
RE S EARCH REPORT

Time course of right-hemisphere recruitment during word
production following left-hemisphere damage: A single case
of young stroke

Irina Chupina1 | Joanna Sierpowska1,2 | Xiaochen Y. Zheng3 |

Anna Dewenter4 | Maria-Carla Piastra5,6,7 | Vit�oria Piai1,8

1Donders Centre for Cognition, Radboud University, Nijmegen, The Netherlands

2Cognition and Brain Plasticity Unit, Department of Cognition, Development and Educational Psychology, Institut de Neurociències, Universitat de
Barcelona, Barcelona, Spain

3Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands

4Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany

5Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The
Netherlands

6Department of Neuroinformatics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands

7Clinical Neurophysiology, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands

8Department of Medical Psychology, Donders Centre for Medical Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands

Correspondence
Vit�oria Piai, Donders Centre for
Cognition, Radboud University, Thomas
van Aquinostraat 4, 6525 GD Nijmegen,
The Netherlands.
Email: vitoria.piai@donders.ru.nl

Funding information
This study was supported by grants from
the Netherlands Organization for
Scientific Research (Nederlandse
Organisatie voor Wetenschappelijk
Onderzoek [NWO]) to V. P. (451-17-003
and VI.Vidi.201.081) and to the Language
in Interaction Consortium (024-001-006).
M.-C. P. was supported by an NWO grant
from the Applied and Engineering
Sciences domain (14902) and by a FLAG-
ERA grant (NeuronsReunited, NWO
680-91-318).

Edited by: Edmund Lalor

Abstract

Our understanding of post-stroke language function is largely based on older

age groups, who show increasing age-related brain pathology and neural

reorganisation. To illustrate language outcomes in the young-adult brain, we

present the case of J., a 23-year-old woman with chronic aphasia from a left-

hemisphere stroke affecting the temporal lobe. Diffusion MRI-based tractogra-

phy indicated that J.’s language-relevant white-matter structures were severely

damaged. Employing magnetoencephalography (MEG), we explored J.’s
conceptual preparation and word planning abilities using context-driven and

bare picture-naming tasks. These revealed naming deficits, manifesting as

word-finding difficulties and semantic paraphasias about half of the time.

Naming was however facilitated by semantically constraining lead-in

sentences. Altogether, this pattern indicates disrupted lexical-semantic and

phonological retrieval abilities. MEG revealed that J.’s conceptual and

naming-related neural responses were supported by the right hemisphere,

compared to the typical left-lateralised brain response of a matched

control. Differential recruitment of right-hemisphere structures (330–440 ms
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post-picture onset) was found concurrently during successful naming (right

mid-to-posterior temporal lobe) and word-finding attempts (right inferior

frontal gyrus). Disconnection of the temporal lobes via corpus callosum was

not critical for recruitment of the right hemisphere in visually guided naming,

possibly due to neural activity right lateralising from the outset. Although J.’s
right hemisphere responded in a timely manner during word planning, its

lexical and phonological retrieval abilities remained modest.
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1 | INTRODUCTION

The contribution of the right hemisphere (RH) to lan-
guage recovery and its ability to compensate for lost func-
tion after left-hemisphere (LH) stroke has long been of
interest in aphasia research (Gainotti, 1993; Landis
et al., 1982; Papanicolaou et al., 1988; Zaidel, 1983) but
remains debated. Evidence suggests that task-related
activity in the RH can be dysfunctional (e.g., Naeser
et al., 2005; Postman-Caucheteux et al., 2010;
Selnes, 1999). Other findings, in contrast, suggest a sup-
portive role of the RH (Fernandez et al., 2004; Leff
et al., 2002), particularly in the early stages of recovery
(Saur et al., 2006; Stockert et al., 2020; for review, see
Cocquyt et al., 2017). These results, however, and thus
our current understanding of the role of the RH in lan-
guage after stroke (e.g., Hartwigsen & Saur, 2019;
Kiran & Thompson, 2019), are largely based on older age
groups. Relatively little is known about these processes in
younger adults1, who constitute at least a 10th of total
ischaemic stroke cases (Nedeltchev et al., 2005). In this
case report, using magnetoencephalography (MEG), we
explore the time course of the RH contribution to word
production in a 23-year-old woman (J. hereafter) with
chronic aphasia developed after an extensive LH
infarction.

1.1 | Why young stroke sequelae might
be different from those in older stroke

Although the risk of stroke and acquired aphasia does
increase with age (Engelter et al., 2006; Feigin

et al., 2003; Kristensen et al., 1997), ischaemic stroke and
silent brain infarcts are not uncommon in the population
below 49 years of age (Putaala, 2016; Putaala et al., 2009),
with at least 10% of young-adult stroke survivors having
aphasia on long-term follow-up (Naess et al., 2009). This
young-adult group seems to be strikingly different from
older adults. First of all, the younger brain is not bur-
dened by age-related adaptive and pathological changes
(Mattson & Arumugam, 2018), which also affect lan-
guage (Peelle, 2019; Shafto & Tyler, 2014). As a result,
cerebral tissue can mount a more efficient physiological
response to ischaemia—a well-established finding in ani-
mal models (e.g., Buga et al., 2008) and human stroke
studies (e.g., Ay et al., 2005). Models of cerebral ischae-
mia demonstrate that older animals show higher rates of
mortality, more severe neurological impairments and
more modest recovery (for review, see Popa-Wagner
et al., 2020). This observation is supported clinically:
Younger people show better functional outcomes com-
pared to older groups (for review, see Jongbloed, 1986;
Weimar et al., 2002; but see Maaijwee et al., 2014), with
advanced age predicting more functional deficits inde-
pendently from stroke severity, lesion characteristics,
complications and comorbidities (Knoflach et al., 2012;
Macciocchi et al., 1998). Therefore, the young brain pre-
sents a unique case for studying cerebral capacity for
reorganisation and functional compensation in the
absence of age-related biological changes.

Second, young adults are in a unique position in
terms of functional lateralisation, developing throughout
ontogenesis (e.g., Everts et al., 2009). Starting from more
bilateral patterns at birth (e.g., Perani et al., 2011), lan-
guage function becomes increasingly lateralised into
adulthood (Friederici et al., 2011; Olulade et al., 2020;
Ressel, 2008; but see also Groen et al., 2012). On the one
hand, more established lateralisation in the young-adult
compared to the child or adolescent brain makes it neu-
rally less flexible (Bates et al., 2001; Newport et al., 2017;
for a nuanced perspective, see Anderson et al., 2011;

1For the remainder of this article, we will use the term ‘young adult’ to
refer to adults aged between 18 and 49 years old. Although this age
group remains heterogeneous (as very young post-adolescent adults are
neurally different from older middle-aged adults, e.g., Kennedy
et al., 2015; Kodiweera et al., 2016), literature on ‘young stoke’ typically
includes participants of this age range.
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Dennis et al., 2013) and, consequently, more vulnerable
to acute focal damage (Esteves et al., 2021). On the other
hand, adult neural organisation, characterised by tightly
interconnected local networks and pruning of long-
distance interhemispheric connections, emerges as a
function of experience (Hervé et al., 2013; Jacobs, 1999;
Kosslyn, 1987; Plaut & Behrmann, 2011). Besides experi-
ence, functional lateralisation is affected by brain matu-
ration processes, which are determined by biological
constraints shaping sensitive and critical periods (Boles
et al., 2008). Although the critical period for language
acquisition is closed by late adolescence (Hurford, 1991),
the brain continues its structural and functional develop-
ment after adolescence (e.g., Sowell et al., 1999), includ-
ing ongoing white-matter maturation (Lebel et al., 2012;
Lebel & Beaulieu, 2011). If the neural architecture of lan-
guage is largely established (direction of lateralisation)
but still not fully stabilised (strength of lateralisation) in
young adults, it might enable more efficient reorganisa-
tion after a focal injury compared to older adults, includ-
ing involving the contralesional hemisphere, which still
retains an echo of early-life language processing (Martin
et al., 2022).

