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Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) and other eicosanoid pathway modifi-
ers are among the most ubiquitously used medications in the general population. Their 
broad anti-inflammatory, antipyretic, and analgesic effects are applied against symptoms 
of respiratory infections, including SARS-CoV-2, as well as in other acute and chronic 
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1  |  INTRODUC TION

Non-steroidal anti-inflammatory drugs (NSAIDs) and other eico-
sanoid pathway modifiers are one of the most frequently used 
anti-inflammatory medications worldwide against symptoms of in-
fections, other acute and chronic inflammatory diseases, and pain. 
Eicosanoids, including prostaglandins (PGs), leukotrienes (LTs), 
thromboxanes (TXs), hydroxyeicosatetraenoic acids (HETEs), lipox-
ins (LXs), and many recently proposed pro-resolving mediators con-
stitute a wide range of active lipid mediators possessing pro- and 
anti-inflammatory, as well as pro-resolution properties.1  They are 
products of the major unsaturated fatty acids: arachidonic acid (AA), 
dihomo-γ-linolenic acid (DHGLA), eicosapentaenoic acid (EPA), and 
docosahexaenoic acid (DHA), metabolized in three main pathways: 
cyclooxygenase (COX), lipoxygenase (LO or LOX), and cytochrome 
P450 (Figure 1). Those active lipid mediators play substantial roles in 
the development and resolution of inflammation, including allergic 
and viral inflammation, which we have reviewed extensively in the 
previous report.1 Even though NSAIDs and other eicosanoid path-
way modifiers are so commonly consumed and are relatively safe for 
the majority of people, the current pandemic of the severe acute re-
spiratory syndrome coronavirus-2 (SARS-CoV-2) revealed substan-
tial knowledge gaps in understanding their modes of action, benefits, 
and risks related to their use in patients with respiratory and allergic 
diseases. Unfortunately, this resulted in the conflicting messages 
sent to the public from the scientific community. Therefore, we, the 
European Academy of Allergy and Clinical Immunology Task Force 
(EAACI TF) on Eicosanoids, here critically review the most recent 
findings on the roles of NSAIDs, leukotriene antagonists (LTRAs), 
prostaglandin D2 (PGD2) receptor antagonists, and cannabinoids, 
as well as we summarize their selectivity, and additional modes of 

actions in allergic airway diseases, drug allergy, and respiratory virus 
infections. In addition, we also describe here the effects of novel T2 
biologicals used in allergic diseases on eicosanoid pathways.

2  |  NSAIDS IN A STHMA AND VIR AL 
A STHMA E X ACERBATIONS

Aside from NSAIDs-exacerbated respiratory disease (NERD), 
NSAIDs are usually well tolerated by patients with asthma, and 
therefore, they are often used in real life against symptoms of 
respiratory infection such as fever and pain, even during asthma 
exacerbations together with intensified asthma treatment in chil-
dren and adults.2 Current Global Initiative for Asthma (GINA) 
guidelines are stating with evidence level A, that aspirin and other 
NSAIDs are generally not contraindicated in patients with asthma, 
unless there is a history of previous reactions to those medica-
tions. Nevertheless, it is still not very well studied whether NSAIDs 
facilitate or inhibit achievement of asthma control following ex-
acerbations, and if they affect the speed of resolution of airway 
inflammation. Exacerbations of asthma are most often induced 
by common respiratory viruses including rhinovirus (RV), respira-
tory syncytial virus (RSV), bocavirus, influenza viruses, adenovirus, 
and others.3-5 RV is responsible for up to 76% of exacerbations of 
wheeze in children and up to 83% of asthma attacks in adults.3-5 
Recurrent viral infections do not only cause acute disease and 
exacerbations of established disease, but they also contribute to 
the pathophysiology of early wheezing in children and the de-
velopment of asthma. Prophylaxis of RSV-induced bronchiolitis 
with palivizumab, an anti-RSV monoclonal antibody, in late pre-
term infants decreased the risk of recurrent infant wheeze and 
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inflammatory diseases that often coexist with allergy and asthma. However, the current 
pandemic of COVID-19 also revealed the gaps in our understanding of their mechanism 
of action, selectivity, and interactions not only during viral infections and inflamma-
tion, but also in asthma exacerbations, uncontrolled allergic inflammation, and NSAIDs-
exacerbated respiratory disease (NERD). In this context, the consensus report summarizes 
currently available knowledge, novel discoveries, and controversies regarding the use of 
NSAIDs in COVID-19, and the role of NSAIDs in asthma and viral asthma exacerbations. 
We also describe here novel mechanisms of action of leukotriene receptor antagonists 
(LTRAs), outline how to predict responses to LTRA therapy and discuss a potential role 
of LTRA therapy in COVID-19 treatment. Moreover, we discuss interactions of novel T2 
biologicals and other eicosanoid pathway modifiers on the horizon, such as prostaglandin 
D2 antagonists and cannabinoids, with eicosanoid pathways, in context of viral infections 
and exacerbations of asthma and allergic diseases. Finally, we identify and summarize the 
major knowledge gaps and unmet needs in current eicosanoid research.
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the rate of parent-reported asthma symptoms at 6  years of age, 
however, without any effect on lung function or doctor-diagnosed 
asthma.6,7 The majority of respiratory viruses are known to mod-
ify several major eicosanoid pathways, including the COX and 
the LOX pathways8 (Figure 2). RV infection increases expression 
of 5-lipoxygenase (5-LOX), 5-lipoxygenase activating protein 
(FLAP), and cyclooxygenase-2 (COX-2), as well as the production 
of prostaglandins E2 (PGE2) and PGD2 by the respective isomer-
ases in human bronchial epithelial cells, with higher levels in asth-
matic patients than in controls.9 In addition, cysteinyl leukotriene 
(cysteinyl-LT) levels, 5-LOX-positive cells, and FLAP-positive cells 
in bronchoalveolar lavage fluid are increased in humans upon RV 
infection and correlate with the emergence of upper respiratory 

symptoms.10 Infection with RV affects airway mucosal barriers and 
also the peripheral blood and distant tissues. PGE2 plays an impor-
tant role in optimal antibody synthesis, as COX inhibitors reduce 
antibody release by plasma cells, also in case of viral infections.11,12 
Healthy individuals experimentally infected with RV showed a 
suppressed serum neutralizing antibody response when treated 
with aspirin or acetaminophen.13 Significant increase in COX-2 
(PTGS2) expression and in COX-derived metabolites is a hallmark 
of RSV14 and influenza virus infection.15 Pharmacologic inhibition 
of the COX pathway decreased RSV-induced lung pathology, al-
though this was not linked to a specific metabolite.14,16 At a later 
stage of RSV infection there is an increase in LOX metabolites, 
which might promote appropriate resolution of infection-induced 

