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ABSTRACT

Background. Breast cancer is a heterogeneous and poly-
genic disease that can be divided into different molecu-
lar subtypes based on histological and genomic features.
To date, numerous susceptibility loci of breast cancer
have been discovered by genome-wide association stud-
ies and may expand the genetic features. However, few
loci have been further studied according to molecular
subtypes.
Materials and Methods.We genotyped 23 recently discovered
single nucleotide polymorphisms using the Sequenom iPLEX
platform in a female Chinese cohort of 3,036 breast cancer

patients (2,935 samples matched molecular subtypes) and
3,036 healthy controls.
Results. Through a stratification analysis, 5q11.2/MAP3K1

(rs16886034, rs16886364, rs16886397, rs1017226, rs16886448)
and 7q32.3/LINC-PINT (rs4593472)were associatedwith Luminal A,
and 10q26.1/FGFR2 (rs35054928)was associatedwith Luminal B.
Conclusion. In our study, breast cancer-specific molecular
subtype-associated susceptibility loci were confirmed in Chi-
nese Han women, which contributes to a better genetic under-
standing of breast cancer in different molecular subtypes. The
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Implications for Practice: To date, genome-wide association studies have identified more than 90 susceptibility loci associated with
breast cancer. However, few loci have been further studied according to molecular subtype. The results of this study are that breast
cancer-specific molecular subtype-associated susceptibility loci were confirmed in Chinese Han women, which contributes to a
better genetic understanding of breast cancer in different molecular subtypes.

INTRODUCTION

Breast cancer is one of the most common malignancies in
females. GLOBOCAN data from 2012 show that in China, mor-
bidity and mortality associated with breast cancer have
increased rapidly [1]. Some studies have shown that genetic
predisposition as a pathogenic factor, together with hereditary
factors, plays an important role in such heterogeneous disease
[2]. Molecular subtypes are well accepted based on genomic
and histological features. Breast cancer can be basically divided
into four subtypes (Luminal A, Luminal B, human epidermal
growth receptor 2 [HER2]-amplified, and basal-like) [3]. These
subtypes are significantly different in biological features, which
implicate treatment and prognostic evaluation [4]. Although
molecular subtypes have been routinely used in clinical work,
especially for matching the appropriate medicine to a patient
[5], the comprehensive genetic understanding of different

molecular subtypes is still not clear. To date, genome-wide asso-
ciation studies (GWAS) have identified more than 90 suscepti-
bility loci associated with breast cancer [6], most of which
expand the genetic features and contribute to pathogenic
study. However, few loci have been further studied according
to molecular subtype [7, 8]. In our previous study, several spe-
cific molecular subtype-associated loci were confirmed; for
example, 3p24.1/TGFBR2 (rs12493607) was associated with
HER2-amplified breast cancer, and 16q12.2/FTO (rs11075995)
was associated with basal-like breast cancer [9, 10].

Some novel susceptibility loci/genes in Europeans have
been identified in recent years [11–14]. The susceptibility of
these loci in non-European populations is still unknown and is
of great interest [15]. We have validated these loci and con-
firmed three loci in Chinese Han women: 5q11.2, 5q14.3, and
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10q26.1 [16]. Furthermore, we also studied these loci according
to molecular subtype using a stratification analysis.

MATERIALS AND METHODS

Subjects
A total of 3,036 patients suffering from breast cancer (2,935
samples matched molecular subtypes) and 3,036 healthy con-
trols (female only) were recruited through collaborations with
Hospital No. 1 and Hospital No. 2, Anhui Medical University, in
the province of Anhui. The basic breast cancer molecular charac-
teristics are shown in Table 1. The estrogen receptor (ER) status,
progesterone receptor (PR) status, and HER2 status were eval-
uated by examining the breast tissue by biopsy or cytology and
immunohistochemical analysis. The diagnosis of each case was
confirmed by at least two oncologists. All of the Chinese con-
trols were clinically confirmed to be free of breast cancer, other
neoplastic diseases, systemic disorders, or a family history of
neoplastic diseases (including first-, second-, and third-degree
relatives). Uniform criteria were used for the recruitment of
patients and controls. The same questionnaire was used to col-
lect clinical and demographic information from each participant.
After written informed consent was obtained, peripheral blood
was collected from each participant. The study was approved by
the Institutional Ethical Committee of each hospital and was
conducted in accordance with the Declaration of Helsinki.

