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Abstract

Peptidoglycan is an essential and specific component of the bacterial cell wall and therefore is an ideal recognition
signature for the immune system. Peptidoglycan recognition proteins (PGRPs) are conserved from insects to mammals and
able to bind PGN (non-catalytic PGRPs) and, in some cases, to efficiently degrade it (catalytic PGRPs). In Drosophila, several
non-catalytic PGRPs function as selective peptidoglycan receptors upstream of the Toll and Imd pathways, the two major
signalling cascades regulating the systemic production of antimicrobial peptides. Recognition PGRPs specifically activate
the Toll pathway in response to Lys-type peptidoglycan found in most Gram-positive bacteria and the Imd pathway in
response to DAP-type peptidoglycan encountered in Gram-positive bacilli-type bacteria and in Gram-negative bacteria.
Catalytic PGRPs on the other hand can potentially reduce the level of immune activation by scavenging peptidoglycan. In
accordance with this, PGRP-LB and PGRP-SC1A/B/2 have been shown to act as negative regulators of the Imd pathway. In
this study, we report a biochemical and genetic analysis of PGRP-SB1, a catalytic PGRP. Our data show that PGRP-SB1 is
abundantly secreted into the hemolymph following Imd pathway activation in the fat body, and exhibits an enzymatic
activity towards DAP-type polymeric peptidoglycan. We have generated a PGRP-SB1/2 null mutant by homologous
recombination, but its thorough phenotypic analysis did not reveal any immune function, suggesting a subtle role or
redundancy of PGRP-SB1/2 with other molecules. Possible immune functions of PGRP-SB1 are discussed.
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Introduction

In the last decades, peptidoglycan (PGN), an essential compo-

nent of virtually all bacteria, has appeared as a key player in host-

microorganism interactions [1]. This glycopeptidic polymer is a

component of the cell wall of both Gram-negative and Gram-

positive bacteria. It consists of long glycan chains of alternating N-

acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc)

residues, which are cross-linked together via short peptide bridges.

Because PGN is essential to bacteria but absent from eukaryotic

cells, it makes an ideal indicator for metazoan immune systems of

the presence of bacteria within the organism. In addition, the PGN

composition and structure can be markedly different between

bacterial species, allowing the immune system to further

distinguish between different types of intruders. For example, the

PGN of Gram-negative and Gram-positive bacilli-type bacteria

differs from the PGN of most Gram-positive bacteria by the

replacement of lysine (Lys) with meso-diaminopimelic acid (DAP) at

the third position in the peptide chain [2].

On the host side, some protein families have evolved the capacity

to interact with PGN, e.g. lysozymes, Nods (for Nucleotide-binding

Oligomerisation Domain), and peptidoglycan recognition proteins

(PGRPs, or PGLYRPs in the mammalian nomenclature). PGRPs

form a conserved family of proteins sharing a 160 amino acid

domain (the PGRP domain) with similarities to bacteriophage T7

lysozyme, a zinc-dependent N-acetylmuramoyl-L-alanine amidase

[3,4]. First identified in Bombyx mori [5], PGRPs have since been

intensively studied in several insects and vertebrates, including

mammals [4,6,7]. These numerous studies have highlighted the

diversity and importance of PGRP functions in immunity.

PGRPs have been classified in two groups according to their

enzymatic activity. Indeed, some PGRPs have lost their ancestral

amidase activity (non-catalytic PGRPs), while others can still

efficiently cleave PGN (catalytic PGRPs). Non-catalytic PGRPs

have been implicated in functions as diverse as immune receptors,

regulators and effectors [4]. Catalytic PGRPs have been shown to

down-regulate the immune response in insects, act as pro-

inflammatory cytokines in mice, and have bactericidal activity in

zebrafish [8,9,10,11,12]. Recently, it has been reported that

mammalian PGRPs can prevent aberrant inflammatory responses

by modulating the composition of the intestinal bacterial flora, a

function in accordance with the strong expression of PGRPs along
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the digestive tract [12]. Moreover, catalytic PGRPs also partici-

pate in the establishment of symbiotic interactions in both squid

and insects by preventing the activation of an immune response by

their bacterial symbiont [13,14,15,16].