F I G U R E  1  Eicosanoid biosynthesis and signaling pathways are therapeutic targets of medications used in the treatment of infections, 
acute and chronic inflammatory diseases (including asthma and allergy) and pain. Glucocorticosteroids (GCs), non-steroidal anti-
inflammatory drugs (NSAIDs), leukotriene receptor antagonists (LTRAs, e.g., montelukast, zafirlukast, pranlukast), 5-lipoxygenase (5-LOX) 
inhibitor, zileuton, as well as still clinically tested, timapiprant and setitpiprant act directly on the synthesis of eicosanoid mediators or their 
signaling molecules and receptors. Biosynthesis of endocannabinoids (2-AG, AEA) interfere with eicosanoids metabolic pathways. 2-AG—
2-Arachidonoyl-glycerol (endocannabinoid); AEA—arachidonyl-ethanolamide (endocannabinoid); COX—cyclooxygenase; Cyt—cytochrome; 
EET—epoxyeicosatrienoic acid; GC—glucocorticoids; HETE—hydroxyeicosatetraenoic acid; HPETE—hydroperoxyeicosatetraenoic acid; 
LOX—lipoxygenase; LTE4—leukotriene; LTRA—leukotriene receptor antagonists; LX—lipoxin; PLA—phospholipase; PG—prostaglandin; and 
TX—thromboxane
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inflammation.17 This resolution is impaired in 5-LOX and 15-LOX 
knockout mice upon RSV or pathogenic influenza strain infection. 
Moreover, in mice lacking 5-LOX, there is an upregulation of COX2 
expression and aggravation of infection-induced lung pathol-
ogy.14,16 During influenza A infection, newly generated PGE2 leads 
to the inhibition of type I interferon (IFN) production, inhibition of 
macrophage apoptosis, and subsequent increase in virus replica-
tion. Ptges−/− knockout mice, which do not produce PGE2, or wild-
type mice treated with PGE2 type 2 (EP2) and type 4 receptor (EP4) 
antagonists demonstrated enhanced protection against lethal in-
fluenza infection.18 PGE2 also inhibits activation of the Nod-like 
receptor family pyrin domain containing 3 (NLRP3) inflammasome 
in human monocytes and macrophages, and COX pathway block-
ing increases inflammasome activation and mature Il-1β release. 
NLRP3 inflammasome activation can contribute to limiting viral 
replication at the early stages of infection, but in some instances, 

it may also lead to harmful hyperinflammation during late-stage in-
fection.19 Much less is known about PGD2 and antiviral responses. 
However, it was shown that in aging mice there is an increase in 
PGD2 in the lungs which correlates with the impaired migration 
of respiratory dendritic cells (DC) to lymph nodes, diminished T-
cell responses, and more severe clinical disease in older mice in-
fected with respiratory viruses, such SARS-CoV-1 and influenza.20 
Blocking PGD2 function enhances DC migration, T-cell responses, 
and survival in the infected animals.20 In summary, prostaglandins 
and other COX-dependent metabolites are involved in a complex 
way in the pathogenesis of respiratory viral infections and thus 
in virus-induced exacerbation of asthma. Therefore, the use of 
NSAIDs to alleviate symptoms of viral infections in general popu-
lation and in patients with asthma should be re-evaluated with as-
sessment of the effects of the timing of the administration, their 
selectivity, and the long-term effects.

F I G U R E  2  Eicosanoid pathways in viral infections and allergic inflammation of the respiratory airways are affected by several groups 
of medications. Eicosanoids are important immune mediators coordinating the inflammatory response to viral infections and allergen 
challenges between bronchial epithelial cells, airway-resident and airway-infiltrating immune cells. Several groups of drugs used in the 
treatment of allergic diseases and respiratory tract infections interfere with eicosanoid production and signaling pathways. Glucocorticoids 
(GCs) reduce the activity of phospholipase A2 (PLA2) and COX-2, therefore restricting both the upstream substrate for eicosanoid 
production and subsequent enzyme. NSAIDs block COX-1- and COX-2-mediated synthesis of prostaglandins by both bronchial epithelial 
cells and immune cells. This reduces tissue inflammation and alleviates the symptoms of infection, but at the same time affects the antiviral 
response. LTRAs block eicosanoid leukotriene signaling at the receptor level, reducing activation of granulocytes. Biologicals used in 
the treatment of allergic diseases (anti-IL-5, anti-IL-5Rα, anti-IL-4Rα, and anti-IgE) interfere with the eicosanoid signaling in a non-direct 
manner, by preventing undue activation of eosinophils and Th2 cells, as well as degranulation of basophils and mast cells. BAS—basophil; 
COX-1—cyclooxygenase 1; CysLTs—cysteinyl leukotrienes; DC—dendritic cell; EOS—eosinophil; GCs—glucocorticoids; IFN—interferon; 
IL—interleukin; LOX—lipoxygenase; LTE4—leukotriene E4; LTRA—leukotriene receptor antagonists; LXA4—lipoxin A4; MC—mast cell; 
MO—monocyte; Mθ—macrophage; NEU—neutrophil; NSAIDs—non-steroidal anti-inflammatory drugs; PLA2—phospholipase A2; PGD2—
prostaglandin D2; PGE2—prostaglandin E2; PGD2-inh—prostaglandin D2 inhibitors; PUFA—polyunsaturated fatty acids; and TSLP—thymic 
stromal lymphopoietin
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3  |  NSAIDS IN COVID -19

