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Association between household 
air pollution and child mortality 
in Myanmar using a multilevel 
mixed‑effects Poisson regression 
with robust variance
Juwel Rana1,2,3*, Rakibul M. Islam3,4, Md Nuruzzaman Khan5,6, Razia Aliani7 & 
Youssef Oulhote2,8

Household air pollution (HAP) from solid fuel use (SFU) for cooking is a major public health threat for 
women and children in low and middle‑income countries. This study investigated the associations 
between HAP and neonatal, infant, and under‑five child mortality in Myanmar. The study consisted 
of 3249 sample of under‑five children in the households from the first Myanmar Demographic and 
Health Survey 2016. Fuel types and levels of exposure to SFU (no, moderate and high) were proxies 
for HAP. We estimated covariate‑adjusted relative risks (aRR) of neonatal, infant, and under‑five child 
mortality with 95% confidence intervals, accounting for the survey design. The prevalence of SFU 
was 79.0%. The neonatal, infant, and under‑five child mortality rates were 26, 45, and 49 per 1000 
live births, respectively. The risks of infant (aRR 2.02; 95% CI 1.01–4.05; p‑value = 0.048) and under‑
five mortality (aRR 2.16; 95% CI 1.07–4.36; p‑value = 0.031), but not neonatal mortality, were higher 
among children from households with SFU compared to children from households using clean fuel. 
Likewise, children highly exposed to HAP had higher risks of mortality than unexposed children. HAP 
increases the risks of infant and under‑five child mortality in Myanmar, which could be reduced by 
increasing access to clean cookstoves and  fuels.

Abbreviations
HAP  Household air pollution
SFU  Solid fuel use
LMICs  Low and middle-income countries
MDHS  Myanmar demographic and health survey
WHO  World Health Organization
ALRIs  Acute lower respiratory infections
MDGs  Millennium development goals
SDGs  Sustainable development goals
DHS  Demographic health survey

Under-five child mortality accounts for 70 percent of the global deaths among children and young under 25 years 
old in  20191. Of these, 2.4 million die in the first month of life and 1.5 million in the first year of  life1. The burden 
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of neonatal, infant, and under-five child mortality is disproportionate across regions. For instance, South-East 
Asian countries, including Bangladesh, Bhutan, India, Nepal, Sri Lanka,  and Maldives, share one of the highest 
rates of under-five child mortality globally despite their progress in reducing child mortality and meeting the 
Millennium Development Goals (MDGs)1,2. However, Myanmar was unable to meet the MDGs (goal 4) to reduce 
child mortality. In 2019, the estimated overall under-five, infant and neonatal mortality rates were 32, 26, and 
20 per 1000 live births, respectively, in South-East Asia, while Myanmar has one of the highest child mortality 
rates in the region, which is more than the overall  rates1,3. Multiple underlying factors such as socioeconomic 
inequalities, poor sanitation and lack of safe drinking water, and poor access to clean fuels might be responsible 
for these high under-five and infant  mortality1–4.

Household air pollution (HAP) from solid fuels use (SFU) is one of the world’s major environmental threats, 
causing about 1.6–3.1 million premature deaths  annually5. HAP related mortality is disproportionately higher 
in low and middle-income countries (LMICs). In 2017, almost 70% of all deaths related to HAP occurred in 
 LMICs6. About 3 billion people use solid fuels for cooking, including coal and biomass (wood, animal dung, 
lignite, charcoal, straw/shrubs, grass, and agricultural crop)7,8, which are the major sources of  HAP9.

Alternative fuels (clean fuels) such as liquefied petroleum gas and electricity are often unavailable and/or unaf-
fordable in  LMICs10. Therefore, households opt to collect solid  fuels7, which are burned indoors in conventional 
cookstoves as a pit, pieces of brick, or U-shaped mud construction. Duflo et al. illustrate via energy ladder that 
households with the lowest income levels use the most inefficient and the most polluting types of  fuel11. These 
solid fuels emit damaging airborne pollutants, including Particulate Matter (PM), NOx, CO, SOx, formaldehyde, 
and many toxic polycyclic aromatic hydrocarbons and other organic matter due to inefficient  combustion12–14. 
The amount of exposure to an individual in such settings has been measured to be much higher than the World 
Health Organization (WHO) guidelines and  standards15.