The Drosophila genome encodes 13 PGRPs and many of them

function both as activators and regulators of the Toll and Imd

pathways [4,17,18]. These two major signalling cascades regulate

the expression of antimicrobial peptides and other immune genes

by the fat body after a systemic infection [19]. Activation of both

pathways by bacteria relies on the sensing of specific forms of PGN

by non-catalytic PGRPs [20]. PGRP-SA and PGRP-SD are

secreted proteins circulating in the hemolymph that activate the

Toll pathway in response to the Lys-type PGN of Gram-positive

bacteria [21,22]. PGRP-LC acts as a transmembrane receptor of

Gram-negative and bacilli DAP-type PGN upstream of the Imd

pathway, with the help of PGRP-LE [23,24,25,26,27]. The Imd

pathway can be activated by both polymeric and monomeric

DAP-type PGN, and the minimal PGN motif for its efficient

induction is tracheal cytotoxin (TCT, or GlcNAc-MurNAc(anhy-

dro)-L-Ala-c-D-Glu-meso-DAP-D-Ala; [28,29]). TCT provides an

ideal indication of Gram-negative bacterial activity since this

monomer, which is located at the terminus of PGN strands, is

released during cell growth and division.

While several Drosophila non-catalytic PGRPs function as

pattern recognition receptors for PGN, the catalytic PGRPs have

demonstrated (PGRP-SC1A/B, LB, SB1) or predicted (PGRP-

SB2, SC2) amidase activity that removes peptides from PGN

glycan chains, thereby reducing or eliminating its immunological

activity [8,30,31,32]. In accordance with this enzymatic activity,

PGRP-SC1A/B/2 and PGRP-LB have been shown to modulate

Imd pathway activation in vivo by scavenging PGN, and also TCT

in the case of PGRP-LB [8,9]. PGRP-SC1A has also been

implicated in the phagocytosis of Staphylococcus aureus [33]. Among

catalytic Drosophila PGRPs, only the function of PGRP-SB1 and

PGRP-SB2 (which is only expressed at pupal stage; [34] - see

Fig. 1A) had not yet been studied in vivo.

In this study, we provide a biochemical and genetic analysis of

PGRP-SB1. Our data show that PGRP-SB1 is abundantly

secreted into the hemolymph following Imd pathway activation

in the fat body. Biochemical studies demonstrate that PGRP-SB1

has enzymatic activity towards DAP-type PGN but does not cleave

TCT. Importantly, we generated a PGRP-SB1/PGRP-SB2 double

mutant by homologous recombination. We show that PGRP-SB1/

2 mutants are viable and do not display a striking phenotype in

any of the classical immune parameters tested: resistance to

infections, local and systemic activation of Toll and Imd pathways

after septic or oral infections, and bacterial persistence in the fly.

Results

PGRP-SB1 is strongly induced by the Imd pathway upon
infection with bacteria containing DAP-type PGN

To characterize the function of PGRP-SB1, we first analyzed its

expression pattern. A Real Time quantitative Polymerase Chain

Reaction (RT-qPCR) analysis revealed a basal level of PGRP-SB1

expression throughout Drosophila development; however, its

expression level was higher at pupal stage, consistent with a

previous Northern blot analysis (Fig. 1A; [34]). Previous micro-

array analysis performed in adult males indicated that PGRP-SB1

is induced 35-fold following septic injury with a mixture of

Micrococcus luteus and Escherichia coli [35]. The comparison of the

different expression profiles revealed that PGRP-SB1 was by far the

strongest induced PGRP after bacterial infection (Fig. 1B). To

investigate whether PGRP-SB1 expression was equally induced by

different bacterial challenges, we monitored PGRP-SB1 expression

after injection of the Gram-negative bacteria Erwinia carotovora,

Gram-positive Listeria monocytogenes or Gram-positive M. luteus.

PGRP-SB1 expression was strongly induced 4 h after infection with

E. carotovora or L. monocytogenes, both of which contain DAP-type

PGN, and remained sustained during the course of infection

(Fig. 1C). In contrast, flies infected with M. luteus, which possesses

Lys-type PGN, exhibited only a slight and brief induction of

PGRP-SB1. In agreement with the microarray analysis [35], we

confirmed that the induction of PGRP-SB1 expression after

E. carotovora or L. monocytogenes injection did not occur in Relish

mutant flies lacking a functional Imd pathway (Fig. 1C).