NSAIDs are used worldwide to alleviate symptoms of viral infections 
and inflammation, such as fever, cough, and pain. Since NSAIDs 
inhibit COX-1 and COX-2 and thus decrease the release of many 
downstream lipid mediators, such as various PGs, prostacyclin, and 
TXs, they have very broad effects on inflammation and immune re-
sponses, ranging from anti-inflammatory, immunosuppressive, and 
anti-thrombotic to pro-resolving (Figure  2).1,21  Therefore, at the 
beginning of the COVID-19 pandemic, there were several concerns 
and uncertainties about the effects of NSAIDs on SARS-CoV-2 in-
fection and the course of COVID-19.22 They were suspected to alter 
the expression of angiotensin-converting enzyme 2 (ACE2), the main 
entry receptor for SARS-CoV-2 and/or modify viral replication.23-26 
In addition, they could be either harmful by impairing antiviral re-
sponse and delaying resolution of inflammation15,18,27,28 or be ben-
eficial by dampening of hyperinflammation and cytokine storm29,30 
and preventing thrombosis31,32 (Figure 3). Some of these concerns 
have now been addressed experimentally and epidemiologically, 
and several clinical trials have been initiated. Indeed, SARS-CoV-2 
increases PTGS2 (COX-2) gene expression in variety of cell lines, 
in mouse lungs and in primary human bronchial epithelial cells as 
well many eicosanoids and docosanoids are increased in the lungs 
of severe COVID-19 patients.33-35 However, inhibition of the COX 
pathway by either ibuprofen (non-selective COX1/COX2 inhibitor) 

or meloxicam (more selective COX-2 inhibitor) did not change the 
expression of ACE2 in human cell lines (Calu-3 or Huh7.5) in vitro 
or in lungs, kidney, heart, or ileum of mice in vivo.33 Similarly, both 
NSAIDs did not affect SARS-CoV-2 entry or its replication in the 
same human cell lines.33 Aspirin also did not affect ACE2 or trans-
membrane serine protease 2 (TMPRSS2) expression in human nasal 
epithelium.36 Meloxicam also did not prevent SARS-CoV-2-infection-
induced weight loss in mice and did not change frequencies or acti-
vations status of alveolar macrophages, neutrophils, NK cells, Ly6C+ 
Mo/Mθ, CD4+ T cells, CD8+ T cells, and γδ T cells. However, meloxi-
cam treatment decreased the amount of spike-specific IgM and IgG 
antibodies and their neutralizing capacities as well as decreased 
infection-induced levels of IL-6, CCL2, GM-CSF, CXCL10, IL-2, and 
TNF-α, suggesting that while meloxicam can impair humoral immune 
response against SARS-CoV-2 to some extent, it might also limit lev-
els of proinflammatory cytokines.33 In contrast, naproxen, which 
is a non-selective COX-1/COX-2 inhibitor, has been shown to bind 
to the nucleocapsid protein N of SARS-CoV-2, which led to inhibi-
tion of SARS-CoV-2 replication in VeroE6 cells and primary human 
bronchial epithelial cells and protected epithelium against SARS-
CoV-2-induced barrier damage.37 There were no analogous effects 
in similar experiments with paracetamol (acetaminophen, which may 
affect PG production in the brain or may act via its metabolite on 
the cannabinoid receptors),38,39 or celecoxib (selective COX-2 inhibi-
tor).37 Naproxen is currently examined in the clinical trial in COVID-19 

F I G U R E  3  Non-steroidal anti-inflammatory drugs and leukotriene antagonists in SARS-CoV-2 infection. Increased levels of eicosanoids 
have been found in bronchoalveolar lavage fluid of patients with severe COVID-19, with predominance of prostaglandins and thromboxane. 
There are strong grounds to explore eicosanoid inhibition as a potential therapeutic target in SARS-CoV-2 infections. Prostaglandins amplify 
innate immune responses to pathogen- and damage-associated molecular patterns, enhance the cascade of proinflammatory cytokine 
release, activate Th1 and Th17 cells, and contribute to recruitment of macrophages and T cells. Moreover, studies in mouse adapted to 
SARS-CoV-2 infection showed that PGD2 inhibition protected from severe disease. Despite the initial mixed reports on the use of NSAIDs in 
COVID-19, it has been concluded that these medications can be safely used to alleviate the symptoms of SARS-CoV-2 infection. This effect 
is attributed to the disruption of inflammatory circuits. Other effects of NSAIDs in COVID-19 are being investigated, and preliminary studies 
suggest that a non-selective NSAID naproxen could negatively influence SARS-CoV-2 replication. Furthermore, the efficacy of leukotriene 
antagonist montelukast is being evaluated in a series of clinical trials. The hypothesized mode of action in COVID-19 includes inhibition of 
leukotriene signaling, as well as direct antiviral effect (damage to the viral lipid membrane and genome), as reported for other viruses
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(eudract_number:2020-001301-23; accessed 11.06.2021). So far, 
in various patient groups, it has been shown that usage of NSAIDs 
does not lead to the worse COVID-19 outcomes.40 In a retrospec-
tive study of 403 confirmed cases of COVID-19, there were no dif-
ferences in terms of mortality rate or need for respiratory support 
between patients who were taking ibuprofen or those who did not 
take any NSAIDs.41 It was also confirmed in the large prospective 
cohorts that either acute or chronic use of NSAIDs was not associ-
ated with worse COVID-19 outcomes.42-44 It was even shown that 
in patients, who were treated with aspirin or other NSAIDs due to 
the cardiovascular diseases, positive aspects of such therapies have 
been noted, including reduction of COVID-19 mortality.31 This clini-
cal observation is further supported by a study on COX-2 induction 
and PGE2 overproduction in the human lung infected by SARS-
CoV-2.45 However, further basic in vitro, in vivo, and large clinical 
studies assessing the influence of NSAIDs on the pathogenesis and 
treatment of COVID-19 are still greatly needed.