In LMICs, women and children are at higher risk of exposure to  HAP16–18 due to women’s role in household 
chores, cooking, and caring for infants in most South-East Asian cultures. Women spend about three to seven 
hours per day near the stove, sometimes carrying their infants for care and warmth during cooking, leading to 
children being exposed to biomass fuel at similar  levels7. This exposure level increases in households with limited 
ventilation and poor design of the stove that do not have flues or hood to move out the smoke from living  places19.

The majority of households in Myanmar use solid fuels for cooking, as there is easy access to biomass  fuels20. 
The Clean Cooking Alliance estimated that more than 95% of the rural and 88% of the urban population use 
solid fuels for cooking in  Myanmar20, which might be one of the contributing factors of more than 3500 annual 
infant and child deaths from acute lower respiratory infections (ALRIs) and pneumonia in Myanmar. It could 
also be one of the reasons that prevented Myanmar from achieving the MDGs (between 2000 and 2015) of 
reducing infant and child  mortality2,4. Importantly, this indicates an important area of intervention for achieving 
the Sustainable Development Goals (SDGs) of reducing neonatal (12 per 10,000 live births) and infant (25 per 
10,000 live births) deaths between 2015 and 2030.

To our knowledge, no study evaluated the effect of HAP from SFU on neonatal, infant, and under-five mor-
tality rates in Myanmar using nationally representative data. The first Demographic Health Survey (MDHS) in 
Myanmar was conducted in 2016 and provided an opportunity to examine the associations of HAP with neonatal, 
infant, and under-five child mortality.

Methods
Study design and setting. Given the focus on improving maternal and child health, the MDHS 2016 
was the first nationally representative cross-sectional survey conducted in Myanmar. Data were collected from 
12,885 women from the sampled households based on stratified two-stage cluster sampling design from Decem-
ber 2015 to July 2016. Using the 2014 Myanmar census sampling units, 442 clusters (123 urban, 319 rural) were 
selected in the first stage from 4000 clusters based on the probability proportional to the size. In the second stage, 
30 households from each selected cluster were selected in the first stage by using systematic random sampling. 
The overall response rate was approximately 98%. The survey was funded by the United States Agency for Inter-
national Development and implemented by the Ministry of Health and Sports, Myanmar, in coordination with 
the MDGs. Technical support was provided by ICF international. Details of the survey sampling procedure have 
been published in the MDHS  report21.

Characteristics of participants. A total of 3249 under-five children were included in the final analysis 
based on their retrospective birth histories after limiting to singleton births living with their mothers at the time 
of the survey and excluding children with missing information on SFU (Fig. 1)21,22. The inclusion criteria were: 
(i) children born within five years before the date of survey (only last child and singleton births were considered 
in case of multiple children in five years); (ii) most recent children with information of survival status (alive/
death at the time of the survey); (iii) children with the date of death if applicable; (iv) children with complete 
information of household cooking fuels  use21.

Measures of child mortality outcomes. We considered neonatal mortality (deaths occurred during the 
first 28 days of life), infant mortality (deaths occurred during the first one year (0–11 months) of life), and under-
five mortality (deaths occurred during the first five years (0–59 months) of life) as outcome  variables21,23,24.

Measures of HAP exposure. The analysis was carried out for two exposure indicators: SFU (clean fuel vs. 
solid fuel) and levels of exposure to SFU induced HAP (no exposure, moderate exposure, and high exposure). 
The MDHS collected information on the types of cooking fuels by asking women—what type of fuel does your 
household mainly use for cooking? Responses were coded as clean fuel = 0 (if responses were electricity, liquid 
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petroleum gas, and natural gas) and solid fuel = 1 (if responses were coal, lignite, charcoal, wood, straw/shrubs, 
grass, agricultural crop, and others). Children’s levels of exposure to HAP were generated from the women’s 
responses to the place of cooking and the type of cooking fuel  use23–26. The responses were categorized as no 
exposure = 0 (if women reported not using solid fuel), moderate exposure = 1 (if women reported using solid 
fuel, but in a separate building or outdoors), and high exposure = 2 (if women reported using solid fuel inside 
the house).