Single Nucleotide Polymorphism Selection
We choose 23 single nucleotide polymorphisms (SNPs) that
passed the quality control test in our previous study [16].

Stratification Analysis
For stratification analysis, an association study was performed
between selected SNPs and different cohorts in molecular
subtypes.

Statistical Analysis
The association between the SNPs and breast cancer suscepti-
bility was assessed using logistic regression, adjusting for age.
The strength of association was estimated by calculating the
odds ratio (OR) with a 95% confidence interval (CI). The Hardy-
Weinberg equilibrium was assessed using the chi-square test.
All of the statistical analyses were performed using SPSS 13.0
(IBM, Armonk, NY, https://www.ibm.com) and Plink 1.07 soft-
ware. Conservatively accounting for the multiple comparisons
by Bonferroni correction, the threshold for statistical signifi-
cance was p< 2.17 3 1023 (.05/23).

RESULTS

Through a stratification analysis, 5q11.2/MAP3K1 (rs16886034,
p 5 1.06 3 1023, OR5 1.31; rs16886364, p 5 5.87 3 1024,
OR5 1.31; rs16886397, p 5 2.73 3 1024, OR5 1.33;
rs1017226, p 5 3.75 3 1024, OR5 1.32; rs16886448, p 5 1.93
3 1024, OR5 1.34) and 7q32.3/LINC-PINT (rs4593472,
p 5 1.10 3 1023, OR5 0.78) were associated with Luminal A,
and 10q26.1/FGFR2 (rs35054928, p 5 2.01 3 1026, OR5 1.27)
was associated with Luminal B (Table 2).

DISCUSSION

In our further association study, we confirmed some loci
related to specific molecular subtypes in Chinese Han women.

5q11.2/MAP3K1 was first confirmed as a susceptibility gene for
Chinese Han women, specifically in Luminal A breast cancer.
7q32.3/LINC-PINT was first confirmed as a susceptibility loci/
gene for Luminal A breast cancer. 10q26.1/FGFR2 was previ-
ously confirmed as a susceptibility gene for Luminal B breast
cancer [17, 18].

rs16886034, rs16886364, rs16886397, rs1017226, and
rs16886448 are in the mitogen-activated protein kinase kinase
kinase 1 (MAP3K1) gene, which is located on chromosome
5q11.2 and encodes a serine/threonine kinase that is involved
in the mitogen-activated protein kinase (MAPK) signaling path-
way and is responsible for the transcriptional regulation of
important cancer genes, including c-Myc, c-Elk1, c-Jun, and c-
Fos [19, 20]. MAPK signal transduction is a critical pathway for
cellular regulation and can be stimulated by a wide variety of
exposures, including estrogen, in a variety of cell types [21]. The
MAP3K1 gene has been identified in many GWAS of breast can-
cer [22–25], and a number of studies have investigated the rela-
tionship between MAP3K1 and breast cancer subtypes; the
results were inconsistent in different breast cancer subtypes.
MAP3K1 expression is upregulated in the Luminal A subtype
and downregulated in the Luminal B, HER2-amplified, and
basal-like subtypes [26, 27]. A somatic mutation study of
breast-invasive carcinoma in the context of mRNA expression
subtypes revealed that MAP3K1 alterations were enriched in
the Luminal A subtype [28].

rs4593472 was in LINC-PINT on Chromosome 7q32.3. LINC-

PINT is a p53-induced long intergenic non-protein-coding RNA
located in a 375 kb region between MKLN1 and KLF14. KLF14 is
a member of the Kruppel-like family of transcription factors,
which are tumor suppressors [29]. Michailidou reported that
this SNP was associated with ER-positive breast cancer [30].