1.2 | Theoretical scenarios of RH
recruitment after stroke

We consider two scenarios of increased RH activity dur-
ing language use to be most plausible. The first scenario
concerns cases of atypical (strongly right-lateralised or
bilateral) language lateralisation as opposed to the pat-
tern of LH dominance. Because the relation between
handedness and the direction of language lateralisation
may be at chance level (Mazoyer et al., 2014), premorbid
hemispheric dominance for language might be better
suggested by the severity of the initial functional impair-
ment. In individuals with strongly right-lateralised lan-
guage function, aphasia symptoms tend to be absent after
LH stroke damaging perisylvian areas (e.g., Schneck
et al., 2021). In cases of more symmetrical organisation,
language deficits should be expected, with severity
driven, among other things, by a combination of lesion
characteristics and degree of lateralisation.

The second scenario involves the RH engaging com-
pensation mechanisms. Unlike restitution (or recovery)
of function, which is mainly determined by spontaneous
physiological processes and is time restricted, substitu-
tion of function typically depends on reorganisation
(Rothi & Horner, 1983), which continues into chronic
stages (e.g., Holland et al., 2017; Meinzer et al., 2004;
Pulvermüller et al., 2005) and involves both hemispheres
(e.g., Mohr et al., 2016). Better outcomes could be

expected for functions that can be either mediated by
multiple neural circuits (e.g., Overgaard &
Mogensen, 2011; Price & Friston, 2002; Stefaniak
et al., 2020) or are subserved by more distributed net-
works (Murphy & Corbett, 2009) even in mainly left-
lateralised individuals. For instance, semantic processes
(Binder et al., 2009) and pre-articulatory planning
(Tourville & Guenther, 2011), as well as mapping sound
to meaning (Hickok & Poeppel, 2007), seem to be bilater-
ally supported. By contrast, core language abilities
(e.g., morphosyntax, Bozic et al., 2010) remain strongly
linked to the LH in the majority of the population (Butler
et al., 2014; Woodhead et al., 2021).

Interestingly, when language production activity is
bilaterally distributed, only left-handers demonstrate
increased interhemispheric connectivity via the corpus
callosum (CC), whereas right-handers show LH domi-
nance and intrinsic connectivity via the CC similar to
strongly lateralised individuals (Risse et al., 1997;
Tzourio-Mazoyer et al., 2016). The CC, the main axonal
pathway connecting the hemispheres (for review, see
Bloom & Hynd, 2005), is considered to play a major role
in the development of hemispheric asymmetry
(e.g., Aboitiz & Montiel, 2003; Gazzaniga, 2000), includ-
ing language (Hinkley et al., 2016). Moreover, its integrity
has been implicated in interhemispheric compensation
and language reorganisation (Piai et al., 2017; Yu
et al., 2018). Some discrepancies in the literature on the
role of the contralesional hemisphere in recovery might
be related to the differences in interhemispheric commu-
nication (Bartolomeo & Thiebaut de Schotten, 2016). This
includes aphasia, when the activity in the RH may be less
efficient when it is isolated or receives degraded input
from the left-lateralised lesioned language networks.

1.3 | Time course of spoken word
production with MEG and post-stroke
naming ability

Influential models consider spoken word production to
be a staged process, with associated time courses
(Indefrey & Levelt, 2004; Levelt et al., 1999). Typically,
word planning starts with conceptual preparation result-
ing in retrieval of the target lexical concept within the
first 175 ms after picture onset. It is followed by lexical
selection (‘lemma retrieval’) and phonological code
retrieval around 200–300 ms. Phonological encoding fol-
lows (with variable timing depending on the number of
phonemes). The phonological code is transformed into
an articulatory score around 150 ms prior to articulation
(Indefrey, 2011; Indefrey & Levelt, 2004). Unlike more
bilaterally supported early visual processing (occipital
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regions), conceptualisation (ventrotemporal regions) and
preparation for articulatory output (left inferior frontal
gyrus [IFG] and bilateral sensorimotor areas), lexical
selection and phonological code retrieval seem to be
firmly grounded in the LH (Indefrey, 2011; Indefrey &
Levelt, 2004).

In the aphasia literature, several repetitive transcra-
nial magnetic stimulation (rTMS) studies suggest that
suppression of activity in right frontal areas leads to
improved naming performance (Naeser et al., 2005;
Turkeltaub et al., 2012). Likewise, a functional MRI
(fMRI) investigation of patients with left-lateralised fron-
toparietal lesions showed activity peaking in the lesion-
homologous areas in the RH only on incorrect naming
attempts (Postman-Caucheteux et al., 2010). There is,
however, a scarcity of MEG naming studies in stroke
aphasia (e.g., Sörös et al., 2003).

Studying spoken word production with MEG has sev-
eral advantages. The excellent temporal resolution of the
MEG signal enables one to examine brain activity during
language use, allowing for a more informed functional
interpretation (Hari & Parkkonen, 2015), for example, by
differentiating brain activity during early, conceptual
stages from activity during self-monitoring upon hearing
one’s own incorrect utterance. This characteristic distin-
guishes the present case study from many previous stud-
ies, which have predominantly used methodologies that
do not allow for temporal scrutiny. Furthermore, when
testing people after stroke, MEG can reveal the neural
activity that underpins language function without cere-
brovascular pathology violating the underlying assump-
tions of haemodynamic measures (Archila-Meléndez
et al., 2020; Hillis, 2005; Marshall, 2004; Rossini, 2004).

1.4 | Present study

To illustrate the young-adult brain’s neural dynamics
during language use after acute vascular trauma, we
investigated the word production abilities of a young,
right-handed adult (J.) with chronic aphasia. We focused
on J.’s word production for two main reasons. First, pro-
duction abilities show a less marked recovery after stroke
compared to comprehension (e.g., Mazzoni et al., 1992;
Prins et al., 1978), with naming difficulties prevailing
among people with various aphasia profiles and severity
(Garrett, 1992; Goodglass, 1980; Kohn &
Goodglass, 1985). Second, in the neurotypical population,
the generation of meaningful utterances is highly left
lateralised in both right- and left-handers (Tzourio-
Mazoyer et al., 2016; Woodhead et al., 2021), making
word retrieval abilities particularly vulnerable to neural
loss due to LH stroke.

We used bare picture-naming and context-driven
picture-naming tasks (Figure 1) that enabled us to study
J.’s word production in more detail. These tasks have rep-
licable behavioural and neural effects (see below). Bare
picture naming, where participants name pictures of
objects presented on screen, provides a classical measure
that correlates well with overall aphasia severity
(e.g., Thye & Mirman, 2018) as it taps into all retrieval
stages described in models of word naming (Indefrey &
Levelt, 2004). Context-driven naming requires picture
naming to complete a sentence, which is either contextu-
ally constraining (participant hears ‘The farmer milked
the’, followed by the picture of cow) or neutral and
unconstrained (‘The child drew a’, picture: cow). This
task requires sentence integration for comprehension
and taps into conceptual and lexical retrieval, triggered in
constraining sentences prior to the picture presentation
(Hust�a et al., 2021; Piai et al., 2015, 2020). Thus, the
context-driven naming task allowed us to explore
whether contextual (semantic and structural) informa-
tion contained in the sentences facilitated J.’s word pro-
duction compared to bare picture naming.

We used deterministic tractography based on diffu-
sion MRI to investigate J.’s connectivity in the left and
right hemispheres and MEG to explore her brain function
in a temporally informed manner. To obtain spatial infor-
mation from MEG data, we used a sophisticated
approach that takes into consideration the lesion’s effects
on the signal conductivity, thus improving the precision
of source localisation (for more details, see Piastra
et al., 2018, 2022). Importantly, MEG signatures of both

F I GURE 1 Outline of the picture-naming tasks. Example of a

trial in the constrained and unconstrained conditions of the context

task and of a trial in the bare picture-naming task. Both tasks

required participants to name the picture as soon as it was

displayed. Reproduced with permission from the authors from

doi:10.6084/m9.figshare.19224609
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picture naming (Ala-Salomäki et al., 2021; Levelt
et al., 1998; Salmelin et al., 1994; Sörös et al., 2003) and
context-driven word production (Piai et al., 2015; Roos &
Piai, 2020) are well established in previous literature,
showing replicability of LH sources within individuals
and across studies, with a well-characterised time course.
During picture naming, evoked activity is consistently
observed in visual areas during the first 200 ms after pic-
ture presentation, followed by middle and posterior tem-
poral and parietal regions (sometimes bilaterally, but
with test–retest reliability only in the LH) from 200 ms
onwards. Around 400 ms onwards, activity is observed in
ventral precentral gyrus and IFG (sometimes bilaterally,
but with test–retest reliability only in the LH, Ala-
Salomäki et al., 2021; Liljeström et al., 2009; Salmelin
et al., 1994; Sörös et al., 2003; Vihla et al., 2006). Accord-
ing to models of word production (e.g., Indefrey &
Levelt, 2004), early activity in temporo-parietal areas
reflects conceptual, lexical and phonological retrieval,
and later, frontal and sensorimotor activity is associated
with phonological and phonetic encoding and
articulation.

