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Background: Assessing rupture risk in patients with unruptured intracranial aneurysms

(UIAs) remains challenging. Hemodynamics plays an important role in the natural history

of intracranial aneurysms. This study aimed to compare aneurysmal hemodynamic

features between patients with different rupture risk as determined by PHASES score.

Methods: We retrospectively examined 238 patients who harbored a solitary saccular

UIA. Patients were stratified by rupture risk into low-, intermediate-, and high-risk groups

according to PHASES score. Flow simulations were performed to compare differences

in hemodynamics among the groups.

Results: Aneurysmal time-averaged wall shear stress (WSSa) and normalized WSS

(WSSn) decreased progressively as PHASES score increased. WSSa and WSSn

significantly differed among the low-, intermediate-, and high-risk groups (p < 0.001).

WSSa was significantly lower in the high-risk group than the low-risk group (p < 0.001)

and the intermediate-risk group (p = 0.004). WSSn was also significantly lower in the

high-risk group than the low-risk group (p < 0.001) and the intermediate-risk group (p

= 0.001).

Conclusions: Low WSS was significantly associated with higher risk of intracranial

aneurysm rupture as determined by PHASES score, indicating that hemodynamics may

play an important role in aneurysmal rupture. In the future, a multidimensional rupture risk

prediction model that includes hemodynamic parameters should be investigated.

Keywords: hemodynamics, rupture risk, PHASES score, unruptured intracranial aneurysm, wall shear stress

INTRODUCTION

Unruptured intracranial aneurysms (UIAs) occur in approximately 3% to 8% of the general
population (1, 2). Their prevalence is rising because of advances in intracranial diagnostic imaging.
Subarachnoid hemorrhage after intracranial aneurysm rupture is associated with high mortality
and morbidity (3, 4). However, decision making regarding UIA treatment remains challenging and
must consider the balance between the risks of rupture and the risks of treatment (5). Assessment
of rupture risk can assist the decision-making process by identifying UIAs prone to rupture.
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Previous studies have attempted to identify factors related
to aneurysmal rupture by comparing morphologic and
hemodynamic characteristics between ruptured and unruptured
aneurysms (6–8). Hemodynamic features appear to play a key
role, particularly wall shear stress (WSS). However, findings
based on direct comparison of ruptured and unruptured
aneurysms may be invalid, as aneurysmal morphology changes
after rupture (9). The relationship between aneurysmal
hemodynamics and rupture requires further investigation.

The Population, Hypertension, Age, Size of aneurysm, Earlier
subarachnoid hemorrhage, Site of aneurysm (PHASES) score was
developed in 2014 to assess aneurysm rupture risk in patients
with incidentally detected aneurysms. This score predicts the
5-year risk of rupture based on 6 risk factors (population,
hypertension, age, size of aneurysm, earlier subarachnoid
hemorrhage from another aneurysm, site of aneurysm) (10);
hemodynamic factors are not considered. Therefore, this study
aimed to compare aneurysmal hemodynamic characteristics
between patients with different rupture risk as determined by
PHASES score.

METHODS

Patient Selection
This retrospective study was approved by the institutional
review board of our hospital. Written informed consent was
obtained from all patients or their family members. Two
hundred thirty-eight patients with a solitary unruptured saccular
cerebral aneurysm who underwent angiography from August
2016 to July 2019 were enrolled. We excluded patients with
fusiform or dissecting aneurysms, multiple aneurysms, ruptured
aneurysms, and those with unsatisfactory three-dimensional
aneurysm imaging for the hemodynamics simulation. Patient and

TABLE 1 | Patient and aneurysm characteristics.