4  |  LEUKOTRIENE RECEPTOR 
ANTAGONISTS—NOVEL MECHANISMS OF 
AC TION

All clinically available LTRAs (montelukast, zafirlukast, and pranlu-
kast) act on the cysteinyl leukotriene type 1 receptor (CysLT1) and by 
competitive antagonism at this receptor are believed to be respon-
sible for the control of airway inflammation, bronchoconstriction, 
and remodeling.46-48 However, anti-inflammatory activity of LTRAs 
independent of CysLT1 antagonism has been suggested. LTRAs re-
duced the eosinophil protease activity49 and inhibited TNFα-50 or 
UDP-mediated51,52 cytokine expression, as well as NF-κB activa-
tion in human mononuclear53 or epithelial cells54 through pro-
cesses that appear to be distinct from CysLT1 antagonism. Although 
mechanisms of these non-CysLT1-related LTRA activities are not 
fully understood, concentration-dependent inhibition of distinct 
receptors such as P2Y1, P2Y2, P2Y6, and GPR17 by LTRAs have 
been reported,51,52,55  suggesting, at least for P2Y receptor, a non-
competitive mechanism of action. Interestingly, it was also shown 
that LTRAs may have a potent inhibitory effect on 5-LOX activity 
(i.e., LT production)52,56 and transport of LTs by the multidrug re-
sistance protein ABCC4,57  suggesting a much broader mechanism 
of action for these drugs than previously suspected. Indeed, non-
CysLT1-related mechanisms of LTRA might represent another level 
of variability in the response to treatment in patients with asthma 
and allergy. Some of these activities may be compound-specific or 
may depend on drug concentration (most non-CysLT1-related ef-
fects required micromolar drug concentrations51-53 in contrast to 
nanomolar levels needed for CysLT1 antagonism58-60) or may depend 
on the presence of a particular inflammatory pathway in patients 
with asthma (allergy), and therefore, clinically significant effects of 
treatment may be observed in some, but not all, treated patients. It 
should be emphasized that initial clinical interventional studies of 
montelukast in asthma used doses up to 200 mg a day61,62 showing 

greater lung function improvement than in subsequent studies using 
recommended dose of 10  mg,63  suggesting that higher doses of 
currently known LTRAs or new compounds derived from this class 
of drugs may represent a novel strategy for finding more efficient 
therapy. The demonstration that the bronchoconstrictive actions of 
LTE4 in asthma are solely mediated by the CysLT1 receptor further 
supports that effects on other targets than the CysLT receptors may 
take place64

5  |  PREDIC TING RESPONSES TO LTR A 
THER APY

Heterogeneous effects of LTRA therapy in asthma and allergic 
diseases have been reported in many studies. Although some ge-
netic65,66 and acquired factors have been suggested,67 other reasons 
for this heterogeneity remain unclear. While currently no clinical 
characteristics or laboratory assay can reliably predict responses to 
LTRAs, the most plausible biomarker that could potentially serve as 
response predictor to LTRAs seems LTE4 production. Urinary LTE4 
(uLTE4) is a biomarker of total body cysteinyl-LT production,1 as-
sociated with Type 2 asthma, asthma severity, exacerbations, and 
NERD.68,69 Increased uLTE4 to fractional exhaled nitric oxide (LTE4: 
FeNO) ratio has been suggested to predict favorable response to 
LTRA therapy (montelukast) in asthmatic children,70,71 but these 
observations have not been confirmed in adult patients. There is a 
considerable amount of evidence supporting the concept that some 
patients or clinical phenotypes seem sensitive to LTRAs, especially 
in a real-life setting, due to enhanced cysteinyl-LT production, better 
adherence to oral therapy or oral drug delivery. LTRAs have proven 
to be particularly effective in exercise-induced asthma,72 asthma as-
sociated with allergic rhinitis,73 NERD,74 viral-induced wheezing epi-
sodes,75 and patients having difficulties with inhaled therapy such 
as children and elderly.76,77 Cigarette smoking while inhibiting ster-
oid anti-inflammatory responses78 increases cysteinyl-LT produc-
tion,79 leading to a greater response to montelukast in smokers with 
asthma, suggesting that LTRA could be more effective in treating 
such individuals.80 In fact, asthmatic patients with smoking history 
above 11 pack-years showed more benefit with montelukast treat-
ment than inhaled steroids.81 Obesity is another potential risk fac-
tor for asthma development and efficacy of treatment. Interestingly, 
higher body mass index (BMI) is associated with increased LT pro-
duction in asthmatics82 and as therapeutic response to inhaled corti-
costeroids decreases with increasing BMI, response to montelukast 
remains unaffected,83 suggesting LTRA therapy to be more effective 
in obese patients. The response to LTRA may also be associated with 
sex differences. The existence of a sex bias in LT biology is already 
suggested by the fact that many LT-related diseases including asthma, 
allergic rhinitis, rheumatoid arthritis, or NERD have a higher occur-
rence in women compared to men, pointing to more pronounced 
pathophysiological roles of LTs in females.84,85 Furthermore, several 
observations suggest that female sex is associated with higher LT 
biosynthesis, while androgens seem to exert a suppressing role on 



    |  7SOKOLOWSKA et al.

LT formation both in vitro and in vivo.86-90 Although the clinical sig-
nificance of these data is still to be confirmed, in a small prospective 
cohort study, montelukast showed superior effects on symptoms 
and lung function in women compared to men,91 while a tendency 
for a better response to montelukast was evident in girls exposed to 
tobacco smoke.92

6  |  LEUKOTRIENE MODIF YING DRUGS IN 
COVID -19 TRE ATMENT

Due to the involvement of complement, coagulation, and inflamma-
tion in COVID-19,32,93,94 anti-inflammatory drugs have gained great 
interest as disease modifiers (Figure 3).95 Already at the beginning of 
the COVID-19 pandemic, researchers suggested the use of the LTRA 
montelukast for treatment of COVID-19.96-98  The reason for this 
early interest in LT-modifying drugs was on the one hand related to 
the viral cell entry via ACE2 receptors and the known inhibitory ef-
fect of montelukast on bradykinin-related airway response99 and on 
the other hand to the fact that patients with severe COVID-19 de-
velop an overwhelming state of inflammation that has been labeled 
COVID-19 cytokine storm syndrome (CSS).32,100,101  Moreover, the 
most important cause of death in COVID-19 was recognized as the 
progressive respiratory failure with limited response to treatment 
together with hyperinflammation and hypoxia, quite similar to a se-
vere acute respiratory distress syndrome (ARDS), which has been 
demonstrated to be characterized by an elevated level of LTs.102 Of 
note, high levels of LTE4 have been detected in bronchoalveolar lav-
age (BAL) of hospitalized patients with severe COVID-19,34 as well 
as there is a shift in serum eicosanoids into the increase of 5-LOX 
products in such patients.35 Indeed, specific benefits of montelu-
kast, or other LTRAs, have been suggested in the situation of hy-
perinflammation and massive cytokine release103 to reduce elevated 
levels of LPS-induced IL-6, TNF-α, and MCP-1 production in the pe-
ripheral blood MNCs of patients with asthma,104 as well as to reduce 
levels of many cytokines and chemokines (IL-4, IL-5, IL-1β, TNF-α, 
RANTES, and IL-8) in nasal mucosa105 possibly due to modulation of 
TNF-α-stimulated IL-8 expression through changes in NF-κB p65-
associated histone acetyltransferase activity.50 In addition to its anti-
inflammatory properties in humans, in silico studies also suggested, 
but still to be demonstrated, a direct antiviral effect by showing a 
high-affinity binding of montelukast to the terminal end of the virus’ 
main protease enzyme needed for viral protein assembly.106