In context-driven word production, decreases in the
alpha–beta frequency range (10–25 Hz) measured in the
period before picture presentation are consistently found
over the left mid to posterior inferior, middle and supe-
rior temporal regions, extending into the left inferior
parietal lobule. In addition, alpha–beta power decreases
in the left anterior temporal lobe and left IFG are found
(with weak test–retest reliability, Piai et al., 2015; Roos &
Piai, 2020). The alpha–beta decreases have been sug-
gested to reflect conceptual and lexical retrieval during
word planning (Hust�a et al., 2021; Piai et al., 2020). The
replicability of LH sources and their time courses aids
interpretation of the neural activity differences in the
neurotypical and lesioned brain, as well as interpreting
J.’s behavioural performance in the light of these
differences.

In sum, the literature on post-stroke recruitment of
the contralesional RH for language is dominated by stud-
ies on relatively older individuals, a population with an
increased risk of vascular and neurodegenerative disease
(Mattson & Arumugam, 2018), undergoing neural reorga-
nisation (Cabeza et al., 2002; Chan et al., 2014; Rossi
et al., 2004), including in the language domain
(Peelle, 2019). Although this is a necessary bias, as it
reflects the underlying distribution of stroke in the popu-
lation, from a theoretical point of view, it provides a
skewed perspective on language plasticity. Little is
known about the ability of the non-lesioned RH to con-
tribute to language functioning in young-adult individ-
uals, who are typically in a unique position in terms of
physiological health and relatively recently established

(and, possibly, insufficiently stabilised) language laterali-
sation. Hence, the aim of this case study was to character-
ise the neural dynamics of word production in a young
adult (J.) with chronic post-stroke aphasia, with a partic-
ular focus on interhemispheric connections and contrale-
sional RH, using both spatial and temporal information.

2 | MATERIALS AND METHODS

The protocol was approved by the CMO region Arnhem–
Nijmegen Ethics Committee (NL58437.091.17), following
the Declaration of Helsinki. J. was tested at 2 years and
9 months after stroke. She and her sex-, age- and
education-matched healthy control (23 years old, right-
handed, completed higher general secondary education,
and no history of neurological disorders or substance
abuse) attended two MEG sessions 1 week apart to per-
form the context (Session 1) and bare picture-naming
(Session 2) tasks. Additionally, the participants under-
went the MRI scanning in Session 1, and the Dutch Com-
prehensive Aphasia Test (CAT-NL, Visch-Brink
et al., 2014) and the Amsterdam-Nijmegen Everyday Lan-
guage Test (ANELT, Blomert et al., 1994) were adminis-
tered to J. in Session 2. The sessions took place at the
Donders Centre for Cognitive Neuroimaging (Radboud
University, Nijmegen, the Netherlands). The participants
gave written informed consent and received monetary
compensation.

2.1 | Case study

At the age of 21, J. suffered a left-side ischaemic stroke
for which emergency treatment did not arrive in time.
She stayed in hospital for 3 weeks until her condition sta-
bilised, after which rehabilitation was initiated. During
this initial period, she had little language output (‘yes’
and ‘no’). J. sustained extensive damage to temporo-
parietal regions, as well as to the subcortical structures in
the LH (Figure 2, upper row). MRI scanning at 2 years
9 months after onset revealed extensive neural tissue loss
in the left temporal regions (about 40% of the superior
temporal gyrus, 20% of the middle temporal gyrus and
25% of the superior temporal pole), left angular gyrus
(about 10%) and left insula (over 50%), whereas frontal
areas were damaged to a much lesser extent (about 2% of
IFG). Subcortically, structures such as the left basal gang-
lia (about 50%), hippocampus (10%) and thalamus (10%)
were damaged (for details, see the supporting informa-
tion). J. presented with severe aphasia acutely, and
chronic comprehension and production deficits. She
received speech and language therapy continuously
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following the event, initially following a more intensive
schedule to twice a week in the last 1.5 years leading up
to participation in our experiment. Clinical observations
by a trained language pathologist at the time of testing
classified J. as having severe aphasia with ‘Broca-like’
characteristics. According to CAT-NL, J. was impaired on
spoken sentence comprehension, complex word repeti-
tion, noun naming and verb naming, with (relatively)
spared word repetition and spoken word comprehension
(Table 1). Additionally, she scored 20/60 points, or 33%
(Ruiter et al., 2011) on ANELT, indicating poor func-
tional language abilities. This profile together with J.’s

right-handedness suggests it is likely that she was pre-
morbidly LH dominant for language.

2.2 | Design and materials

Pictures representing objects or entities (all concrete
nouns) for both tasks were selected from the BOSS data-
base (Brodeur et al., 2010) or from the internet. The
context-driven naming task (Figure 1, top and middle
rows) consisted of 78 colour photographs, each combined
with a constraining and an unconstraining sentence,

F I GURE 2 Structural magnetic resonance image (MRI) and tractography results. (a) Structural MRI (T1 weighted) depicting the extent

of the lesion in sagittal, coronal and axial plane (top). Deterministic, in vivo tractography of language-relevant tracts and corpus callosum

(CC) in J. (bottom). (b) Deterministic, in vivo tractography of language-relevant tracts and CC in the Control. Tractography results depicting

a subdivision of the CC: genu, anterior midbody, posterior midbody + isthmus and splenium in J. (a0) and in Control (b0). Axial slices of CC
subdivisions are depicted in the superior view (looking from the top of the head, left) and inferior view (looking from the bottom, right). AF,

arcuate fasciculus; FAT, frontal aslant tract; IFOF, inferior fronto-occipital fasciculus; ILF, inferior longitudinal fasciculus; UF, uncinate

fasciculus. Images are depicted in neurological convention (i.e., left hemisphere on the left-hand side). Reproduced with permission from the

authors from doi:10.6084/m9.figshare.19228119
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amounting to 156 trials in total, presented in six blocks.
Sentences were recorded by a native speaker of Dutch
spoken at a relatively slow pace (materials were partly
taken from Piai et al., 2015) and lasted between 1.8 and
3.6 s. Cloze probabilities (i.e., percentage of people com-
pleting the sentence with the same target word) for the
picture name following the sentence ranged between 0–
39% for unconstrained and 60–100% for constrained sen-
tences (t(77) = 51.236, p < 0.001). Cloze probabilities
have been collected over the years from multiple studies
in our group with the young-adult population in the
same age range as the two participants of the present
study.

The bare picture-naming task (Figure 1, bottom row)
consisted of 88 colour photographs, representing
16 semantic categories (e.g., musical instruments, fruit
and body parts) containing five to six exemplars each.
Each picture appeared three times throughout the experi-
ment, amounting to 264 trials in total, over eight blocks.
Across the tasks, 52/78 pictures for the context-driven
naming and 72/88 pictures for bare naming had norming
scores available (Decuyper et al., 2021). There were no
significant differences between pictures in naming agree-
ment as measured by H value (mean bare = 0.62, mean
context-driven = 0.68, t(123) = 0.55, p = 0.6) and in
word frequency as measured by log-transformed fre-
quency per million words (mean bare = 2.7, mean
context-driven = 2.8, t(123) = 0.72, p = 0.5). The presen-
tation of stimuli was pseudorandomised using Mix (van
Casteren & Davis, 2006), with one unique list per
participant.