Low-risk group (n = 140) Intermediate-risk group (n = 83) High-risk group (n = 15) P-value Total (n = 238)

Age (year) 54.9 ± 8.6 55.4 ± 10.0 48.8 ± 11.4 54.7 ± 9.4

<70 136 (97.1) 77 (92.8) 15 (100.0) 0.204 228 (95.8)

≥70 4 (2.9) 6 (7.2) 0 (0) 10 (4.2)

Gender (%) 0.199

Male 40 (28.6) 31 (37.3) 7 (46.7) 78 (32.8)

Female 100 (71.4) 52 (62.7) 8 (53.3) 160 (67.2)

Aneurysm size (mm) 5.3 ± 1.6 9.9 ± 4.4 19.6 ± 4.3 7.8 ± 4.8

<7.0 121 (86.4) 19 (22.9) 0 (0) <0.001 140 (58.8)

7.0–9.9 19 (13.6) 22 (26.5) 0 (0) 41 (17.2)

10.0–19.9 0 (0) 42 (50.6) 5 (33.3) 47 (19.7)

≥20 0 (0) 0 (0) 10 (66.7) 10 (4.2)

Location (%) <0.001

ICA 113 (80.7) 40 (48.2) 9 (60.0) 162 (68.1)

MCA 15 (10.7) 8 (9.6) 0 (0) 23 (9.7)

ACA/Pcom/Posterior 12 (8.6) 35 (42.2) 6 (40.0) 53 (22.3)

ICA, internal carotid artery; MCA, middle cerebral artery; ACA, anterior cerebral artery; PComA, posterior communicating artery.

aneurysmal characteristics including age, gender, hypertension,
and aneurysm size and location were recorded.

Hemodynamics Simulation
Computed fluid dynamic numerical simulation was performed
as described previously (11). Briefly, three-dimensional
patient-specific aneurysm models were reconstructed from
rotational angiography images. Each aneurysm model was
imported into ICEM CFD software (ANSYS Inc., Canonsburg,
PA, USA) to create approximately 3 million finite volume
tetrahedral elements; the largest element was 0.2mm. Then,
CFX V.14.0 software (ANSYS, Inc.) was used to simulate
blood hemodynamics. The governing equations underlying
the calculation were the Navier–Stokes equations. Blood was
assumed as an incompressible Newtonian fluid with a density
of 1,060 kg/m3 and a viscosity of 0.004 kg/m/s. The average
Reynolds number was within the range of normal blood flow
in human cerebral arteries. The vessel wall was Assumed to be
rigid with no-slip boundary conditions. The inflow boundary
condition was a pulsatile period velocity profile of a normal
subject. Three cardiac cycle simulations were performed for
numerical stability and the results of the last cardiac cycle was
recorded. After hemodynamics simulation, the time-averaged
wall shear stress (WSSa) was calculated in each patient by
integrating the WSS magnitude over the cardiac cycle. Then, the
WSSa on the aneurysm was normalized by the average parent
vessel WSS to obtain the normalized WSS (WSSn).

PHASES Score
The PHASES score was calculated for each patient to predict
the 5-year absolute risk of aneurysm rupture. All patients
included in this study were Chinese and scored zero points for
geographical region (12, 13). Patients were divided into 3 groups
according to rupture risk as determined by PHASES score: low-
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TABLE 2 | Aneurysmal hemodynamics in the low-, intermediate-, and high-risk groups.

Low-risk group Intermediate-risk group High-risk group p-value

WSSa (Pa) 4.31 ± 3.20 2.82 ± 2.62 0.79 ± 0.53 p < 0.001

WSSn 0.71 ± 0.26 0.63 ± 0.35 0.32 ± 0.14 p < 0.001

WSSa, time-averaged wall shear stress; WSSn, normalized WSSa by the average parent vessel WSS.

TABLE 3 | Multiple comparisons of aneurysmal wall shear stress among low-, intermediate-, and high-risk groups.

WSSa (Pa) Adjusted p-value WSSn Adjusted p-value

Low-risk group vs. Intermediate-risk group 4.31 ± 3.20 vs. 2.82 ± 2.62 <0.001 0.71 ± 0.26 vs. 0.63 ± 0.35 0.068

Low-risk group vs. High-risk group 4.31 ± 3.20 vs. 0.79 ± 0.53 <0.001 0.71 ± 0.26 vs. 0.32 ± 0.14 <0.001

Intermediate-risk group vs. High-risk group 2.82 ± 2.62 vs. 0.79 ± 0.53 0.004 0.63 ± 0.35 vs. 0.32 ± 0.14 0.001

WSSa, time-averaged wall shear stress; WSSn, normalized WSSa by the average parent vessel WSS; adjusted p-value, p-value adjusted by Bonferroni correction.

risk (0–4 points), intermediate-risk (5–9 points), and high-risk
(≥10 points). The corresponding predicted 5-year rupture risk
for the low-, intermediate-, and high-risk groups is<1.3, 1.3–5.3,
and ≥5.3%, respectively.