Thus, with increasing understanding of disease mechanisms, 
LTRAs have been also considered for treatment of COVID-19. 
Indeed, in a small retrospective study on COVID-19-hospitalized 
subjects, patients receiving montelukast had fewer episodes of 
confirmed COVID-19 or experienced significantly fewer events of 
clinical deterioration compared to patients not receiving montelu-
kast.107,108 These lipid mediators might not only contribute to inflam-
mation and lung pathologies associated with COVID-19, but can also 
be involved in thrombosis, fibrosis, neuronal damage, and cardiovas-
cular disease.97,109,110 Interestingly, we have recently demonstrated 

that montelukast inhibits platelet activation and microvesicles re-
lease induced by plasma from COVID-19 patients, as well as the 
formation of circulating monocyte- and granulocyte-platelet aggre-
gates.111 All these data suggest the repurposing of montelukast as a 
possible auxiliary treatment for COVID-19 syndrome. Accordingly, 
since May 2020 a series of clinical trials involving montelukast have 
been registered (https://clini​caltr​ials.gov). However, not only antag-
onism of the CysLT receptors could be beneficial for patients with 
COVID-19, but interventions targeting LT biosynthesis, using, for 
example, Zileuton, might represent promising targets, specifically at 
the turning point from a mild to critical disease course.112

7  |  PGD2 RECEPTOR ANTAGONISTS

In sensitized subjects, PGD2 is initially released by allergen-triggered 
mast cells and plays a key role in the sequelae of the allergic re-
sponse. Its proinflammatory effects are mediated through the 
interaction with G-protein-coupled receptors (GPCR): DP1, throm-
boxane (TP), and chemoattractant-homologous receptors (CRTH2 or 
DP2).113 Apart from its broncho- and vaso-active properties in aller-
gic airway disease, PGD2 also acts as an important link between the 
allergen-induced early (EAR) and late phase allergic response (LAR) 
through the interaction with the DP2-receptors on key effector cells. 
DP2-receptors are expressed on immune (ILCs, Th2), inflammatory 
(eosinophils, basophils), and structural (epithelial) cells and involved 
in the recruitment and activation of these cells as well as the sub-
sequent release of Th2-cytokines during the LAR.113-116 Therefore, 
DP2 (CRTH2) antagonists have been initially aimed for the treatment 
of allergic airway disease (allergic rhinitis, asthma).117,118

In two proof-of-concept studies in (unphenotyped) allergic 
asthmatics, DP2 (CRTH2) antagonists (timapiprant and setipiprant, 
respectively) showed only modest reduction (approx. 25%) in the 
allergen-induced LAR119,120 while no convincing effects were ob-
served on the allergen-induced changes in T2 biomarkers (blood 
eosinophils, FeNO)120 with only a minimal reduction in sputum 
eosinophils post-allergen.119 In addition, there was no decrease in 
the EAR in either study. The (relative) lack of protection against 
allergen-induced airway responses may (partly) consist with the fact 
that even with effective DP2-blockade, an allergen-triggered mast 
cell (lacking DP2)121  mediator release (histamine, PGD2, cysteinyl-
LTs) may still occur which is capable of causing an EAR and/or an 
LAR122,123 and therefore, especially in allergic asthma, a combined 
blockade of, for example, DP2 ± DP1 ± TP ± cysteinyl-LT-R might 
provide a superior protection.

In line with this reasoning—and despite prior evidence of supe-
rior efficacy in phase 2B studies of patients with an allergic (T2-) 
profile (atopy ± eosinophils ≥250/mcL)124,125—several DP2 (CRTH2) 
antagonists (e.g., setipiprant, fevipiprant) failed in phase 3  clinical 
trials of allergic airway disease.125 More recently, DP2-blockade has 
been associated with the reduction in airway smooth muscle mass 
by decreasing airway eosinophilia and the recruitment of myofibro-
blasts and fibrocytes.126  Therefore, with several clinical trials still 

https://clinicaltrials.gov
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ongoing, (add-on) DP2-blockade may show efficacy in more severe 
T2 asthma127 and related conditions based on its anti-inflammatory 
and disease-modifying potential.126,128

Respiratory viruses (e.g., RSV) represent other important trig-
gers of chronic inflammatory airway disease capable of activating 
the PGD2/DP2 receptor-mediated pathway, thereby eliciting a 
“non-allergen-induced” T2-immune response through airway epi-
thelial cells and innate immune cells.129 Indeed, RSV has been asso-
ciated with upregulation of the PGD2/DP2 pathway and increased 
PGD2 levels both in experimental and in clinical studies, while DP2-
blockade alone or combined with DP1 agonism showed protective 
potential in preclinical studies.130  Therefore, selective targeting 
of PGD2 receptors has been postulated to protect against respira-
tory viral infections, and more recently, including SARS-CoV-2.131 
Presently, this hypothesis awaits clinical evidence. In addition, the 
potent bronchoconstrictive actions of PGD2 and other constrictive 
prostanoids in human airways call for trials with TP receptor antago-
nists in patients with asthma132

