that they can express the

dynamics through intuitive multiple interactions between the

agents over time. A well known feature of ABMs is their ability to

generate surprisingly complex and emergent behavior from very

simple rules. However, this modeling framework is not without its

own limitations. A key limitation of agent-based modeling has to

do with the difficulty in applying a formal analysis to the

relationship between the agent rules and the behavior of the

system [8,54]. Thus, in contrast to equation-based modeling for

which analytical tasks (e.g. parameter sensitivity analysis, bifurca-

tion analysis, e.t.c.) can be performed, the stochastic behavior of

agents makes it extremely difficult to analyze how each parameter

of an AMB simulation affects the output of ABM. To address this

issue, researchers rely upon the principles of pattern-oriented

analysis, in which patterns of dynamic behavior are used to relate

the computational ABM to its real-world reference [55]. The

downside of this characteristic, however, is that extensive

computational power may be required to generate dense datasets

amenable to statistical analysis. In this context, the high

computational cost related to running ABM, as compared to

equation-based models, may constrain the size of ABM imple-

mentations that can be run in the typical academic setting.

However, researchers have started to explore ‘‘hybrid’’ model

systems in order to increase the feasibility of large ABM-based

simulations. Additionally, the recognition that both approaches

(EBM and ABM) have their advantages and limitations has placed

emphasis on cross-platform validation where some processes are

simulated discretely while other processes are handled in a

continuous simulation [56]. It is important to realize that such

multi-modal approaches are complementary and ideally both

would be used to provide a mathematical characterization of a

complex dynamical system.

Materials and Methods

Human Endotoxin Model and Data Collection
The data used in this study were generated as part of the

Inflammation and Host Response to Injury Large Scale Collabo-

rative Project funded by the USPHS, U54 GM621119 [57,58].

Human subjects were injected intravenously with endotoxin (CC-

RE, lot 2) at a dose of 2-ng/kg body weight (endotoxin treated

subjects) or 0.9% sodium chloride (placebo treated subjects).

Figure 4. Temporal responses of an unresolved inflammatory response due to high LPS concentration. A high concentration of LPS
(LPS(0) = 750) can cause a malfunction in the dynamics of the host leading to an exacerbated inflammatory response (solid lines). Dashed lines refer to
the implications of high concentration of LPS as simulated by our deterministic (ODE) approach. For the purpose of comparing the simulated output
between the ABM and the ODE model, all responses are normalized so that numerically they range between (0,1).
doi:10.1371/journal.pone.0009249.g004
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Following lysis of erythrocytes and isolation of total RNA from

leukocyte pellets, [57], biotin-labeled cRNA was hybridized to the

Hu133A and Hu133B arrays containing a total of 44,924 probes for

measuring the expression level of genes that can be either activated

or repressed in response to endotoxin. A set of 5,093 probe sets were

characterized by significant variation (corresponding to 0.1% false

discovery rate) across the time course of the experiment using the

SAM software [59]. The data are publicly available through the

GEO Omnibus Database (http://www.ncbi.nlm.nih.gov/geo/)

under the accession number GSE3284. The data have been

appropriately de-identified, and appropriate IRB approval and

informed, written consent were obtained by the glue grant

investigators [57].

In order to integrate high-throughput transcriptional data we

recently introduced a systems level approach [32,60] that

decomposes high-dimensional microarray data into a critical set

of dynamic features that are considered to be the elementary

inflammatory responses triggered by the endotoxin stimulus in

peripheral blood leukocytes (PBLs). Our fundamental assumption is

that the transcriptional signatures capture the cellular dynamics in

response to the inflammatory agent. These constitutive dynamics

features are considered to be the ‘‘blueprints’’ of the orchestrated

dynamics of the perturbed biological system and include the pro-

inflammatory response; a later transcriptional event indicative of

anti-inflammation and ultimately the energetic response. The

potential of a physicochemical host response model that integrates

transcriptional profiling, intricate signaling cascades and indirect

response models is demonstrated in [33,34]. Predicated upon the

essential interactions that define the propagation of LPS signaling

across the system, we opt to translate them into an integrated ABM

framework.