Statistical Analysis
Statistical analyses were performed using SPSS software version
17.0 (IBM Corp., Armonk, NY, USA). Continuous data are
expressed as means with standard deviation. Categorical data
are expressed as numbers with percentage. The Kruskal–Wallis
test with post hoc Bonferroni correction was used to analyze
the hemodynamic differences among groups. P < 0.05 was
considered significant.

RESULTS

Patient and Aneurysm Characteristics
Patient and aneurysm characteristics are shown in Table 1. The
mean age of the 238 patients was 54.7 ± 9.4 years. Of the 238
patients, 160 (67.2%) were women. The number of patients in
the low-, intermediate-, and high-risk groups was 140, 83, and
15, respectively.

Hemodynamic Analysis
The results of the hemodynamic analyses are shown in Tables 2,
3. WSSa in the low-, intermediate-, and high-risk groups was
4.31 ± 3.20, 2.82 ± 2.62, and 0.79 ± 0.53 Pa; the corresponding
WSSn values were 0.71 ± 0.26, 0.63 ± 0.35, and 0.32 ± 0.14,
respectively. As shown in Figure 1, WSSa and WSSn values
progressively decreased as PHASES score increased. WSSa and
WSSn significantly differed among the groups (p < 0.001).

Analysis after post hoc Bonferroni correction showed that
WSSa was significantly lower in the high-risk group than the
low-risk group (p <0.001) and the intermediate-risk group (p
= 0.004). Additionally, WSSa was significantly lower in the
intermediate-risk group than the low-risk group (p < 0.001;
Figure 2). Similarly, WSSn was significantly lower in the high-
risk group than the low-risk group (p < 0.001) and the
intermediate-risk group (p = 0.001). Although WSSn was lower

in the intermediate-risk group than the low-risk group, the
difference was not significant (p= 0.068).

DISCUSSION

The decision to treat an UIA remains challenging and must
balance the risk of aneurysmal rupture and the risks of treatment.
Identifying patient and aneurysmal factors associated with higher
rupture risk can assist physicians in treatment decision making.
In this study, we compared aneurysmal hemodynamics between
patients with different risks of rupture as determined by PHASES
score. We found that aneurysmal WSS decreased significantly
as the PHASES score increased. Our findings may improve the
ability to predict UIA rupture and increase understanding of the
mechanism of aneurysmal rupture.

A pure natural history study about aneurysm rupture is
difficult to undertake due to the catastrophic results associated
with aneurysm rupture, and the number of aneurysm ruptures
during follow-up was too small for valid analyses. Previous
studies have usually investigated the role of hemodynamics in
aneurysmal rupture using ruptured aneurysms (6–8). However,
aneurysm shape may change after rupture, which can alter
aneurysmal hemodynamic features. Therefore, hemodynamic
comparisons between unruptured and ruptured aneurysms may
be invalid. Kono et al. analyzed the hemodynamics of an
aneurysm that ruptured soon after imaging and found that WSS
changed by 20–30% after rupture (14). Similarly, Wang et al.
also found altered aneurysmal morphology and a 30% change
in WSS after aneurysm rupture (15). Hemodynamic features
that might predict rupture should ideally be investigated before
aneurysmal rupture.

Few studies have investigated aneurysmal hemodynamic
features just before rupture and most have been case reports
(16, 17). Two different case-control studies that examined
hemodynamic features before rupture have reported that low
WSS is a predictor of aneurysm rupture (18, 19). However, both
had a very small sample size and included only internal carotid
artery aneurysms; therefore, their evidence remains weak. In
our study, the sample size was large and patients were stratified
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FIGURE 1 | The values of aneurysmal time-averaged wall shear stress (WSSa) (A) and normalized WSS (WSSn) (B) in the low-, intermediate-, and high-risk groups.