Confounder selection and adjustment. Different sociodemographic factors contributing to the neona-
tal, infant, and under-five child mortality were included as confounders (Fig. 2). These were age at child deaths, 
child sex, parental education, interval of last two succeeding births, breastfeeding status, household wealth quin-

Figure 1.  Schematic of the analytic sample selection process for child mortality in Myanmar.
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tiles, urbanicity, geographic regions, and seasons (Fig. 2). The birth interval variable was generated based on 
women’s response to the birth date of the last two children and categorized by following the WHO  guidelines21. 
The wealth quintile was reconstructed from the women’s household durable and non-durable assets (e.g., tel-
evisions, bicycles, sources of drinking water, sanitation facilities, and construction materials of houses) using 
principal components analysis, excluding the types of cooking fuels to avoid over adjustment as this was the 
main exposure of  interest21,26.

Statistical analysis. Descriptive statistics were reported as frequency and percentage to characterize the 
demographic profile of the study sample. Differences in neonatal, infant, and under-five child mortality across 
sociodemographic factors were presented using the chi-square test. The associations between exposure to HAP 
and child mortality outcomes were investigated using both univariable and multilevel mixed-effects Poisson 
regression models. As an additional analysis, effect modification by sex of the child was also tested in all models 
by including a cross-product term between child sex and HAP. The univariate models included only the expo-
sure variable and the outcome variable. These associations were then adjusted for potential confounders in the 
multivariable models, including child age, child sex, breastfeeding status, maternal education, household wealth 
quintiles, urbanicity, geographic region, preceding birth interval, and season. However, birth weight  was not 
included in the models as it is likely to be on the causal pathway between exposure to HAP and  mortality27–29. 
Furthermore, information on exact birth weight was unavailable for most of the  children21.

Multilevel mixed-effects Poisson regression models with robust error variance were used to avoid overestima-
tion of associations with common binary outcomes measured in cross-sectional  study22,26,30. We also accounted 
for complex survey design  effects22,26. Results were reported as relative risks (RRs) with 95% confidence intervals 
(CIs). All statistical analyses were two-sided, and a p-value < 0·05 was considered statistically significant. The ICF 
Institutional Review Board (IRB) and the Ministry of Health and Sports, Myanmar, approved the primary data 
collection survey protocol. Informed consent was taken from each participant before the survey. We obtained the 
de-identified data and public-use dataset from the DHS online archive. We followed Strengthening the Reporting 
of Observational Studies in Epidemiology (STROBE) guidelines to design and report the  results31. All methods 
were performed in accordance with the relevant guidelines and regulations.

Figure 2.  A directed acyclic graph (DAG) for evaluation of covariates selection in the analysis of effects of HAP 
on child mortality. HAP is exposure, and child mortality is the outcome. The minimal and sufficient adjustment 
set contains child age, child sex, breastfeeding status, maternal education, household wealth quintiles, urbanicity, 
geographic region, preceding birth interval, and season. This figure was constructed through DAGitty (http:// 
www. dagit ty. net).

http://www.dagitty.net
http://www.dagitty.net
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Results
Characteristics of the participants, exposures, and outcomes are presented in Table 1. The mean (±SD) age of the 
mothers was 31.1 (± 6.0) years. The mean years of education were 4.4 (± 3.5) years. The mean age of the child was 
2.1 (± 1.4) years, and 47.6% of children were girls. More than three-quarters (78.8%) of the study households used 
solid fuels (charcoal 16.1%, wood 60.5%, agricultural crop 1.2%, and others 1%) for cooking, of which 62.3%  used 
solid fuels at indoor cooking places. About two-thirds (65.1%) of the women reported indoor place of cooking. 
Nearly half of the children (47.7%) were highly exposed to HAP during the survey (Table 1).