2.3 | Procedure

Each of the two MEG sessions started with instructions
and familiarisation with stimuli (pictures and their
names), as is commonly done in picture-naming studies
(e.g., Alario et al., 2004). Participants were instructed
to keep central fixation and move in the dewar as
little as possible. Localisation coils were placed at the
nasion and the left and right ear canals. Head localisation
was performed in real time (Stolk et al., 2013). The head
position was kept as constant as possible for each

session. Additional details are provided in the supporting
information.

The presentation of the experimental stimuli and the
recording of responses were controlled by PRESENTATION

software (Neurobehavioral Systems). The stimuli were
projected on a screen in front of the participants. Vocal
responses were recorded with a microphone time-locked
to each picture presentation onset. Both tasks started
with a short practice block. For the context task, trials
started with a 1000 ms fixation cross, followed by the sen-
tence played through ear tubes in participants’ ears. The
picture was presented 800 ms after sentence offset for
1000 ms. During the bare picture-naming task, each trial
began with a fixation cross presented for 1000 ms, fol-
lowed by the presentation of a picture for 2500 ms. For
both tasks, after picture offset, three asterisks were pre-
sented for a jittered interval of 1.25–1.5 s. For both tasks,
participants determined the duration of the breaks.

2.4 | Behavioural data analysis

Two raters blinded for context condition analysed errors
and calculated response times (RTs) manually using
PRAAT (Boersma & Weenink, 2013). The first naming
attempt at each trial was scored. Erroneous responses
were classified as (1) semantic paraphasia (e.g., violin
instead of flute), (2) phonological/phonemic error
(e.g., tlufe, instead of flute), (3) word-finding difficulty (I
don’t know, I know it or an attempt at pronunciation fol-
lowed by I don’t know), (4) no response (silence), (5) not
categorisable (technical failure or non-intelligible),
(6) premature response (starting prior to picture presenta-
tion) and (7) correct response after an initial phonemi-
cally erroneous onset (i.e., correct articulation was
preceded by an attempt containing apraxia-like acoustic
patterns, Kent & Rosenbek, 1983). Trials when the pic-
ture was named with the definite article were considered
correct, with RTs marked at the article onset. Correct tri-
als after a phonemically erroneous onset (both tasks) and
premature responses (context task) were included as cor-
rect for MEG analysis because these errors were unlikely
to affect early visual processing and lexical-access stages
of picture naming. Interrater reliability for RTs on correct

TAB L E 1 J.’s performance on select subtests of the CAT-NL

Tested ability
(CAT-NL
subtest)

Spoken word
comprehension

Spoken sentence
comprehension

Word
repetition

Complex word
repetition

Nonword
repetition

Naming:
nouns

Naming:
verbs

Raw score/
total score

26/30 23/32 28/32 3/6 4/10 23/48 4/10

Abbreviation: CAT-NL, Dutch version of the Comprehensive Aphasia Test.
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trials as measured by concordance correlation coefficient
was 0.98 and 1 (calculated with 95% confidence interval
[CI]) for bare and context-driven naming, respectively,
and for errors as measured by Cohen’s kappa 0.96 and
0.95, respectively.

We combined correct single trials from both tasks in
one data set for statistical analysis of RTs. RT data were
log-transformed to meet the normality of residuals
requirement. Using lm() function in R, we fitted a fixed-
effects-only linear regression model with participant
(Control and J.), condition (bare picture naming, context
task constrained and context task unconstrained) and
their interaction as independent variables. Factor levels
were successively tested against each other with repeated
contrast coding (package ‘mass’, Ripley et al., 2020), pro-
ducing the following comparisons: (1) bare picture nam-
ing with unconstrained naming, that is, the effect of
structure; (2) unconstrained with constrained naming,
that is, the effect of context; (3) Control with J., that is,
the effect of participant; (4) structure effect differences
between participants; and (5) context effect differences
between participants. To determine the relation between
all three naming conditions for each participant, a series
of independent-samples t tests over trials were run post
hoc. For error analysis, chi-squared tests were conducted
to elucidate, first of all, whether J.’s response distribu-
tions (all types, see Table 2b) were independent of task
and condition and, next, whether predominant responses

(i.e., correct naming, correct naming with apraxic pat-
terns, word finding and semantic paraphasias) were dif-
ferential between bare versus unconstrained and
constrained versus unconstrained naming. Holm correc-
tion to control for the family-wise error rate was applied
to all p values reported for t and chi-squared tests.

2.5 | Structural neuroimaging data

2.5.1 | MRI acquisition

The MRI acquisition took place in Session 1, after the
MEG recording. Anatomical (MP2RAGE and diffusion-
weighted) magnetic resonance images were collected in a
single session on a Prisma Fit 3 T scanner with a
32-channel head coil (Siemens Healthineers, Erlangen,
Germany). MP2RAGE images (Marques et al., 2010) were
acquired (acquisition duration: 703200) using the following
parameters: slice thickness 1 mm, voxel size:
1 � 1 � 1 mm, number of slices = 176, repetition time
(TR) = 6000 ms, echo time (TE) = 2.34 ms and field of
view (FOV) = 256 mm. Diffusion-weighted images
(DWIs) were obtained using a multi-band echo planar
imaging multi-shell diffusion-weighted imaging sequence
(acquisition duration: 903000). Diffusion encoding gradi-
ents were applied along 183 directions using multiple
shells, that is, 12� b = 0, 86� b = 1250 s/mm2 and 85�

TAB L E 2 RTs and types of responses

Task and condition

Context task: constrained
(n = 78)

Context task: unconstrained
(n = 78)

Bare picture naming
(n = 264)

(a) Mean RTs, s (SD)a

Control 0.73 (0.14) 0.94 (0.19) 0.85 (0.12)

J. 1.03 (0.41) 1.32 (0.35) 1.44 (0.48)

(b) J.: N (%) of total errors and errors by typeb

Total errors 31 (40%) 42 (54%) 140 (53%)

Correct after erroneous onset 5 (6.4%) 1 (1.3%) 11 (4.2%)

Not categorisable 0 (0%) 0 (0%) 2 (0.8%)

Phonological or phonemic 0 (0%) 0 (0%) 1 (0.4%)

Response too fast 2 (2.6%) 1 (1.3%) 0 (0%)

Semantic paraphasia 10 (13%) 4 (5.1%) 14 (5.3%)

No response (silence) 0 (0%) 2 (2.6%) 0 (0%)

Word-finding difficulty (e.g., I
don’t know)

14 (18%) 34 (44%) 112 (42%)

Abbreviations: n, number of trials; RTs, response times; SD, standard deviation.
aControl and J.’s mean RTs on both tasks per condition.
bNumber and percentage of incorrect responses produced by J., total and by type. All trials by Control were correct.
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b = 2500 s/mm2. Seven b = 0 images with inverted
phase-encoding direction were acquired for
susceptibility-induced distortion correction during pro-
cessing. The diffusion sequence was acquired in the axial
plane with 81 contiguous sections and voxel size of
1.8 � 1.8 � 1.8 mm using multi-band accelerator
factor = 3, TR = 2940 ms, TE = 74.80 ms, with no inter-
section gap, and FOV = 216 mm.

2.5.2 | Diffusion MRI preprocessing

After visual quality control, DWIs were denoised
(Veraart, Fieremans, et al., 2016; Veraart, Novikov,
et al., 2016), followed by Gibbs ringing artefacts
correction (Kellner et al., 2016) using tools from
MRTRIX3 (https://www.mrtrix.org, Version 3.0.0,
Tournier et al., 2019). Then, DWIs were corrected for
susceptibility-induced distortion, eddy current-induced
distortion and head motion using tools from the
Functional Magnetic Resonance Imaging of the Brain
(FMRIB) Software Library (FSL, Version 6.0.1, Jenkinson
et al., 2012). For tensor-based tractography using diffu-
sion toolkit (Wang et al., 2007), only volumes acquired
with b = 0 and b = 1250 s/mm2 were selected for further
analyses and used to estimate the tensor model
(Functional Magnetic Resonance Imaging of the Brain
[FMRIB] Software Library [FSL],‘dtifit’). Tracking was
run using the dtk setting at a 45� angle threshold, with
fibre assignment through continuous tracking (FACT)
propagation algorithm and applying the spline filter with
fractional anisotropy (FA) as a masking image with 0.2
threshold.