We next analyzed the expression profile of PGRP-SB1 protein

using a mouse serum raised against PGRP-LB [8] that cross-reacts

with PGRP-SB1 (data not shown). Western blots indicated that

PGRP-SB1 expression was weak in unchallenged adult males,

while the expression level increased 6 h after septic injury with

E. carotovora and reached a maximum at 22 h after infection

(Fig. 1D). PGRP-SB1 was detected as a single band of 18 kDa as

predicted by the genome annotation. In agreement with the

mRNA analysis, PGRP-SB1 was not induced after injection of

E. carotovora in Relish mutant flies (Fig. 1E). PGRP-SB1 was

abundant in protein extracts from both the hemolymph and the fat

body (Fig. 1F). This indicates that PGRP-SB1 is produced in the

fat body upon systemic infection and secreted into the hemo-

lymph, in agreement with the presence of a signal peptide in the

protein.

Altogether, these results indicate that stimulation of the Imd

pathway by bacteria containing DAP-type PGN leads to rapid

PGRP-SB1 synthesis and secretion into the hemolymph.

PGRP-SB1 cleaves DAP-type PGN and specific PGN
fragments, but does not degrade TCT

PGRP-SB1 has been shown to have an amidase activity towards

DAP-type PGN [32]. PGRP-SB1-mediated PGN cleavage was

much weaker towards Lactobacillus casei Lys-type PGN and no

activity was detected towards S. aureus and M. luteus Lys-type PGN

[32]. We extended this analysis by identifying the minimum PGN

motif recognized by PGRP-SB1. In agreement with Mellroth and

Steiner, incubating purified DAP-type PGN derived from E. coli

and L. monocytogenes (see structure in Fig. 2A) with PGRP-SB1 at

37uC resulted in the release of soluble tri-, tetra-, tri-tetra- and

tetra-tetra-peptides, indicative of an N-acetyl muramoyl-L-alanine

amidase activity. Such an activity was not detected against Lys-

type PGN derived from Enterococcus faecalis or Streptococcus pneumoniae

(Fig. 2B, 2C).

TCT (GlcNAc-MurNAc(anhydro)-L-Ala-c-D-Glu-meso-DAP-

D-Ala) has been previously identified as the minimum PGN motif

capable of efficiently inducing the Imd pathway [28,29]. No

amidase activity was observed following incubation at 37uC for

16 h of 2 mg of PGRP-SB1 with 20 nmol of TCT (Fig. 2C)

contrary to what has been shown with PGRP-LB [8]. However,

incubating PGRP-SB1 in the same conditions with TCT dimer

resulted in the cleavage at only one of the two putative amidase

sites, generating disaccharide-octapeptide and free dissacharide

(Fig. 2C). The same experiment with PGRP-LB resulted in the

production of octapeptide and disaccharide [8]. We next analyzed

the effect of PGRP-SB1 on monomer and dimer (with no anhydro

bond) that were purified from mutanolysin treated E. coli DAP-

type PGN. Both the monomer (GlcNAc-MurNAc tetrapeptide

unit) and dimer of muropeptide were hydrolyzed by PGRP-SB1

but PGRP-SB1 was much more active on the dimer (243U

compared to 4U for the monomer). Kinetic studies of the

hydrolysis of GlcNAc-MurNAc tetrapeptide dimer showed a two

Drosophila Immunity: Analysis of PGRP-SB1
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step-reaction, the faster one leading to disaccharide-octapeptide

and disaccharide and the slower one leading to octapeptide and

disaccharide (Fig. 2C). This prompted us to test whether such a

preference of PGRP-SB1 for dimeric structures was similarly

observed when polymeric PGN was used as substrate. E. coli PGN

was treated by PGRP-SB1 for different times and the resulting

modifications of the polymer structure were analyzed by a classical

procedure based on HPLC analysis of the pattern of muropeptides

released after degradation of PGN material by SltY. It was

observed that PGRP-SB1 indeed also hydrolyzed dimeric

structures present in PGN much faster (at least 10-fold) than

monomeric ones (Fig. 2C).

Collectively, our results demonstrate that PGRP-SB1 degrades

DAP-type PGN into non-immunostimulatory fragments, but does

not degrade TCT, a key activator of the Imd pathway. We also

observed that the efficacy of PGRP-SB1 is dependent on two

factors, the size of the PGN fragments (monomer, dimer or

polymer) and the MurNAc configuration (anhydro or not).