The rate of neonatal, infant, and under-five child mortality was 26 (95% CI 19–53), 45 (95% CI 35–57), 
and 49 (95% CI 38–62) per 1000 live births, respectively (Table 1). Infant and under-five child mortality were 
slightly higher in girls, while neonatal mortality was higher in boys. A similar increasing trend was observed 
for infant and under-five child mortality for rural residents. Compared with ever (not current) breastfeeding 
status, neonatal (415.6, 95% CI 279.5–565.9), infant (465.8, 95% CI 325.3–611.9) and under-five child mortality 
(465.8, 95% CI 325.3–611.9) per 1000 live births were higher amongst mothers who never breastfeed. Infant and 
under-five child mortality were higher among children whose mothers had no education, resided in Shan, Chin, 
and Teninthayi regions, and were born in the short birth interval (Table 2).

The unadjusted and adjusted associations between HAP and child mortality are presented in Table 3 (Sup-
plementary Fig. 1). The risks of infant mortality (2.02, aRR 95% CI 1.01–4.05; p-value = 0.048) and under-five 
mortality (aRR 2.16, 95% CI 1.07–4.36; p-value = 0.031) were two times higher in children from households 
who used solid fuel for cooking compared to children from households who used clean fuel. The risks were even 
higher when we considered the augmented measure of exposure to HAP. Compared with unexposed children, 
infant mortality risks were 1.94 (95% CI 0.92–4.08; p-value = 0.081) and 2.15 (95% CI 1.04–4.43; p-value = 0.038) 
times higher among moderately and highly HAP exposed children, respectively.

A similar higher risks of under-five mortality was observed among children with moderate (aRR 2.11; 95% 
CI 1.02–4.40; p-value = 0.045) and high (aRR 2.25, 95% CI 1.08–4.69; p-value = 0.030) exposure to HAP than 
their counterparts. There was no association between neonatal mortality with HAP exposure and levels of expo-
sure to HAP. As an additional analysis (not shown), we did not observe effect modification by child sex in the 
associations between exposure to HAP and levels of exposure and mortality outcomes of under-five children.

Table 1.  Key information about the study participants, exposure, and outcome variables. SD Standard 
deviation, CI confidence interval.

Demographics of mothers Frequency (n = 3249) Weighted percentage (95% CI)

Mean age in years (mean ± SD) 3249 31.1 (± 6.0)

Mean weight in kilograms (mean ± SD) 3249 53.9 (± 10.9)

Mean years of education (mean ± SD) 3249 4.4 (± 3.5)

Demographics of under-five children

Mean age in years (mean ± SD) 3249 2.1 (± 1.4)

Girls 1559 47.6 (45.4–49.8)

Types of cooking fuels

Electricity 675 20.8 (18.2–23.7)

Liquid petroleum gas + natural gas 14 0.4 (0.2–0.8)

Charcoal 522 16.1 (14.0–18.4)

Wood 1966 60.5 (56.9–64.0)

Agricultural crop 40 1.2 (0.8–2.0)

Coal, lignite + straw/shrubs/grass + others 32 1.0 (0.7–1.4)

Cooking place

Indoor 2099 65.1 (62.0–68.1)

Separate building 763 23.7 (21.0–26.5)

Outdoors 362 11.2 (9.9–12.7)

Exposure to household air pollution

Solid fuel use 2560 78.8 (75.8–81.5)

Clean fuel use 689 21.2 (18.5–24.2)

Indoor solid fuel use 1579 62.3 (58.7–65.7)

Levels of exposure to household air pollution

Unexposed 689 22.4 (19.1–26.1)

Moderate exposure 956 29.9 (26.8–33.0)

High exposure 1579 47.7 (43.9–51.6)

Outcomes

Neonatal mortality per 1000 live births 89 26.0 (19.0–35.0)

Infant mortality per 1000 live births 144 45.0 (35.0–57.0)

Under-five mortality per 1000 live births 158 49.0 (38.0–62.0)
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Discussion
The first-ever nationally representative survey suggests that neonatal, infant, and under-five child mortality rates 
were relatively higher in Myanmar compared with other South-east Asian  countries2,3,23. Most of the households 

Table 2.  Neonatal, infant, and under-five child mortality rates by sociodemographic and spatial factors 
(weighted).