2.5.3 | Tractography analysis

Anatomical delineation of the language-relevant tracts
(i.e., arcuate fasciculus [AF], inferior fronto-occipital fas-
ciculus [IFOF], inferior longitudinal fasciculus [ILF],
uncinate fasciculus [UF], frontal aslant tract [FAT] and
CC; Figure 2) was performed in TRACKVIS (Wang
et al., 2007) using FA maps as anatomical reference and
by setting two-dimensional regions of interest (ROIs)
driven by individual brain anatomy. Language-relevant
tracts were delineated according to commonly estab-
lished anatomical locations (for more details, see
François et al., 2016). For the CC, first, to get a general
tract overview, was drawn in a sagittal plane midline
slice following its shape and outline on a FA map
(Figure 2a,b). The anatomical parcellation of the CC was
defined according to the guidelines by Hofer and Frahm
(2006), where the genu represented connections between

prefrontal lobes, the anterior midbody joined premotor
and presupplementary motor areas, and the splenium
connected parietal, occipital and temporal lobes. Addi-
tionally, we defined a conjoined ROI for posterior mid-
body and isthmus to represent commissural connections
between primary motor and primary sensory cortices.
Anatomically implausible fibres were removed using
exclusion masks. In J.’s LH, the ROIs were enlarged to
explore possible tissue displacement, but ROIs were kept
anatomically restrained in the RH. The methodology
used for J.’s RH was reproduced in both of Control’s
hemispheres (Figure 2b,b0).

2.6 | MEG methodology

MEG data were acquired with a 271 axial gradiometer
system (CTF Systems Inc., VSM MedTech Ltd.) at a
sampling rate of 1200 Hz. Each task took around 30 min
to perform, and participants spent around 1 h in the
laboratory including preparation time.

MEG analyses were conducted in MATLAB 2018b
using FIELDTRIP (Oostenveld et al., 2011). For the bare
picture-naming task, the data were segmented into
epochs time-locked to the picture presentation, defined
from 500 ms pre-stimulus to 900 ms post-stimulus onset.
A baseline correction was applied, with the averaged
pre-stimulus 500 ms interval subtracted from the signal.
Then, the data were downsampled to 600 Hz and low-
pass filtered at 55 Hz. The context task data underwent a
similar procedure. Trials were segmented to span 500 ms
before sentence onset until 300 ms after picture presenta-
tion. Then, a baseline correction was applied using the
500 ms pre-sentence interval, followed by a resegmenta-
tion of the trials to yield picture-locked intervals
(from �1000 to 300 ms relative to picture onset). Only
accurate trials were processed further for the context task
and both correct and word-finding difficulty trials for
bare naming.

Artefact correction and rejection were performed on
the data with the experimenter blinded for condition.
Independent component analysis (ICA) was used to
remove eye movements (Jung et al., 2000, as implemen-
ted in FIELDTRIP). Then, single trials were again inspected
manually to reject additional trials and/or sensors
that retained excessive noise. Finally, the data sets
were separated by condition: for constrained versus
unconstrained for the context task (54 and 39 trials for
J. and 78 and 78 trials for Control), and for bare naming,
correct trials for Control (N = 263), correct for
J. (N = 125) and word-finding difficulty for J. (N = 109).
All statistical analyses reported below were performed
using non-parametric cluster-based permutation tests
(Maris & Oostenveld, 2007).
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2.6.1 | Scalp-level analyses

For the context task, time-frequency representations
(TFRs) of power were calculated between 5 and 40 Hz
with an adaptive sliding time window of three cycles’
length, advanced in 10 ms and 1 Hz steps (e.g., Piai
et al., 2018). The data in each window were multiplied
with a Hanning taper, followed by the Fourier transform
of the tapered signal. To guide the selection of a time-
frequency window of interest for source localisation,
cluster-based permutation was performed for both partic-
ipants separately, comparing single trials between the
two context conditions. The resulting t values provided a
weighted measure of the context effect. The time-
frequency window with the highest absolute t values in
both participants was selected for the source localisation
(see below).

For bare picture naming, event-related fields (ERFs)
were calculated by averaging the signal over trials, after
applying a low-pass filter of 30 Hz. For the Control, three
surrogate conditions were created by randomly selecting
one third of the trials without replacement, resulting in
ERFs based on 87 to 89 trials. This step was performed to
better estimate the variability of the ERFs given a similar
number of trials as for J. For J., ERFs were calculated for
the correct and word-finding difficulty trials. All ERFs
were then baseline corrected using the averaged signal of
the 500 ms baseline period. Finally, planar gradients
were calculated for all sensor-level analyses
(Bastiaansen & Knösche, 2000).

We used the well-known characteristics of visual
evoked fields (Ahlfors et al., 1992; Tobimatsu, 2005) and
the timing estimates of word production processes
(Indefrey & Levelt, 2004) to guide the ERF analyses.
Visual evoked fields are prominent during the first
150 ms post-visual stimulus onset. Conceptual prepara-
tion is thought to take place within the first 200 ms after
picture presentation. From around 200 ms onward, lexi-
cal and phonological processes follow, finally leading to
phonetic encoding starting around 200 to 150 ms before
speech onset. The presence of visual evoked fields in each
participant was confirmed using cluster-based permuta-
tion within-participant between trials (200 ms baseline
vs. 0 to 200 ms time-locked to picture presentation, per-
formed over all occipital sensors). To guide source ana-
lyses, a time point with the largest amplitude across trials
within the window identified by cluster-based permuta-
tion was selected, with a window of 30 ms around that
peak. Note that, due to this procedure, the timing of the
peaks for the two participants differed. Following the
time estimates for naming (Indefrey & Levelt, 2004), a
second, naming-related peak was identified for J. using
cluster-based permutation, comparing single trials

between the two naming conditions. The resulting
t values were used to provide an indication of the time
window for source localisation (see below).

2.6.2 | MEG source localisation

All analyses were conducted in participants’ native space
and individually. In order to account for the lesion in the
source localisation, we built MRI-based volumetric head-
models and applied the finite element method (FEM) to
compute MEG leadfields (Bertrand et al., 1991; Piastra
et al., 2018; Schimpf et al., 2002). This approach takes the
lesion’s effects on the signal conductivity into consider-
ation, improving the precision of source localisation (for
more details, see Piastra et al., 2022). The same FEM-
based approach was taken for both participants. For that,
the MRI (T1 weighted [T1w]) was segmented into four
different tissues (brain, cerebrospinal fluid [CSF], skull
and scalp) using the SPM12 software (Penny et al., 2011;
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). For
J., the lesion resulted in being modelled as a CSF-filled
cavity, in agreement with previous literature
(e.g., Minjoli et al., 2017). We then built a 2 mm resolu-
tion hexahedral mesh and assigned each tissue a fixed
conductivity value following the literature
(e.g., Baumann et al., 1997; Dannhauer et al., 2011;
Ramon et al., 2004). The source model comprises point-
like dipolar sources (Hämäläinen et al., 1993) positioned
in the centroid of the brain elements in the mesh and
with x,y,z orientation. The MEG forward problem was
solved by applying the FEM implemented in the DUNEURO

software (Schrader et al., 2021; validated in Piastra
et al., 2018). The leadfields were consequently used to
compute the MEG inverse solution using two beamform-
ing approaches.