Developing an Agent Based Model of Endotoxin Induced
Human Inflammation

The inflammatory response is activated when endotoxin is

recognized by pathogen recognition receptors [61]. Such recognition

process involves the induction of a signal transduction cascade that

triggers downstream critical signaling modules for the activation of

transcriptional factors that play a critical role for the transcriptional

initiation of inflammatory genes. LPS molecules collide with their

receptor, TLR4, on the surface of the macrophages. If the receptor is

unoccupied, the LPS molecule will have a probability to bind to its

signaling receptor, forming a complex. A receptor that is already

bound to a LPS molecule will be unable to receive another one. The

bound receptor is also considered activated, in that it will up-regulate

the production of TNF-a molecules stimulating downstream

intricate signaling cascades. Such a cascade involves the activation

of kinase (IKK) activity, which in turn phosphorylates the inhibitor

protein IkBa and leads to the activation of the transcription factor

NF-kB. The transcriptional end result of this signaling pathway is the

production of pro-inflammatory cytokines including IL-12, TNF-a,

and IkBa. The IkBa molecules effectively terminate the pathway by

forming an inactive complex with nuclear NF-kB in the cytosol. The

production of IL-12 initiates the production of IL-4 molecules. These

two cytokines populate the system and bind to their respective

receptors on the macrophages or type T0 helper cells. The fate of

Th-0 cells is determined by the number of either IL-4 or IL-12 on its

surface receptors [28].

Figure 5. Temporal responses in a persistent infectious inflammatory response. Solid lines correspond to LPS(t = 0 hr) = 1000 which
accounts for a prolonged inflammatory activity causing a malfunction in LPS clearance rate. Dashed lines refer to equation-based model predictions
for the case of a persistent infectious challenge which can be achieved by manipulating the first order degradation rate of LPS as discussed in the
original analysis [34]. The output of both modeling approaches is normalized so that numerically it ranges between (0,1).
doi:10.1371/journal.pone.0009249.g005
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Figure 6. Endotoxin tolerance scenario. Pre-existing infection might cause a profound reduction in cell’s capacity (hypo-responsiveness) to
respond in the main endotoxin challenge. Solid line: LPS(t = 0 hr) = 750. Dotted line: LPS(t = 0 hr) = 100 & LPS(t = 8 hr) = 650.
doi:10.1371/journal.pone.0009249.g006

Figure 7. Lethal potentiation. Successive administration of small doses of endotoxin can lead to an unresolved inflammatory response. Solid line:
LPS(t = 0 hr) = 350. Dotted line: LPS(t = 0 hr) = 100 & LPS(t = 2 hr) = 250.
doi:10.1371/journal.pone.0009249.g007
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The pro- and anti-inflammatory mediator profiles (P and A) and

the energetic response of the macrophages (E) were used as a

primary indication of a constrained or unresolved inflammatory

response. During the progression of systemic inflammation, pro-

inflammatory (P) molecules specifically reflect the presence of IL-

12 mediators that are circulating in the system. The primary

reason for such a selection stems from the fact that the role of IL-

12 has been implicated in the differentiation of Th-0 cells.

However, each essential transcriptional signature (P, A, E) as it

previously mentioned, serves as the aggregate signal that describes

complex inflammatory reactions. Thus, (P) would qualitatively

reflect the secretion of cytokines and chemokines such as TNFSF2

(TNF), IL1A, IL1B, CXCL1, CXCL2, CCL2, CXCL8 (IL-8) and

CXCL10. Similarly, the anti-inflammatory arm of the system (A)

reflects either the number of IL-4 molecules upon endotoxin

simulation or mediators such as IL1RAP, IL1R2, IL10 and

TNFRSF1A. We would like to comment that while these two

quantities specifically measures the amount of a particular species,

they are however a qualitative description to indicate the state of the

system. By the same token, although the energetic response (E) is

given as a quantity in ‘‘molecules’’ in the model, it is only a

descriptive quality as a marker to track the state of the system and

does not have a physical manifestation in physiology. The energetic

response (E) refers to those transcriptional signatures that participate

in the cellular bio-energetic processes, mainly in the ATP producing

pathways [62] and is affected by the transcriptional activities of NF-

kB, coupled with the anti-inflammatory cytokine response.

Moreover, activated NF-kB, IKK, and IkBa molecules are the

summation of activated population of respective species in all

macrophages and LPS refers to the total amount of LPS in

circulation, both bound and free. Regarding TNF-a, it refers to free

TNF-a molecules.