8  |  C ANNABINOIDS IN A STHMA , 
ALLERGIC DISE A SES,  AND VIR AL 
INFEC TIONS

The human endogenous cannabinoid system (ECS) is involved in 
many physiological processes. It consists of the cannabinoid re-
ceptors (CBRs), the endogenous ligands (anandamide (AEA) and 
2-arachidonoylglycerol (2-AG)), and the proteins related to their 
synthesis and degradation.133 Cannabinoid receptor 1 (CB1) and 
2 (CB2) are the main CBRs. CB1 is largely expressed in the central 
nervous system but also in peripheral tissues and immune cells. CB2 
is mainly expressed in immune cells but also in other cell types such 
as progenitor neurons.134,135  The biosynthesis and inactivation of 
endocannabinoids involve several enzymes. AEA can be synthetized 
by the hydrolysis of its precursor N-acyl-phosphatidylethanolamine 
(NAPE) by NAPE-hydrolyzing phospholipase D (NAPE-PLD). 
Alternative pathways involving other phospholipases have been 
described. AEA can be also obtained from the reverse reaction of 
fatty acid amide hydrolase (FAAH) by the conjugation of ethanola-
mine and AA. The main pathway for the synthesis of 2-AG is the 
hydrolysis of AA-containing 1,2-diacylglycerol (DAG) species by 
DAG lipase-α or β.133,136 Endocannabinoids are rapidly metabolized. 
The hydrolysis of AEA is mediated by FAAH, whereas 2-AG is hy-
drolyzed by monoacylglycerol lipase (MGL). The resulting products 
of AEA and 2-AG degradation are AA, and ethanolamine and glyc-
erol, respectively (Figure 4)..133,136 Moreover, endocannabinoids are 
susceptible to be metabolized by eicosanoid biosynthetic enzymes 
including COX2, 12-LOX, 15-LOX, and P450.136 FAAH and MGL are 
considered promising therapeutic targets for the treatment of sev-
eral disorders, including inflammation. Pharmacological inhibitors of 
FAAH and MGL increase the levels of AEA and 2-AG, prolonging 
their anti-inflammatory effects, and decrease AA levels.137,138 The 
NSAIDs that inhibit COX2 also enhance endocannabinoid levels and 

reduce AEA- and 2-AG-derived prostaglandins.139,140 In addition, 
some NSAIDs such as ibuprofen can influence the endocannabinoid 
levels by inhibiting FAAH (Figure 4).

The role of cannabinoids in allergic diseases is still a bit contro-
versial.141 Sukawara et al demonstrated that endocannabinoids lim-
ited mast cell maturation and activation in human airway mucosa 
and skin through CB1.142,143 Tetrahydrocannabinol (THC) and can-
nabidiol (CBD) attenuated airway allergic inflammation, decreased 
cytokine production, cell infiltration, mucus secretion, and bronchial 
hyperresponsiveness in mice.144-146 Similarly, the synthetic agonist 
CP55,940 induced lung protection in ovalbumine (OVA)-induced 
asthma guinea pig models via CB1 and CB2.147 In keratinocytes, 
CB1 prevented transepithelial water loss and skin inflammation, 
cell infiltration and cytokine production in atopic dermatitis mouse 
model.148 Anandamide and different CB1 agonists also accelerated 
skin barrier recovery and reduced proinflammatory cytokine pro-
duction and cell recruitment.149,150 Several cannabinoids have also 
shown a protective role in allergic contact dermatitis by reducing 
inflammatory responses.151-153 CB1 activation may also induce bron-
chodilation in the airways.147,154 In human bronchial epithelial cells, 
the synthetic agonist WIN55212-2 restored the epithelial barrier 
disruption induced by RV.155 In addition, WIN55212-2 decreased 
the immediate anaphylactic reaction in a mouse model of peanut al-
lergy and promoted the generation of allergen-specific regulatory T 
cells.156 Currently, different studies suggest the therapeutic poten-
tial of cannabinoids in COVID-19 pandemic.157-159 In contrast, Frei 
et al showed that CB2 activation enhanced migratory responsiveness 
of eosinophils in an OVA-asthma mouse models.160 Accordingly, the 
lack of CB2 decreased allergic inflammation in asthma and dermatitis 
mouse model.161 This result correlated with increased number of NK 
cells and reduced number of ILC2s in the lung of CB2 knockout mice, 
demonstrating that NK cells are negative regulators of ILC2s.162 
Interestingly, it has been described that mRNA expression levels of 
CB1 are upregulated in tonsils and peripheral blood of patients with 
allergic rhinitis, atopic dermatitis, and food allergy, but the functional 
relevance remains unknown.163 These studies suggest that the ECS 
could be explored as a potential therapeutic target in the treatment 
of asthma, allergic and skin diseases, and viral infections.

9  |  THE EFFEC T OF T2-TARGETED 
BIOLOGIC AL S ON EICOSANOIDS

Ample evidence from clinical trials showing effectiveness of drugs 
targeting T2-inflammation (targets include IgE and the cytokines 
IL5, IL4, and IL13) on asthma exacerbations, as well as improve-
ments in symptoms and disease severity in chronic rhinosinusitis 
with nasal polyps (CRSwNP),164,165 underscored the involvement 
of T2-inflammation in these conditions.166,167 As mentioned above, 
the majority of asthma exacerbations are precipitated by respira-
tory viruses (esp. RSV and RV),168 while in sensitized subjects, al-
lergen exposure may enhance virally triggered exacerbations due 
to synergistic interaction through joint mechanisms including the 
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T2-inflammatory pathway.168-171 Both viral and allergen-triggered 
pathways include several inflammatory and immune (effector) cells, 
such as mast cells, basophils, Th2 cells, ILCs, macrophages, neutro-
phils, and eosinophils. Many of these cells are capable of releasing 
eicosanoids upon activation and/or possess one or more eicosanoid 
receptors,172 thus contributing to the exacerbation and its seque-
lae (e.g., bronchoconstriction, airway inflammation, and bronchial 
hyperresponsiveness).173 In CRSwNP, the T2-inflammatory pathway 
is also triggered by several stimuli such as viruses, bacteria, and al-
lergens, which stimulate inflammatory cell- and cytokine-mediated 
pathomechanisms in the nasal and paranasal mucosa.167

Although in vitro data indicate that biologicals may influence 
eicosanoid pathways in mast cells and basophils,174 so far there are 
no published data on direct effects of T2-targeted biologicals on 
the synthesis or release of eicosanoids in humans in vivo (Figure 5). 
However, it makes sense that, by blocking pathways and cells (esp. 
mast cells, basophils, eosinophils, and neutrophils) responsible for 
the release of these proinflammatory mediators, may consequently 
also reduce eicosanoid levels. In addition, previous evidence from 
clinical studies in asthma showed (partial) reduction of both aller-
gen- and virus-induced airway responses and asthma exacerbations 

by selective eicosanoid antagonists.48,119,120,175-177 Besides, clin-
ical studies on biologicals in CRSwNP also included a representa-
tive cohort of patients with NERD and also found a good clinical 
response164 and a reduced T2-biomarker profile in this subpop-
ulation.178 However, so far there are no data on the direct effect 
of T2 biologicals on the individual eicosanoids nor head-to-head 
studies comparing biologicals with selective eicosanoid blockers or 
combinations.