For the context task, a frequency-domain beamformer
was used (Dynamic Imaging of Coherent Sources, Gross
et al., 2001) over the 800 ms pre-picture interval. A cross-
spectral density matrix was computed by combining the
data of the two context conditions at 18 Hz with a fre-
quency smoothing of 8 Hz around the peak frequency
(based on sensor-level data). For bare picture naming, a
time-domain beamformer was used (Linearly Con-
strained Minimum Variance, van Veen et al., 1997). The
stimulus-based time windows (visual evoked and
naming-related responses) identified at the sensor level
were used, and a baseline period of similar duration was
selected (ending at 0 ms picture onset). The covariance
matrices were based on the same time windows. For both
tasks, using the respective covariance matrices and the
leadfields, common spatial filters were constructed (con-
text: over both conditions; bare picture naming: over
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baseline and stimulus-based periods), followed by the
application of the common spatial filters to the data from
each respective condition separately at the single-trial
level. For both tasks and participants separately, cluster-
based permutation tests were performed over trials. A
threshold t value of �2 was used for inferential statistics

(corresponding to p < 0.05). Effect size measures are pro-
vided in addition (Cohen’s d, calculated as the mean dif-
ference between conditions divided by the pooled
standard deviation), thresholded at �0.2 (corresponding
to larger than small effect sizes). For the Control, a ran-
dom selection of 110 trials was used for inferential statis-
tics, as to equate the number of available trials between
J. and Control. For visualisation, thresholded source
maps were interpolated to the participants’ MRIs.

3 | RESULTS

3.1 | Behavioural results

J.’s naming errors were consistent with her performance
on CAT-NL, with differential error distributions across
the experimental tasks/conditions (χ 2(14) = 37,
p = 0.002). The amount (Table 2) and distribution
(Figure 3) of erroneous responses were comparable in the
bare picture naming and the unconstrained condition of
the context task (around 55%; χ 2(3) = 1.44, p = 0.7),
whereas error patterns in the constraining compared to
unconstraining condition were independent (χ 2(3) = 15,
p = 0.004). Notably, the constraining condition elicited
fewer incorrect responses overall (40%). Word-finding dif-
ficulty was the predominant error (Figure 3 and Table 2),
constituting almost half of the responses in uncon-
strained and bare naming but only a fifth of total
responses in constrained naming. Conversely, J. made
twice as many semantic paraphasias (13% of total
responses) in the constrained compared to unconstrained
and bare picture naming. Other types of errors were rare.

RT results are shown in Figure 3 and Table 2, and
inferential statistics are presented in Table 3. Descrip-
tively, J. was slower than Control in all conditions on cor-
rect trials. However, during constrained naming, her
semantic paraphasias were as fast as her correct
responses. RTs were overall the slowest when she experi-
enced word-finding difficulties. The results of the linear
regression analysis revealed a significant main effect of

F I GURE 3 Behavioural results. (a) Distribution of correct

responses and most common error types produced by J. compared

across tasks and conditions. Because bare picture naming contained

more trials, the number of errors was calculated proportionally.

Note that all trials by Control were correct. (b) Distribution of

response times across tasks and conditions by Control (bottom

panel, only correct responses) and by J. (three top panels) on

correct and incorrect trials (semantic paraphasias and word-finding

difficulties). Reproduced with permission from the authors from

doi:10.6084/m9.figshare.19224594
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participant, with J. responding slower than Control
(p < 0.001) and a main effect of context, with pictures
named faster after constrained than unconstrained sen-
tences (p < 0.001). No main effect of structure was found;
that is, overall naming was equally fast after uncon-
strained sentences as it was during bare picture naming.
Regarding the interaction effects, the structure effect
across participants was significant (p < 0.001), whereas
context effect differences between participants were not
found. Post hoc analyses confirmed the context effect (t
(141) = �7.9, p < 0.001, for Control; t(80) = �3.5,
p = 0.002, for J.). There was also a significant difference
between unconstrained and bare-naming conditions (t
(114) = �6.8, p < 0.001, for Control; t(95) = �5.6,
p < 0.001, for J.). However, Control was faster in the bare
compared to the unconstrained naming (t(96) = �4,
p < 0.001), whereas J. showed similar RTs in both condi-
tions (t(76) = 1.7, p = 0.09).

3.2 | Tractography results

Deterministic tractography (Figure 2a) revealed that the
lesion completely damaged the left fronto-temporal por-
tion of the AF (also called ‘long segment’). Shorter AF
connections between frontal and parietal lobes were
severely affected; in particular, the connection with the
IFG did not reach the parietal cortex. The only AF por-
tion that was preserved was the connection between the
parietal and temporal cortices. The left ventral tracts
(IFOF, ILF and UF) as well as FAT were completely

damaged by the lesion. In the RH, FAT and all ventral
connections were preserved. Although AF was spared,
the parieto-temporal fibres were not prominent. Regard-
ing CC (Figure 2a0), only the connections reaching infe-
rior frontal cortices as well as the parietal and occipital
lobes (portions of genu and splenium) were, at least par-
tially, preserved. Connections crossing through the mid-
body and isthmus were damaged. The tapetum was not
prominent in either hemisphere. As to be expected, all
canonical language tracts and CC (including the forceps
major and tapetum) were present in Control and are
depicted in Figure 2b,b0 for comparison.

3.3 | MEG results

3.3.1 | Context-driven picture naming

For the context task, sensor-level analyses replicated our
previous findings of alpha–beta power decreases for con-
strained relative to unconstrained contexts prior to pic-
ture presentation in both participants (Piai et al., 2015;
Roos & Piai, 2020; see also Gastaldon et al., 2020; Hust�a
et al., 2021; Klaus et al., 2020; Piai et al., 2014, 2017,
2018). Results of source localisation of power decreases in
the 10–26 Hz range prior to picture onset are shown in
Figure 4. A t value threshold of �2 proved suboptimal for
the source-level analysis for J. Therefore, for both J. and
Control, source-level results are shown thresholded at
�1.5. In Control, the sources were found predominantly
in left IFG, extending to precentral and postcentral gyri

TAB L E 3 Results of the fixed-effects linear regression

Estimates SE 95% CI t value p value

Intercept �0.01 0.01 �0.03, �0.01 �1.10 0.271

Main effects

Structure effect: unconstrained context vs. bare
picture naming

0.01 0.03 �0.04, 0.06 0.26 0.793

Context effect: constrained vs. unconstrained
naming

�0.27 0.03 �0.33, �0.21 �8.76 <0.001

Participant effect: control vs. J. 0.36 0.02 0.32, 0.41 16.47 <0.001

Interaction effects

Participant and structure effect �0.17 0.05 �0.27, �0.07 �3.35 0.001

Participant and context effect �0.04 0.06 �0.16, 0.08 �0.64 0.522

Observations = 627

R 2 adjusted = 0.488

Note: The model was run with log-transformed response times as a dependent variable and condition (context-unconstrained naming, context-constrained
naming and bare picture naming) and participant (patient and control) as predictors, including their interaction. The contrast scheme was repeated sum
coding.
Abbreviations: CI, confidence interval; SE, standard error.
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(with the largest effect sizes) and parietal areas, and the
middle portion of the left middle temporal gyrus. In J.,
similar frontal and temporal lobe sources as for Control
were found in the RH, with the largest effect sizes in
frontal areas.

3.3.2 | Bare picture naming

Figure 5 shows the ERFs for both participants for the
bare picture-naming task, time-locked to picture onset,
averaged over occipital sensors. In line with the litera-
ture, visual evoked responses were identified in both par-
ticipants, albeit with different timing. For Control
(Monte Carlo p = 0.004 for visual evoked field
vs. baseline), it is clear how the timing is consistent over
trials (90 to 130 ms, in line with the timing of visual
evoked fields, Tobimatsu, 2005), with a clear overlap
between all three surrogate conditions (blue ERFs in
Figure 5, top). The sources of this evoked field (with
t values more extreme than �2) were localised to the left
occipital cortex (with medium effect size, see Figure 5),
including the left cuneus, and right precuneus, in addi-
tion to bilateral cerebellum. From sagittal slices, sources
are also observed in anterior and mid portions of the left
temporal lobe. Sources in the RH were less widespread

and had smaller effect sizes. For J., the first visual evoked
field with a clear peak was around 150 to 180 ms, which
was very similar for both naming (purple ERFs, Monte
Carlo p = 0.016 for visual evoked field vs. baseline) and
word-finding (green ERFs, Monte Carlo p = 0.016 for
visual evoked field vs. baseline) trials (Figure 5, bottom).
The sources of this evoked field were localised to right
occipital cortex for both types of trials (albeit differently
in terms of power increases/decreases relative to base-
line), similar to the occipital areas in Control’s
LH. Additionally, power increased relative to baseline in
the right inferior temporal gyrus, similarly for both nam-
ing and word-finding trials with similar effect sizes, and
right inferior parietal lobule, with this latter only promi-
nent for word-finding trials.