Sociodemographic and spatial 
factors

Neonatal mortality per 1000 
(95% CI)

Infant Mortality per 1000 
(95% CI)

Under-five mortality per 1000 
(95% CI)

Maternal age at birth

≤ 24 years 24 (13.4–42.9) 44.1 (28.0–68.7) 48.1 (31.4–72.9)

25–35 years 25.4 (18.1–35.5) 41.9 (32.1–54.6) 44.0 (33.9–57.0)

More than 35 years 34.2 (22.6–51.5) 50.1 (35.4–70.4) 59.8 (43.7–81.4)

Sex of the children

Male 27.0 (19–39.1) 44.0 (32.1–60.1) 48.2 (35.1–65.2)

Female 25.1 (16.2–40.1) 46.4 (33.3–63.1) 49.2 (36.2–67.3)

Breastfeeding status

Never 415.6 (279.5–565.9) 465.8 (325.3–611.9) 465.8 (325.3–611.9)

Ever 26.9 (18.7–38.6) 59.2 (44.2–78.7) 66.0 (49.2–88.1)

Maternal education

None 44.2 (28.3–68.4) 77.4 (52.2–112.4) 83.3 (55.1–124.3)

Primary 18.4 (11.2–31.4) 36.1 (25.2–52.2) 40.0 (29.1–56.3)

Secondary 21.4 (12.0–37.3) 29.3 (18.1–48.3) 30.0 (19.0–49.1)

Higher 51.3 (15.2–161.3) 51.2 (15.2–161.1) 51.2 (15.1–161.1)

Household wealth quintiles

Poorest 19.3 (08.1–39.2) 40.4 (24.0–66.3) 42.3 (26.0–68.1)

Poor 21.4 (11.0–41.4) 32.4 (19.4–55.5) 38.2 (22.1–66.3)

Middle 32.0 (18.3–56.4) 48.2 (31.6–73.4) 54.2 (36.1–80.1)

Richer 27.3 (16.1–48.2) 55.3 (35.1–85.2) 59.2 (39.2–90.1)

Richest 28.3 (15.3–49.4) 45.2 (29.2–71.2) 45.2 (29.1–71.6)

Urbanicity

Urban 28.3 (16.6–48.4) 43.8 (27.5–68.6) 46.4 (29.3–71.5)

Rural 26.4 (18.5–36.6) 46.6 (34.0–61.6) 50.3 (37.2–66.4)

Geographic region

Kachin 24.4 (10.5–57.4) 03.1 (01.4–07.0) 35.5 (16.5–75.3)

Kayah 22.5 (11.4–45.7) 02.9 (01.5–05.6) 29.5 (15.4–57.4)

Kayin 19.6 (05.0–71.9) 31.0 (12.7–76.4) 35.4 (14.3–86.5)

Chin 53.4 (36.5–79.5) 75.3 (53.0–106.4) 83.3 (55.4–122.1)

Sagaing 24.3 (08.5–69.3) 28.5 (11.3–72.4) 32.3 (13.3–76.6)

Tenintha 17.5 (06.5–50.4) 52.3 (20.4–127.9) 69.6 (32.2–143.2)

Bago 21.4 (08.0–57.4) 33.2 (15.1–69.6) 33.2 (15.3–69.4)

Magway 24.4 (10.5–59.6) 37.6 (19.8–67.4) 43.2 (22.4–84.6)

Mandalay 13.5 (03.5–50.4) 38.4 (16.4–86.4) 38.8 (16.6–86.4)

Mon 18.3 (07.3–45.3) 37.1 (16.4–81.4) 43.5 (18.1–101.1)

Rakhine 33.5 (14.6–76.6) 38.6 (18.6–76.4) 38.4 (18.3–76.4)

Yangon 27.3 (06.1–119.4) 43.1 (14.5–122.5) 43.4 (14.2–122.5)