FIGURE 2 | Time-averaged wall shear stress distribution maps of three cases in low-risk group (A), intermediate-risk group (B), and high-risk group (C). PHASES

score of the three cases was 3, 6, and 11, respectively. The time-averaged wall shear stress progressively decreased as aneurysm rupture risk increased.

according to aneurysm rupture risk as determined by PHASES
score. Consistent with previous studies, we found that WSS
significantly decreased as PHASES score increased and that WSS
was significantly lower in aneurysmswith a higher risk of rupture.

Hemodynamics plays an important role in aneurysmal
rupture and WSS is the most studied hemodynamic parameter
(7, 20). WSS is defined as the tangential drag force per unit
area of endothelial surface (21) and is transduced through
endothelial cell mechanoreceptors into biological signals that can
regulate gene expression, endothelial cell function, and blood
vessel structure (22). Low WSS can cause spatial disorganization
of endothelial cells and degeneration and structural fragility
of the aneurysmal wall (23, 24). Moreover, atherogenic and
proinflammatory signal pathways may be activated in endothelial
cells under low WSS, which can predispose the aneurysmal wall
to thinning and rupture (25, 26).

Other risk factors (such as hypertension and age)
associated with aneurysm rupture may also affect the
aneurysmal hemodynamic via cerebral vasculature remodeling.
Hypertension could significantly augment the increase in vessel

length and tortuosity, which make the vessel more vulnerable
to flow-induced damage (27). Moreover, Jeon et al. found that
hypertension was a significant predictive factor for aneurysm
growth (28). Zhang et al. demonstrated that with increase of
patient age, cerebral artery bifurcation angle was significantly
increased and changes of bifurcation angle were associated with
significant hemodynamic stress alterations (29).

To help physicians assess aneurysmal rupture risk and guide
clinical decision making, several rupture predictions models
that integrate multiple conventional rupture risk factors have
been created. The PHASES score is one of these models that
has been widely studied. The PHASES score was developed
by pooling data from six large longitudinal aneurysm studies
and provides the 5-year absolute risk of aneurysm rupture
based on 6 risk factors (population, hypertension, age, size
of aneurysm, earlier subarachnoid hemorrhage from another
aneurysm, site of aneurysm) (10). It reflect the trends of
aneurysm rupture risk and has been applied in some studies.
Bijlenga et al. found that PHAESE scores of stable UIA patients
were significantly lower than high risk of rupture group (30).
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Backes reported that higher PHASES scores were associated
with an increased risk of aneurysm growth and aneurysm
growth has a strong association with aneurysm rupture (31).
However, the accuracy, sensitivity, and specificity of the PHASES
score have been criticized (30). Several recent studies have
reported that aneurysms in patients with a low PHASES score
are still associated with a non-negligible likelihood of rupture
(32, 33). One reason may be that the prevalence of patients
with a low PHASES score is high, thus most instances of
aneurysmal subarachnoid hemorrhage come from these patients
with a low PHASES score. The other reason may be that
the PHASES scoring system does not include one or more
factors that are important predictors of aneurysm rupture,
such as hemodynamic factors. A multidimensional prediction
model that includes important morphological and hemodynamic
parameters may lead to a better assessment of aneurysmal
rupture risk.

This study has several limitations. First, it was retrospective
in design and included patients from only one center. Second,
we used several assumptions (rigid wall, laminar flow, and
Newtonian blood), which might have introduced bias. Third,
the PHASES score is not the gold standard to identify patients
with UIA at high risk of rupture, although it is widely accepted.
Fourth, only patients with a solitary intracranial aneurysm were
included; therefore, our findingsmay not be applicable to patients
with multiple aneurysms. Finally, the sample size was limited
and future prospective multicenter studies with a large cohort are
warranted to validate our results.

CONCLUSION

Low WSS was significantly associated with higher risk of
intracranial aneurysm rupture as determined by PHASES score,
indicating that hemodynamics may play an important role in
aneurysmal rupture. In the future, a multidimensional rupture

risk prediction model that includes hemodynamic parameters
should be investigated.
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