For the naming-related peak, source localisation was
performed in the time window of 330 to 440 ms, identified
for J. by the cluster-based permutation test as having the
maximum differences between correct naming and word-
finding trials (Figure 6). Evoked power was increased for
naming trials relative to word-finding trials (warm col-
ours in Figure 6, positive values) in the right mid and pos-
terior portions of the temporal lobe with medium effect
sizes. For word-finding relative to naming trials (cold col-
ours in Figure 6, negative values), evoked power was
increased in right IFG with medium effect sizes.

F I GURE 4 Source localisation of the

context effect. Relative power decreases

(expressed in t values, top two rows) for

constrained relative to unconstrained contexts

in the 10–26 Hz range prior to picture onset for

Control (a, first row) and J. (a, second row).

Power was thresholded at �1.5.

(b) Corresponding Cohen’s d maps for Control

(first row) and J. (second row), thresholded at

�0.2. Images are depicted in neurological

convention (i.e., left hemisphere on the left-

hand side). L, left; R, right. Reproduced with

permission from the authors from doi:10.6084/

m9.figshare.19228146
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4 | DISCUSSION

In the present case study, we described the word produc-
tion abilities of J., a young, right-handed adult with
chronic aphasia following extensive damage to the
LH. MEG analyses and source localisation indicated that
J.’s production at the conceptual, lexical and phonologi-
cal retrieval stages was largely supported by activity in

the contralesional, RH, with a temporally aligned spatial
distinction between successful and unsuccessful naming
attempts. Interhemispheric connections through the CC
were particularly affected at the level of the temporal
lobes, whereas the forceps major connecting occipital
lobes was present. Based on J.’s severe aphasia in the
(sub-)acute stage, it is safe to assume that her premorbid
language function was strongly left lateralised, indicating
that, in her case, the RH recruitment most likely reflects
the ‘substitution of function’ scenario, involving reorga-
nisation and/or compensation mechanisms (Anderson
et al., 2011; Rothi & Horner, 1983).

4.1 | Behavioural and structural MRI
findings

Both standardised language tests and experimental tasks
revealed impaired word production with relatively spared
word comprehension and repetition. J. was considerably
slower in naming than Control, and she had serious
word-finding difficulties in both tasks. Word-finding diffi-
culties (also called omissions or anomic errors) are con-
sidered by most accounts to reflect a failure in
completing the access to a phonological representation
from a target abstract lexical representation (Burke
et al., 1991; Dell et al., 1997). Consistent with prior find-
ings (e.g., Piai et al., 2018), J. and Control demonstrated
context facilitation effects, that is, faster naming for con-
strained compared to unconstrained contexts. The addi-
tional semantic information helped J. to produce more
correct responses, but simultaneously induced more
semantic paraphasias, which were as fast as correct
responses exclusively in the constraining condition.
Semantic errors are typically attributed to dysfunction in
lexical selection: As the spreading activation engages a
number of related representations, a semantically related

F I GURE 5 Event-related fields (ERFs) and sources of early

visual evoked responses. ERFs (from planar gradients) for Control

(a) and J. (b), averaged over occipital sensors. For Control, the three

surrogate conditions are shown in blue, in addition to the overall

average in red. For J., ERFs for naming (purple) and word-finding

(green) trials are shown, in addition to Control’s average (red) for
comparison. The ERFs are displayed between �200 and 700 ms.

The time windows selected for topographical maps and source

localisation are indicated for each participant. For the source maps,

shown below the ERFs, values were thresholded at t more extreme

than �2 and Cohen’s d more extreme than �0.2 (white masks in

the left colour bars). Coronal slices are depicted in neurological

convention (i.e., left hemisphere on the left-hand side). L, left; R,

right. Reproduced with permission from the authors from

doi:10.6084/m9.figshare.19228161
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word might exceed the target word’s activation and get
erroneously selected (Dell et al., 1997; Roelofs, 1992). In
sum, we take the presence of a context effect in J. as evi-
dence of sufficient comprehension abilities for the simple
sentences we employed. Her pattern of semantic

paraphasias and word-finding difficulty together indicate
a deficit at both the lexical and phonological retrieval
stages. The extent to which concept retrieval is intact, rel-
atively spared or dysfunctional cannot be addressed with
the present data.

These behavioural deficits can be explained by the
extensive damage to perisylvian brain areas, including
most of the middle and superior temporal gyri, temporo-
parietal junction (TPJ) and anterior insula. Temporal
regions have been linked to lexical and phonological
retrieval stages of word production (Indefrey &
Levelt, 2004; Roelofs, 2014). Furthermore, deterministic
tractography showed that the major part of J.’s language-
relevant tracts was severely damaged, encompassing left
dorsal (fronto-temporal and fronto-parietal sections of
the AF) and left ventral tracts (IFOF, ILF and UF) as well
as FAT. A body of research supports the notion that these
tracts are relevant for various aspects of language func-
tion, including semantic processing (IFOF, ILF and UF),
speech initiation (FAT), verbal fluency (FAT and AF)
and phonological processing (AF), with different seg-
ments of AF being crucial for naming and comprehen-
sion abilities (Dick et al., 2019; Ivanova et al., 2021;
Sierpowska et al., 2019; for review, see Dick &
Tremblay, 2012). Importantly, the posterior temporal
lobe and TPJ together with the underlying white matter,
all damaged in J.’s brain, have been suggested to form a
structural bottleneck critical for language (e.g., Griffis
et al., 2017; Heiss et al., 1999; Rosso et al., 2015). The
interhemispheric connectivity was compromised as a
large section of CC (midbody and isthmus) was also
damaged.

4.2 | Functional spatiotemporal findings

Evidence from MEG was substantiated both through the
use of t values from single-trial statistics and through
effect sizes. Replicating previous results (Piai et al., 2015,
2017, 2018; Roos & Piai, 2020), both J. and Control
showed alpha–beta power decreases in the constrained
compared to unconstrained contexts, in line with J.’s rel-
atively preserved context effect found behaviourally. In
Control, the sources of the context power-decrease effect
were largely in line with prior findings (e.g., Piai
et al., 2015; Roos & Piai, 2020), with an overall LH bias
for the temporal lobe. In J., the context effect was loca-
lised to the RH.

The time course of bare picture naming revealed dif-
ferences between the participants, starting with J.’s lon-
ger (but within the typically reported range,
e.g., Salmelin et al., 1994; Sörös et al., 2003) latencies of
the visual evoked responses relative to Control. In line

F I GURE 6 Event-related fields (ERFs) and sources of naming-

related responses. (a) ERFs for J.’s naming (purple) and word-

finding (green) trials (from planar gradients), averaged over

posterior left and right sensors. The ERFs are displayed between

�200 and 700 ms. The time window selected for the topographical

maps and source analysis is indicated by the shaded area (identified

by the cluster-based permutation analysis). For the source maps (b,

c), values were thresholded at t values (b) more extreme than �2

and Cohen’s d (c) more extreme than � 0.2 (white masks in the left

colour bars). Positive values indicate stronger responses for naming

relative to word-finding; negative values indicate stronger responses

for word-finding relative to naming. Slices are depicted in

neurological convention (i.e., left hemisphere on the left-hand

side). L, left; R, right. Reproduced with permission from the

authors from doi:10.6084/m9.figshare.19228194
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with previous MEG (picture-naming) findings (Salmelin
et al., 1994; Sörös et al., 2003; Tobimatsu, 2005), early
evoked responses were localised to visual areas in both
participants, with an LH bias for Control and RH bias for
J. J.’s successful and anomic naming attempts were in
general similar at the visual/conceptual processing stage
before 200 ms (with a source in the right inferior parietal
lobule only present for word-finding trials) but then
diverged, reaching a maximum difference around 330 to
440 ms. Anomic responses were accompanied by power
increases in right IFG with medium effect sizes relative
to naming trials, whereas successful naming was accom-
panied by power increases in the mid and posterior por-
tions of the right temporal lobe with medium effect sizes,
compared to anomia trials.

