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A commentary on

Injecting Instructions into Premotor Cortex

by Mazurek, K. A., and Schieber. M. H. (2017) Neuron. 96, 1282.e4–1289.e4.
doi: 10.1016/j.neuron.2017.11.006

Here we call attention to a scholarly paper of particular note, where Mazurek and Schieber
(Mazurek and Schieber, 2017) reported for the first time that arm reaching tasks performed by
rhesus monkeys can be instructed by intracortical stimulation (ICMS) applied to dorsal premotor
cortex (PMd). Monkeys started each trial by grasping with the hand a home handle that was
surrounded by four target handles. Next, reach direction was instructed by turning on a display
composed of light emitting diodes (LEDs) at the base of the target handle and/or applying ICMS
to different sites in PMd. ICMS of the primary somatosensory cortex (S1) was also tested in the
same context. Monkeys responded to the instruction by releasing the home handle and grasping
the target handle. They learned to respond correctly to both LED and ICMS instructions, with very
high success rate (96–99%).

Previously, motor responses have been instructed by ICMS of S1 in owl monkeys (Fitzsimmons
et al., 2007), rhesus monkeys (Romo et al., 1998; O’Doherty et al., 2009) and rats (Talwar et al.,
2002; Pais-Vieira et al., 2013). In rats, ICMS of M1 has been used for the same purpose (Pais-
Vieira et al., 2013). The study of Mazurek and Schieber is innovative because they stimulated a
higher-order motor area known to be related to motor preparation (Weinrich and Wise, 1982),
visuomotor transformations (Caminiti et al., 1998), nostandard sensorimotor mapping (Wise et al.,
1996), but not primary processing of movements or sensations. Therefore, these results could not
be readily attributed to ICMS-evokedmotor responses (Graziano et al., 2002) or artificial sensations
(Romo et al., 1998; Fitzsimmons et al., 2007; O’Doherty et al., 2009).

Mazurek and Schieber kept the amplitude of the ICMS applied to PMd low to make sure that
no muscle activations were evoked. While the absence of such activations was confirmed by the
pulse-triggered EMG averages, the authors did not illustrate how arm EMGs were modulated
during task performance. Such an illustration would be useful because in the video of their
experiment, hand movements are visible that occurred before the instruction stimuli and during
the reaction time period. Quite surprisingly, lower ICMS currents could be applied to PMd than
to S1 to accurately instruct the reach target. Mazurek and Schieber commented, “ICMS thus may
be experienced more readily in PM than S1.” Overall, Mazurek and Schieber did not speculate
excessively about the nature of experiences evoked by ICMS of PMd but proposed that ICMS “may
have evoked somatosensory and/or visual percepts, desires to move particular body parts, or other
internal urges or thoughts, any of which the monkeys could have used as instructions.” Percepts in
the form of a desire to initiate movement have been reported previously for electrical stimulation
of premotor cortex in humans (Penfield and Rasmussen, 1950).

While these results can be generally described as a type of associative learning (Pearce and
Bouton, 2001), it is unclear whether monkey’s awareness of the experiences evoked by ICMS
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was essential for such learning. Although Mazurek and Schieber
suggest that their monkeys had conscious experiences of ICMS
and reported these experiences with arm movements, it is also
possible that ICMS induced Hebbian learning (Hebb, 2005) of a
nonconscious type (Lewicki et al., 1992; Shanks and John, 1994),
where repeated coupling of ICMS with the activation of PMd
circuitry during target selection caused specific modifications of
synaptic weights for a subset of PMd neurons. Indeed, monkeys
were first overtrained on the visually-instructed task. Next, ICMS
was repeatedly coupled with the instructions provided by LEDs.
Under these conditions, specific populations of PMd neurons
were activated while the monkeys responded to each instructed
target, and ICMS simultaneously activated axons passing through
the stimulated area (Tehovnik et al., 2006). Some of these
axons projected to the task-related neurons in PMd, as well
task-related neurons in cortical areas interconnected with PMd.
Consequently, the effect of Hebbian plasticity was likely to
strengthen the responses of specific neuronal populations to
ICMS. It is reasonable to suggest that ICMS eventually started
triggering decision-related PMd activity in the absence of LED
instructions. For such Hebbian plasticity to occur, conscious
discrimination of different ICMS patterns is not required. On
the other hand, it is possible that Hebbian plasticity contributed
to the emergence and shaping of the monkeys’ conscious
experiences caused by ICMS in this experimental context.