Agent Rules and Behaviors
Agents are the main components that follow specific instructions

on how they should behave and interact with other agents. The types

of agents are listed in Table 2. Each agent has its own properties

that define the type of behavior and interactions that the agent is

involved with. Different types of agents are grouped into different

classes, e.g., a type of interleukin or stimulus. Some properties are

present in many classes, e.g., degradation counter that determines

when an agent disappears or die; or location reporter that informs

the molecule its position with regard to another molecule. Other

properties only pertain to a certain class, e.g., receptor sensitivity that

dictates whether binding occurs, or macrophage energetic level that

serves as a survival indicator. The ‘‘world’’ is defined by a coordinate

system with boundaries that wrap around horizontally and vertically.

Macrophages are placed randomly in the world, provided that there

is no overlapping between each macrophage. The simulation is

computationally intensive in that each macrophage cell alone is

composed of more than 400 agents. For the purpose of reducing the

computation time for each simulation, a 161 by 161 world and 4

macrophages were used for the experiments. After experimenting

with a range of world sizes, we decided that the selected size was

appropriate to accurately generate the dynamic profiles while

allowing repeated simulations to run at a desirable pace.

As the model is executed, it performs a list of procedures in an

order. The execution is an iterative process where each iteration

Figure 8. Pre-existence of inflammatory mediators (TNF-a) may enhance abnormally the intracellular signaling amplifying IKK
activity. Such response leads to an aberrant inflammatory response which cannot be counter-regulated by the anti-inflammatory arms of the
system. Such a mode of dysregulation is simulated by concomitant exposure of the system to TNF-a and bacterial infection (LPS): LPS(t = 0 hr) = 350 &
TNF-a(t = 0 hr) = 300.
doi:10.1371/journal.pone.0009249.g008
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represents a ‘‘tick’’ or a discrete time point. Each procedure governs

the behavior of a specific class of agent; it contains instructions on

how an agent should move, whether to bind to a receptor or

‘‘bounce’’ off of the cell membrane, etc. The instructions are

conditional (rule) based (if-then) and may involve multiple agents,

such as when two molecules bind together, both molecules’

parameters change due to the binding, for instance, they now

move in the same pattern. Moreover, the instructions are derived

from literature regarding relevant mechanisms for LPS activation

[35,43,63], intricate signaling cascades [64,65,66,67,68,69], cyto-

kine network [40,41,70] and cell (Th) differentiation [28,31]. The

specific rules that determine the behavior of the relevant agents are

presented in Table 1.

The movement of LPS molecules is characterized by a random

walk routine, namely, each molecule heads to a random direction

and moves several steps forward. When one LPS molecule comes

in contact with its signaling receptor on the surface of the

macrophage, it will have a chance to bind to it. Once bound a

molecule will no longer be moving freely; it will move in

accordance with its counterpart. Such process triggers the pro-

duction of the proximal inflammation-specific mediator, TNF-a

causing a decrease in receptor’s sensitivity. Receptor sensitivity

determines the probability by which one LPS molecule will bind to

its endotoxin receptor. Bound LPS molecules are degraded

shortly, freeing up the receptor. Molecules of TNF-a also move

randomly where they can diffuse into the cell (move past the cell

membrane agents) and bind to their appropriate receptors either

from the cytoplasm or from outside of the membrane. The

activated receptor will trigger downstream a signal transduction

cascade that stimulates IKK activity. Activated IKKs move

randomly inside the cytosol while they are not capable in moving

past the cell membrane agents or enter the nucleus region. They

activate the NF-kB complex by dissociating the bound between

NF-kB and its inhibitor, IkBa. This is achieved through the

phosphorylation of the inhibitory protein IkBa where dissociated

IkBa is therefore ubiquitinated and degraded by the proteasome.

Activated NF-kB then moves into the nucleus region initiating the

transcriptional machinery program which up-regulates the

transcription of IkBa, of pro-inflammatory cytokines (P) followed

by a decrease in the energetic state of the macrophage. Activated

IkBas are capable of moving into the nucleus, binding to activated

NF-kB molecules, and deactivate them, as they retrieve nuclear

concentrations of NF-kB by forming an inactive complex in the

cytoplasmic region.