10  |  NSAID - E X ACERBATED RESPIR ATORY 
DISE A SE (NERD).  SELEC TIVIT Y OF NSAIDS

NERD, also called AERD-aspirin-exacerbated respiratory disease or 
AIA-aspirin-intolerant asthma, is a phenotype of asthma recognized 
in 5 to 25% asthmatics. It is characterized by a non-immunological 
hypersensitivity to low doses of NSAIDs and a cross-reactivity (a 
multi-responder phenotype). Profound changes in biosynthesis of 
eicosanoids comprise overproduction of cysteinyl-LTs, excreted in 
urine as LTE4.179,180 Some patients have higher excretion of LTE4 
also during a stable period of NERD.74,181-183 It is debatable, which 

F I G U R E  4  Interactions of endocannabinoid with arachidonic acid metabolism and effects of non-steroidal anti-inflammatory drugs 
(NSAIDs). Main endocannabinoids in humans include arachidonyl-ethanolamide (AEA) and 2-arachidonoyl-glycerol (2-AG). AEA can be 
obtained from N-acyl-phosphatidylethanolamine (NAPE) via hydrolysis or by conjugation of ethanoloamine and arachidonic acid (AA). 
AEA can be also hydrolyzed to AA by the fatty acid amide hydrolase (FAAH). FAAH might be inhibited by NSAIDs. 2-AG comes from 
diacylglycerol (DAG) through the actions of DAG lipase (DAGL). 2-AG can be also hydrolyzed by monoacylglyserol lipase (MGL) to AA. 
Endocannabinoids also metabolized by eicosanoid biosynthetic enzymes including COX2, 12-LOX, 15-LOX, and cytochrome P450. The 
NSAIDs inhibiting COX2 can enhance endocannabinoid levels and reduce AEA- and 2-AG-derived prostaglandins. COX—cyclooxygenase; 
Cyt—cytochrome; EET—epoxyeicosatrienoic acid; HETE—hydroxyeicosatetraenoic acid; LOX—lipoxygenase; PLA—phospholipase; and PG—
prostaglandin
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cells produce cysteinyl-LTs in NERD. Since overproduction of PGD2 
and increase of histamine concentration accompany symptoms of 
NERD, these could be mast cells. However, eosinophils in NERD 
overexpress leukotriene C4  synthase (LTC4S), thus can contribute 
to the symptoms and concurrent release of eosinophils cationic 
protein was observed. PGE2 plays a key role in NERD, where both 
decreased production of PGE2 and reduced EP2 expression were 
observed.180,184  When PGE2 is further decreased, it leads to mast 
cell activation and bronchoconstriction because it removes the sta-
bilizing effect of PGE2 on mast cell mediator release.132 Accordingly, 
inhalation of PGE2 before aspirin challenge prevented reduction in 
pulmonary function and mast cell activation.185 However, inhibition 
of PGE2 biosynthesis by NSAIDs is difficult to measure, since this 
prostaglandin is produced by most cells of the body. Interestingly, pa-
tients with NERD have also an imbalance in pro-resolving lipoxin A4 
(LXA4) that may contribute to the increased severity of this particular 

asthma endotype.186 The minimal dose triggering bronchial constric-
tion and extra bronchial symptoms (cutaneous flush, nasal obstruc-
tion, irritations of conjunctiva) varies across patients, but generally 
it reflects NSAID potency to inhibit cyclooxygenase-1 isoenzyme 
(COX-1).187,188 Highly selective inhibitors of COX-2  like coxibs (e.g., 
celecoxib, etoricoxib)189 are well tolerated in most NERD patients, 
whereas preferential COX-2 inhibitors (nimesulide, meloxicam) can 
trigger symptoms at high doses190 (Table 1). Diclophenac, ketorolac, 
ibuprofen, naproxen, indomethacin, or pyrazolone derivatives inhibit 
both COX-2 and COX-1,191 therefore are contraindicated in NERD. 
Acetylsalicylic acid is more potent inhibitor of COX-1 than COX-
2.189,192 This was the first NSAID ever reported to trigger symptoms 
in asthmatics. Paracetamol (acetaminophen), with an unclear effects 
on prostanoids biosynthesis including possible inactivation of brain 
cyclooxygenases by a non-substrate mechanism, is tolerated by the 
vast majority of NERD patients unless given in very high doses.39

F I G U R E  5  Effect of biologicals used in the treatment of allergic diseases on eicosanoid pathways. Biologicals have revolutionized 
therapeutic algorithms for patients with the most severe form of allergic diseases. Currently, 5 monoclonal antibodies have been approved 
for the treatment of severe asthma. Their use has been associated with a decrease in the concentration of proinflammatory lipid mediators. 
This is most probably an indirect effect of inhibition of immune cells which are the main eicosanoid producers in allergic inflammation. 
Omalizumab (anti-IgE) binds to free IgE and inhibits their binding to IgE receptors, which results in a downregulation of FcεRI expression 
on mast cells, basophils, and dendritic cells. This leads to a significant decrease in biosynthesis and release of proinflammatory eicosanoids 
from these cells, and prevents expansion of eosinophils and ILC2. Dupilumab (anti-IL-4Rα) binds to the α subunit of the IL-4 receptor, which 
is shared by IL-4 and IL-13 receptor complexes. Therefore it blocks the effect of these cytokines on cells contributing to type 2 immune 
reaction. This results in an inhibition of IgE production, mast cell activation and eicosanoid production, goblet cell metaplasia, and mucus 
production. Mepolizumab, reslizumab (anti-IL-5), and benralizumab (anti-IL-5Rα) block IL-5 activity on different levels, therefore inhibiting 
the maturation, activation, and proliferation of eosinophils, as well as basophil activation. Monoclonal antibodies targeting IL-5Rα moreover 
lead to antibody-dependent cell-mediated cytotoxicity of NK cells against eosinophils and basophils, vast producers of proinflammatory 
eicosanoids such as prostaglandin D2 and cysteinyl leukotrienes. While no direct effect of biologicals on eicosanoid biosynthesis has 
been reported, these medicines disrupt the cascade of immune events leading to type 2 inflammatory responses and the concomitant 
overproduction of proinflammatory lipid mediators
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11  |  EICOSANOIDS IN DRUG ALLERGY