The extent to which right IFG involvement aids or
hinders word production is highly debated (e.g., Naeser
et al., 2005; Postman-Caucheteux et al., 2010; Turkeltaub
et al., 2012). One limitation of existing literature is the
overreliance on methods with poor temporal resolution.
In this respect, one cannot know whether the right IFG
involvement occurred during a word-finding state or after
it. Our temporally resolved results indicate that the mod-
ulation of neural activity in the right IFG for word-
finding difficulty trials occurs during the word planning
stages for production, in a window possibly correspond-
ing to lexical and/or phonological retrieval. Moreover, in
the same time window, modulation of activity in the
right mid-posterior temporal lobe is apparent for trials
with successful naming.

Finally, in terms of interhemispheric connectivity, J.’s
connections between the temporal lobes in particular
were extensively damaged, yet reliable activity in the RH
was observed: Around 150 ms upon seeing a picture, RH
areas involved in object recognition were already active
(see Figure 5). In this respect, it appears that the tempo-
ral lobes need not be directly connected through the tem-
poral portion of CC for the right temporal lobe to receive
signals further downstream in the processing chain if the
activity is already right lateralised upon stimulus presen-
tation. This point nicely illustrates the gains from taking
the temporal dimension into account in the discussion of
whether interhemispheric connections are (strictly)
needed.

4.3 | RH recruitment in young-adult
stroke

Although the RH undeniably contributes to different
aspects of language processing (Lindell, 2006), its role in
language recovery after stroke remains debated
(Stefaniak et al., 2021; Wilson & Schneck, 2020). In the

literature based on the typical samples of stroke individ-
uals (i.e., older age groups), RH recruitment has been
suggested to be the last resort effort in cases when the
left-lateralised networks are severely damaged (Heiss
et al., 1999; Selnes, 1999). In a recent review, Wilson and
Schneck (2020) cautioned against interpreting the
involvement of the contralesional hemisphere as a sign of
large-scale reorganisation. However, little is known about
the role of the RH in the young-adult aphasia group. It
stands to reason that the RH’s ability to support language
after stroke depends on a multitude of factors, including
the language function it is supposed to support or the
amount of cellular dysregulation, which accumulates
with advancing age even in healthy individuals (L�opez-
Otín et al., 2013; Mattson & Arumugam, 2018). The older
brain seems to be at a cellular disadvantage (Mattson &
Arumugam, 2018), leading, among other things, to an
altered post-stroke cerebral response (Ay et al., 2005;
Zhang et al., 2005; for review, see Popa-Wagner
et al., 2007). Animal models show that the role of the
contralesional hemisphere in response to ischaemia is
more prominent in younger animals (Buga et al., 2008),
and our results tentatively indicate that, at least for some
young adults, this also might be the case for post-stroke
RH engagement in language.

Involvement of right frontal and temporo-parietal
homologous areas is known to be common after perinatal
stroke and left hemispherectomy in children (Hertz-
Pannier et al., 2002; Staudt, 2002), with secondary right
temporo-parietal stroke later in life leading to aphasia
(Guerreiro et al., 1995). Even in older adults with apha-
sia, greater grey matter volumes found in right temporo-
parietal regions correlate positively with spontaneous
speech and naming ability (Xing et al., 2016). These
patterns resemble J.’s recruitment of the right temporo-
parietal cortex during successful naming. Although
semantic systems are more bilaterally distributed
(Binder et al., 2009), which might explain the ability of
J.’s RH to support conceptual preparation after stroke
(Piai et al., 2017) without appeal to neural reorganisation,
lexical and phonological retrieval processes by contrast
are strongly associated with the left temporo-frontal
cortices (Indefrey & Levelt, 2004). In light of J. having
strongly left-lateralised premorbid language function,
her brain’s ability to rely on the RH during word
retrieval resulted, most likely, from stroke-induced
reorganisation.

At the same time, J.’s case illustrates once again that
what reorganisation and/or compensation can achieve is
largely defined by the lesion characteristics (Benghanem
et al., 2019; Gleichgerrcht et al., 2015; Griffis et al., 2017;
Thye & Mirman, 2018). Likely rooted in evolutionary
development, the plasticity inherent for the mammalian
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central nervous system seems to be specialised for learn-
ing and not directly for dealing with trauma (Delgado-
García & Gruart, 2004; Nieto-Sampedro, 2004). As such,
despite the likelihood that both types of plastic changes
are governed by overlapping biological mechanisms and
principles at the cellular level (Nieto-Sampedro, 2004),
plasticity critically depends on the number and diversity
of the available cortical structures (Mercado, 2008). In
other words, even in cases such as J.’s, when the cellular
machinery enables the most optimal response to ischae-
mia (Buga et al., 2008; Popa-Wagner et al., 2011), focal
injury by definition constrains plasticity. Age at stroke
prognosticates functional outcome inconsistently (for
review, see Watila & Balarabe, 2015) for a number of rea-
sons such as the discrepancy between the chronological
age and the brain age (Cole & Franke, 2017), or individ-
ual differences in collateral circulation and the brain/
cognitive reserve (Rabinstein et al., 2019). Due to this,
the severity of the initial neurological impairment
remains one of the most reliable language improvement
predictors (Benghanem et al., 2019; Engelter et al., 2006;
Lazar et al., 2010), including for a young-adult patient
group (15–49 years old, mean age 42 years old, Naess
et al., 2009).

4.4 | Limitations and future directions

This study is limited by the spatial resolution of MEG
source localisation, which may not have the precision to
separate sources within millimetres, even though we
used an optimised approach for building the forward
model in the presence of stroke lesions (Piastra
et al., 2022). This limits the extent to which we can confi-
dently further specify the exact parts of the right IFG that
were recruited. At the behavioural level, the two tasks
that we used did not allow for disentangling J.’s concep-
tual preparation abilities from lexical selection. In the
future, adding a more ‘pure’ semantic task (such as the
Pyramids and Palm Trees Test, Howard &
Patterson, 1992) could help achieve this.

The cross-sectional nature of our study did not allow
us to study the longitudinal course of post-stroke lan-
guage recovery in young adults. Comparing the func-
tional outcomes between young adults with a stroke and
those in older age groups would present a clearer picture
of the impact that brain health might have on the prog-
nosis. Finally, the role of the CC integrity in restitution
and substitution of function requires further investigation
at the individual and group level, ideally, with tasks tap-
ping a variety of cognitive functions.

As a final note, with this case study, we would like to
not only add to the discussion of brain organisation for

language but also raise awareness of young-adult stroke.
Although its incidence has been growing (Putaala, 2016),
young stroke is routinely missed by clinicians, leading to
lack of timely intervention (Sultan & Elkind, 2013). These
individuals experience significant reduction of quality of
life, functional dependence and inability to return to
work (Maaijwee et al., 2014; Naess et al., 2006;
Schaapsmeerders et al., 2013; Synhaeve et al., 2014). The
young-adult brain follows a different recovery path, so
lack of knowledge about young stroke has consequences
for the unique rehabilitation needs of this group. In our
interactions with J., she often remarked that she shared
therapy sessions with people above 60 and asked us
whether that was the right approach in her case. Hope-
fully, future research will be able to inform whether lan-
guage therapy should be given differently and/or with
additional manipulations to boost trauma-related plastic-
ity mechanisms.

5 | CONCLUSION

From investigating temporally resolved neural activity,
we learned that J.’s production abilities were largely sup-
ported by RH structures. The extent of disconnection of
J.’s left and right temporal lobes suggests that spared
interlobar connectivity of these areas might not be a nec-
essary requirement for RH recruitment in visually guided
(i.e., confrontation) or context-driven naming if neural
activity is right lateralised from the outset. Finally, con-
current activity during word planning in the RH dissoci-
ates between successful (mid-posterior temporal lobe)
and unsuccessful (IFG) naming attempts. In J.’s case,
however, the ability of the RH to facilitate naming
remains modest, and the degree of the chronic functional
impairment seems to be primarily determined by the
lesion size and location.
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