The pro-inflammatory (P) agents are limited by cell membranes

and their presence excites the production of anti-inflammatory

cytokines (A) and the migration of undifferentiated T-helper cells

(Th0) which are not present under conditions of no infec7tious

challenge. However, the secretion of pro-inflammatory (P) mole-

cules by macrophages during the progression of the inflammatory

Figure 9. Exploring the effect of an intervention (anti-inflammatory) strategy that inhibits IKK activity. Such scenario is simulated by
administering LPS(t = 0 hr) = 750 and IKK inhibitors, IKK inhibitors (t = 0 hr) = 400 (green line).
doi:10.1371/journal.pone.0009249.g009

Table 2. List of agents.

Cell types Macrophage, Th-0, Th-1, Th-2

Stimulus, mediator LPS, IL-12, IL-4, TNF-a

Receptors TLR4, IL-12R, IL-4R, TNFR

Intracellular signaling molecules IKK, NF-kB, IkBa

Cellular component Plasma membrane, nucleus

doi:10.1371/journal.pone.0009249.t002
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reaction induces Th0 cells to enter the ‘‘virtual world’’. This event

signifies the migration of cytokines into the spleen, within which the

differentiation of Th0 cells takes place. In this model the role of T-

helper cells is to regulate the feedback loops associated with pro-(P)

and anti-inflammatory (A) mediators. Further, the binding of (A)

molecules with their signaling receptor will stimulate an energy

expenditure causing nearby bound TNF-a to degrade faster. In

addition to Th0 cell type under conditions of an abundance of

bound anti-inflammatory (A) cytokines with their receptors it will

morph into a Th2 cell. If it happens that the presence of (P)

molecules on the surface receptors to outweigh the (A) response,

then Th0 will become of Th1 type which potentiates the pro-

inflammatory response. Conversely, Th2 cell type response

potentiates the secretion of anti-inflammatory cytokines (A).

In order to facilitate the translation from literature evidence into

a programming language, it is necessary to provide a feasible

framework that integrates disparate research into a conceptually

valid scheme, taken into account the abstractness and limitations

of the model. Some of the goals are outlined in literature [15] but

in this model, we place emphasis on the potential mechanisms that

drive complex responses identifying essential elements of the

probed response.

Model Calibration and Validation
Due to the inherent stochasticity of the ABM development,

calibration is oftentimes performed on a trial and error basis. This

process involves generating multiple sets of results by systemati-

cally varying the model parameters at each set. Also known as

‘‘parameter sweeping’’, this process allows us to explore the

possible behaviors of the model and determine which parameters

will engender the patterns that best represent the behavior of

interest. For instance, we first examine the signaling agents that

will have the most leverage on repressing the inflammatory

response. After each simulation, we adjust the parameters such as

the production rate of P and TNF-a, the movement speed of LPS,

or the probability that an interaction will occur between two

colliding signaling molecules. These parameter values were

manipulated so that the simulations lie in qualitative agreement

with the self-limited inflammatory response. This implies that from

among the multiple runs we select those that can effectively

reproduce dynamic profiles associated with the successful elimina-

tion of the inflammatory stimulus within the first 2 hr post-

endotoxin administration while followed by a subsequent transcrip-

tional resolution within 24 hr. We define the parameters that can

produce the self-limited profile as a basis set and based on this set we

simulate the LPS dosage dependent responses. A set of parameters is

considered satisfactory if the model is capable of simulating the

dynamics of a self-limited inflammatory response (resolution within

24 hr post-LPS administration) as well as successfully generating the

series of unconstrained (non-linear) responses as previously

discussed in this paper. The results of the simulations are compared

on a qualitative manner with our prior equation-based host

response models as shown in Figure 4 and Figure 5 (dashed lines).

While comparing the output of ABM with the output of the ODE, it

should be noted that both modeling approaches are not

characterized by the same network topology. Specifically, in the

proposed ABM additional inflammatory mediators (molecules, cells)

are considered when compared to the ODE model which may

account for the observed variations in the simulated responses of the

two modeling frameworks. However, albeit different in network

topology, the two modeling frameworks predict responses (e.g. P, A,

E) that lie in a good qualitative agreement.

This ABM is developed using NetLogo (Center for Connected

Learning and Computer-Based Modeling, Northwestern Univer-

sity, Evanston, IL), a freeware that constructs agent based models.
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