Shan 38.2 (20.0–70.6) 79.5 (45.5–135.5) 84.5 (45.6–151.4)

Ayeyarwa 32.1 (13.0–73.5) 55.6 (28.4–103.6) 60.0 (32.4–108.5)

Naypyiataw 07.5 (0.9–40.4) 20.0 (06.0–56.5) 20.4 (07.4–57.4)

Birth interval

First birth 20.7 (12.9–33.2) 31.9 (21.8–46.3) 35.0 (24.6–49.7)

≥ 24 months 23.1 (16.4–33.3) 39.3 (30.4–50.5) 43.4 (33.6–55.5)

< 24 months 47.5 (25.4–84.5) 83.5 (51.8–131.1) 88.6 (55.4–136.6)

Seasons

Summer (March–April) 15.6 (08.4–28.5) 46.4 (28.5–75.0) 51.5 (30.5–87.4)

Rainy (May–July) 10.4 (03.5–40.6) 18.7 (0.7–40.6) 20.6 (08.3–47.5)

Winter (December–February) 33.3 (23.4–46.3) 48.6 (36.4–64.6) 51.5 (39.4–67.5)
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were dependent on SFU for cooking, and almost half of the study children were highly exposed to HAP in Myan-
mar. The study demonstrates that HAP and moderate and high levels of exposure to HAP increased the risk of 
infant and under-five child mortality, but not neonatal mortality in Myanmar.

Previous studies reported comparable results that HAP exposure from SFU increases the risk of infant and 
child mortality in  LMICs22,23,32–34. Evidence suggests that the combustion of SFU emits multiple pollutants 
such as fine particles, carbon monoxide, formaldehyde, and many more toxic chemicals, which increase the 
risk of mortality from ALRIs, asthma, and pneumonia among infants and young children exposed to these 
 pollutants7,12,13,26,35–40. Exposure to these toxic pollutants also increases the risk of stillbirth, low birth weight, 
and preterm birth, including acute and chronic health problems, all of which are considered leading causes of 
child  mortality3,22,23,41.

Previous studies suggest considering cooking place along with SFU to examine its effects on child mortality 
because cooking inside the house with solid fuels maximizes the concentrations of airborne toxic pollutants in 
the household and ambient  air23–26. We employed an augmented SFU exposure measure combining SFU and 
cooking place following the previous study and found stronger effects of high exposure to HAP on infant and 
child  mortality26. The high prevalence of SFU suggests that children in this study were exposed to high concen-
tration of pollutants as found in other studies, which suggest that high proximity to pollutants and spending 
much time in the kitchen during heating and cooking intensify the risk of adverse health outcomes, including 
child mortality from  ALRI26,32,35. The plausible explanation is that young children are more susceptible to HAP-
induced mortality than their older counterparts due to their underdeveloped epithelial linings of the  lungs26,42. 
Furthermore, infants at their early age are often carried on their mothers’ backs or placed to sleep or stand beside 
their mother when cooking, a common practice in South-east Asian countries, including Myanmar 23,24,43,44.

In a healthy condition, infants and young children have higher respiration rates, and they breathe 50% more 
polluted air due to their narrower airways and large lung surface. Children have a weak immune system in their 
early years of life; thus, HAP exposure might increase the risk of child mortality from ALRI through impaired 
airway and systemic immunity, airway inflammation, etc.35,42,45,46.

However, neonatal mortality was not significantly associated with SFU and exposure to HAP in our study, 
consistent with previous studies conducted in  LMICs32,47. Several biological factors, such as low birth weight, 
prematurity, and complications associated with pregnancy and delivery, might be responsible for the null asso-
ciation between HAP and neonatal  mortality3,23,41. Maybe the effects of these risk factors are much stronger 
that it became more difficult to disentangle the effects of HAP on neonatal mortality. However, it needs further 
investigation using longitudinal studies with measures of air pollutants. Additionally, breastfeeding could work 
as a protective factor diminishing the effect of HAP on neonatal mortality. Moreover, neonates and mothers 
might live in a conducive environment right after delivery, as well as mothers usually stay away from any cooking 
activities during the neonatal period, which is a common cultural practice in Asia. However, few studies claim 
that neonates are at higher risk of HAP induced  mortality22,44, which warrant further studies.