Most of the information available on the role of eicosanoids in allergy 
and related diseases concerns NERD.193,194 This fact can be explained 
because it was the first clinical phenotype in which a link between 
NSAIDs pharmacological activity and the inhibition of PGE2 synthe-
sis by blocking COX-1 and the subsequent increase in cysteinyl-LTs 
release was established.195 Nevertheless, some data are also avail-
able for cutaneous NSAID-induced cross-hypersensitivity. Thus, in-
creased LTE4 and 9α,11β-PGF2 urinary levels have been described 
for NERD196-199 and for NSAID-induced acute urticaria/angioedema 
(NIUA).199

For NSAID-exacerbated cutaneous disease (NECD), contrast-
ing results have been found regarding eicosanoids levels at basal 
state. Thus, Di Lorenzo et al. did not report baseline differences 
for LTE4 in patients with chronic urticaria and hypersensitivity to 

acetylsalicylic acid (ASA, aspirin) or food additives,200 and no vari-
ations at basal state were reported for LTE4 and 9α,11β-PGF2 by 
two other independent studies.197,199 However, Mastalerz et al. 
reported increased LTE4  levels in NECD patients with a positive 
aspirin challenge with respect to those with a negative aspirin chal-
lenge, and with no changes found for 9α,11β-PGF2.201 It has been 
recently published that NIUA and NECD showed similar increased 
levels in both LTE4 and 9a,11b-PGF2 within the first 3  hours fol-
lowing a positive aspirin challenge; however, after this time inter-
val, these mediators showed different behaviors, being such levels 
long-lasting in NECD.199 In spite of these differences being not sta-
tistically significant, the reasons explaining the existence of these 
particular profiles are at present unknown although they may be 
due to the presence of additional factors in NECD, which could in-
clude sensitization to autoantibodies or the existence of histamine-
releasing factors.199

TA B L E  1  Molecular targets and selectivity of drugs affecting eicosanoid pathways

Drug Group Target Remarks References

Ketoprofen NSAID COX-1 >> COX-2 204

Aspirin NSAID COX-1 >> COX-2 192

Naproxen NSAID COX-1, COX-2 204

Ibuprofen NSAID COX-1, COX-2 204

Diclofenac NSAID COX-1, COX-2 191

Ketorolac NSAID COX-1, COX-2 205

Indomethacin NSAID COX-1, COX-2 206

Dipyrone 
(metamizole)

NSAID COX-1, COX-2 207

Piroxicam NSAID COX-2 > COX-1 192

Meloxicam NSAID COX-2 >> COX-1 192

Nimesulide NSAID COX-2 >> COX-1 189

Celecoxib NSAID COX-2 >> >COX-1 189

Etoricoxib NSAID COX-2 >> >COX-1 189

Paracetamol 
(acetaminophen)

Related to NSAIDs COX-1, COX-2-non-
substrate mechanism

38,39

Montelukast LTRA CysLTR1 Additional 
immunomodulatory 
properties have been 
suggested

46

Zafirlukast LTRA CysLT1 46

Pranlukast LTRA CysLT1 46

Zileuton Leukotriene synthesis 
inhibitor

5-LOX 208

Fevipiprant Prostaglandin receptor 
antagonist

DP2 Phase 3 clinical trials 209

Asapiprant Prostaglandin receptor 
antagonist

DP1 Phase 2 clinical trials ClinicalTrials.gov Identifier: 
NCT04705597

Laropiprant Prostaglandin receptor 
antagonist

DP1 Temporarily approved in 
Europe as a component 
of a hypolipidemic drug

210

Vidupiprant Prostaglandin receptor 
antagonist

DP2 > DP1 Phase 2 clinical trials ClinicalTrials.gov Identifier: 
NCT01018550
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Data on the role of eicosanoids beyond NSAIDs-hypersensitivity 
are scarce. However, a potential role for cysteinyl-LTs was proposed 
in adverse reactions to non-ionic contrast media. Thus, iopromide 
and iotrolan induced a significant increase of cysteinyl-LTs in vivo, 
with no changes in preformed mediators levels.202 However, a pre-
vious study showed the heterogeneity of the effects of contrast 
media on mediator release, showing an increase in histamine and 
tryptase release from different human cells without changes in LTE4 
or PGD2 levels.203

12  |  CONCLUSIONS AND UNMET NEEDS

NSAIDs, LT modifiers, and biologicals are used every day in clinical 
practice in treatment of viral infections and common respiratory or 
allergic diseases. Although a significant progress has been made in 
our understanding how these medications act and how they affect 
eicosanoid pathways, there are still no sufficient data available to 
fully address all issues important for prediction of their activities 
affecting immune response and estimation of their clinical efficacy. 
This consensus report summarizes up to date knowledge in this com-
plex area and identifies major knowledge gaps and unmet needs to 
be addressed in the future.

12.1  |  Unmet needs

•	 Assessment of NSAIDs role in alleviating symptoms of viral infec-
tions in general population and in patients with asthma/ allergy 
with the strong emphasis on the timing of its administration, their 
selectivity, and long-term effects.

•	 Further basic in vitro, in vivo, and large clinical studies assess-
ing NSAIDs influence on the pathogenesis and treatment of 
COVID-19 are greatly needed.

•	 Understanding molecular and cellular mechanisms of eicosanoids 
activity in immune response with focus on balance between pro- 
and anti-inflammatory properties.

•	 Characterization of emerging sub-phenotypes, and sub-endotypes 
of allergic diseases (asthma, rhinitis, and NERD) and potential bio-
markers for the more effective therapy using eicosanoid pathway 
modifying drugs (NSAIDs, LTRA, and CRTH2 antagonists)

•	 Evaluation of how the effectiveness of new biologicals for the 
treatment of allergic diseases relates to the eicosanoids.

•	 Re-assessment of the effects of prostanoids in allergic and asth-
matic reactions in humans by targeted intervention studies with 
selective inhibitors of receptors or tissue-specific synthases.

•	 Development and testing of novel treatment modalities targeting 
lipid mediators (eicosanoids) and their receptors.
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