The SNP rs35054928 is located in the intronic region of the
fibroblast growth factor receptor 2 (FGFR2) gene. FGFR2 enco-
des fibroblast growth factor receptor type 2, which is a receptor
tyrosine kinase that plays a critical role in the growth signaling
pathway and is involved in the growth and differentiation of

Table 1. The basic breast cancer characteristics

Characteristics Sample

Cases

Sample size 3,036

Mean age (years) at onset 52.66 10.6

Mean age (years) 51.96 11.2

Familial history of breast cancer

Familial (%) 7.87%

Sporadic (%) 92.13%

Four subtypes of breast cancera

Luminal A breast cancer 955 (33%)

Luminal B breast cancer 1,075 (37%)

HER-2 amplified breast cancer 328 (11%)

Basal-like breast cancer 577 (19%)

Controls

Sample size 3,036

Mean age (years) 47.46 9.8
a2,935 samples matched molecular subtypes.
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cells in various tissues among many tumors [31, 32]. Intron 2 of
FGFR2 contains putative transcription factor binding sites,
increases Oct-1/Runx2 and C/EBPb transcription factor binding,
which increases FGFR2 expression [33], and causes poor overall
survival and disease-free survival [34, 35]. The association
between the FGFR2 gene and breast cancer appears to be
stronger for ER-positive and PR-positive tumors than for ER-
negative or PR-negative tumors, which suggests a sex
hormone-dependent role of the FGFR2 gene in breast cancer
[36–38]. FGFR2 was associated with Luminal B, as reported by
O’Brien et al. [17] and Liang et al. [18], similar to that observed
in our study.

Luminal A and Luminal B breast cancers are also ER-positive
breast cancers. Luminal tumors represent around two thirds of
all breast cancers. Luminal breast cancer is a highly heterogene-
ous disease comprising different histologies, gene expression
profiles, and mutational patterns, with very varied clinical
courses and responses to systemic treatment [39, 40]. Due to
the heterogeneity of breast cancer, it is necessary to define
suitable patient cohorts and predictive biomarkers for a person-
alized therapy with a high therapeutic index [41]. Some next-
generation sequencing studies show Luminal A tumors fre-
quently exhibit abrogation of stress-induced apoptotic kinase
c-Jun NH2-terminal kinase (JNK) signaling and loss-of-function
mutations in the MAP3K1 genes; this abrogation has been
associated with resistance to chemotherapy compared with
patients with normal JNK signaling [42]. That could explain why
Luminal A tumors are not sensitive to chemotherapy [43, 44].
Fibroblast growth factor receptor (FGFR) signaling through FGF
ligand-dependent or -independent activation has been impli-
cated in oncogenesis, angiogenesis, and treatment resistance in
various tumor types [45]. Approaches to targeting FGFR in vari-
ous tumor types include tyrosine kinase inhibitors (TKIs), mono-
clonal FGFR antibodies, and FGF-trapping molecules, with TKIs
being more clinically advanced. A phase II clinical trial assessing
dovitinib, a nonselective FGFR TKI, showed activity in the sub-
group of patients with ER-positive/HER2-negative breast cancer

[44, 46]. One type of Luminal B is ER-positive and/or PR posi-
tive, HER2-negative, with ki67 �14% [40]. The association
between Luminal B subtype and FGFR2 gene in Chinese Han
implicate a potential drug indication of TKI in Chinese Luminal
B breast cancer patients. However, it needs more clinical trial
to confirm.

CONCLUSION
In summary, we confirmed that 5q11.2/MAP3K1 and 7q32.3/

LINC-PINT were associated with Luminal A, and 10q26.1/FGFR2

was associated with Luminal B. In our study, breast cancer-
specific molecular subtype-associated susceptibility loci were
confirmed in Chinese Han women, which contributes to a better
genetic understanding of breast cancer in different molecular
subtypes. These specific molecular subtype-associated loci are
potentially meaningful for guiding clinical evaluation and therapy.
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