Our view deemphasizes the role of conscious experience, and
this is different from the traditional interpretations of ICMS
effects. Historically, ICMS has been used for two main purposes:
(1) to disrupt cortical processing (Tehovnik and Slocum, 2003;
Wegener et al., 2008), and (2) evoke neural responses that
mimic functions of the stimulated area (Salzman et al., 1990;
Romo et al., 1998; Graziano et al., 2002; Tehovnik et al., 2006;
Tehovnik and Slocum, 2007). For the electrical stimulation of
cortical sensory areas in humans, such as S1 (Cushing, 1909;
Penfield and Boldrey, 1937; Penfield and Rasmussen, 1950;
Flesher et al., 2016) and primary visual cortex (Brindley, 1970;
Dobelle and Mladejovsky, 1974; Bak et al., 1990), the focus has
been traditionally on the perceptions experienced by the subjects.
The possibility has received less attention that stimulation
may connect to the ongoing cortical activity via a Hebbian
mechanism irrespective of the perceptual experience it causes.
Yet, several studies have shown that pairing stimulation with
motor activity or another stimulus evokes cortical plasticity, such
as pairing of transcranial magnetic stimulation in humans with
the stimulation of peripheral nerves (Stefan et al., 2000) and
artificially connecting two sites in monkey primary motor cortex
(Jackson et al., 2006) and S1 (Song et al., 2013). Additionally,
cortical plasticity has been demonstrated using cross-modal
pairing. For example, Lahav et al. (2007) trained non-musicians
to play a piece of music on a piano. Following this training,
the sound of music started to activate cortical motor areas

even when the subjects did not move their hands. Such cortical

plasticity is also consistent with embodied language framework
(Pulvermüller, 2013). The fact that subjects can remain unaware
of the plastic changes has been elegantly demonstrated using a
neurofeedback paradigm (Kaplan et al., 2005). Additionally, it
has been shown that training can improve visual sensitivity in
blindsight patients (Sahraie et al., 2006; Chokron et al., 2008).

Electrical stimulation of somatosensory system has started
to be implemented in bidirectional neural prostheses of the
limbs (O’Doherty et al., 2011; Raspopovic et al., 2014; Lebedev
and Ossadtchi, 2018). In such systems, Hebbian plasticity
could be employed to improve learning of the artificial tactile
feedback: electrical stimulation could be paired with virtual
reality, tactile stimulation applied to the healthy hand, or
verbal stimuli. Such pairing could facilitate the formation of a
new percept associated with different sensory modalities and
higher-order representations. As pointed out above, stimulation
does not necessarily have to mimic the natural activity of
the stimulated neuronal circuitry; Hebbian plasticity would
eventually make this artificial input more meaningful and
possibly consciously perceived. It is possible that Hebbian
mechanisms played a role in the previous experiments on
ICMS-induced somatosensory perceptions, particularly the ones
where training was conducted over the course of many days
(Fitzsimmons et al., 2007; O’Doherty et al., 2009, 2011; Tabot
et al., 2013). Moreover, the findings of Mazurek and Schieber
suggest that the developers of bidirectional neural prostheses
could use non-sensory areas as sites for the application of
ICMS, and Hebbian associative learning could eventually result
in the emergence of realistic perceptions associated with such
stimulation.

Finally, ICMS-based neuroprosthetic systems may work
optimally if they operate as systems with prediction (Montague
and Sejnowski, 1994; Sejnowski et al., 1995; Mirabella and
Lebedev, 2017). In such predictive prostheses, ICMS patterns
should reflect the properties of prediction error defined as
the difference between the internal state and the observed
sensory signals. Implementation of such Kalman filtering-based
operations (Friston, 2005; Clark, 2015) could incorporate the
prosthetic system into the brain more naturally.
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