The main strength of the study was a nationally representative survey with a 98% response rate. The analysis 
of large-scale data with an appropriate statistical method and adjustments for potential confounders makes the 
study findings valid for policymaking. However, the main weakness is that the temporal association between 
HAP exposure and child mortality outcomes cannot be established due to its cross-sectional nature. Second, the 

Table 3.  Associations between HAP exposure and risk of neonatal, infant, and under-five child mortality 
in Myanmar. RR relative risks, CI confidence interval. a Multilevel Mixed-effects Poisson Regression models 
were adjusted for child age, child sex, breastfeeding status, maternal education, household wealth quintiles, 
urbanicity, geographic region, preceding birth interval and season.

Exposures

Neonatal mortality

p-value

Infant mortality

p-value

Under-five mortality

p-valueRR (95% CI) RR (95% CI) RR (95% CI)

Unadjusted

Exposure to household air pollution

Clean fuel 1.00 1.00 1.00

Solid fuel 1.53 (0.69–3.38) 0.298 1.59 (0.85–2.99) 0.147 1.77 (0.94–3.32) 0.078

Levels of exposure to household air pollution

Unexposed 1.00 1.00 1.00

Moderate 1.72 (0.73–4.08) 0.219 1.66 (0.82–3.33) 0.158 1.83 (0.93–3.61) 0.080

High 1.41 (0.63–3.15) 0.406 1.56 (0.83–2.94) 0.169 1.73 (0.91–3.31) 0.094

Adjusteda

Exposure to household air pollution

Clean fuel 1.00 1.00 1.00

Solid fuel 0.95 (0.64–1.40) 0.780 2.02 (1.01–4.05) 0.048 2.16 (1.07–4.36) 0.031

Levels of exposure to household air pollution

Unexposed 1.00 1.00 1.00

Moderate 0.96 (0.66–1.39) 0.829 1.94 (0.92–4.08) 0.081 2.11 (1.02–4.40) 0.045

High 1.02 (0.67–1.54) 0.938 2.15 (1.04–4.43) 0.038 2.25 (1.08–4.69) 0.030
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associations could be affected by unmeasured confounders and different health outcomes such as preterm birth, 
low birth weight, and other morbidity factors despite HAP exposure. Third, information related to the children’s 
birth and death was reported by mothers that may introduce recall biases and errors. However, it is unlikely 
that the mother would incorrectly report their children’s birth and death, although there could be errors in the 
time of death that would likely lead to non-differential misclassification. Fourth, exposure measurement error 
is very likely as we used two proxy measures such as SFU and combining SFU and cooking place to measure the 
associations between HAP  exposures26 and child mortality. However, this is the available robust and established 
measurement of HAP exposures because DHS does not objectively measure the level and duration of HAP 
 exposures24,26. Further studies may include questions related to ventilation in the kitchen, duration of cooking, 
proximity to the kitchen, or heating areas to better measure children’s exposure to HAP.

Conclusion
The study suggests that HAP is a significant risk factor for infant and under-five child mortality but not neonatal 
mortality. Furthermore, both moderate and high levels of exposure to HAP, such as the combination of SFU and 
cooking inside the kitchen, increase  infant and child mortality risk in Myanmar. The results from this study 
should be corroborated by longitudinal studies with objective measures of air pollutants. If confirmed, policy-
makers should take both short-term and long-term strategies through socio-environmental pathways to address 
the  higher rate of child mortality in Myanmar, which will ultimately help them meet several SDGs.

Data availability
Myanmar Demographic Household Survey (MDHS) data were obtained from the MEASURES DHS. The data-
sets generated and/or analyzed during the current study are available in the 2015–16. https:// dhspr ogram. com/ 
pubs/ pdf/ FR324/ FR324. pdf.

Code availability
All analyses were carried out using statistical software packages Stata version 16.048.
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