Generation of a PGRP-SB1/PGRP-SB2 mutant by
homologous recombination

In order to address the function of PGRP-SB1 in vivo, we aimed

to generate a null mutant by homologous recombination. The

PGRP-SB1 locus (720 bp) is located on the 3L chromosome at less

than 150 bp from PGRP-SB2 (615 bp; Fig. 3A). The two

corresponding proteins, of 190 and 182 amino acids respectively,

share 68% similarity (51% identity), but the genes differ in their

expression, as PGRP-SB2 is mainly expressed at the pupal stage

Figure 1. Expression profile of PGRP-SB1. (A) RT-qPCR measurements reveal a low basal expression of PGRP-SB1 at all stages of the Drosophila life
cycle, with a slight enhancement in pupae, while PGRP-SB2 is solely expressed at pupal stage. (B) The expression profile of PGRP-SB1 shows rapid
induction after septic injury with a mixture of E. coli and M. luteus. This induction is much stronger than that observed for other PGRPs. The microarray
data for this figure were extracted from [42]. (C) RT-qPCR analyses indicate that PGRP-SB1 expression is induced upon immune challenge with Gram-
negative bacteria E. carotovora or Gram-positive bacteria L. monocytogenes, both of which contain DAP-type PGN. PGRP-SB1 is not induced upon L.
monocytogenes infection in Relish flies deficient in Imd pathway activation. Septic injury with the Lys-type PGN containing Gram-positive bacteria M.
luteus only weakly induced PGRP-SB1 expression. Or: Oregon (wild-type); RelE20: Relish mutant flies. (D) The expression profile of PGRP-SB1 during the
course of an infection is revealed by Western blot analysis. Proteins were extracted from male flies collected at different time points after infection.
Wild-type (WT): Oregon. (E) PGRP-SB1 expression is induced upon immune challenge in wild-type flies but not in Relish flies. Wild-type (WT): Oregon;
RelE20: Relish mutant flies. (F) PGRP-SB1 expression is strongly induced in the fat body and the protein is secreted into the hemolymph. Western blot
analyses were performed with proteins extracted from fat body or hemolymph derived from female flies collected at 10 h or 22 h post-infection,
respectively. Hemolymph samples of 50 female flies were used to extract proteins, of which 15 mg were loaded (see Material and Methods). The
absence of a signal with a-tubulin antibody indicates that the hemolymph preparations were not contaminated by cells.
doi:10.1371/journal.pone.0017231.g001
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Figure 2. Amidase activity and substrate specificity of recombinant PGRP-SB1. (A) Structure of E. coli PGN (DAP-type). The glycan chains
are formed of alternating GlcNAc (G) and MurNAc (M) residues. Those of E. coli PGN end with a 1,6-anhydro-MurNAc residue (*). The tetrapeptide
motif corresponds to the TCT. Arrows indicate the cleavage sites of N-acetylmuramoyl-L-alanine amidases. The main peptides released following
treatment of cross-linked PGN with PGRP-SB1 are the tetrapeptide L-Ala-c-D-Glu-meso-DAP-D-Ala and its dimer, the octapeptide. (B) Specificity of
PGRP-SB1 on Lys-type and DAP-type PGN was determined by measuring its amidase activity on PGN derived from four bacterial species: E. coli,
L. monocytogenes (DAP-type PGN) and E. faecalis and S. pneumoniae (Lys-type PGN). The amidase activity was followed by analyzing by HPLC the
release of tri- and tetrapeptides and of the corresponding dimers in solution, incubating for 26 h 100 mg of PGN with 2 mg of PGRP-SB1. (C) The PGRP-
SB1 activity was determined on E. coli polymeric PGN and various purified PGN fragments. These fragments were obtained after treatment of E. coli
PGN either with mutanolysin or SltY, generating monomers and dimers of muropeptides (GlcNAc-MurNAc-tetrapeptide units) or anhydro-
muropeptides (GlcNAc-MurNAc(anhydro)-tetrapeptide units, i.e. TCT), respectively. Substrates and products were separated by HPLC, characterized
and quantified. The results are summarized in the scheme and the PGRP-SB1 activity is given in units, 1 unit representing 1 nmol of substrate
hydrolyzed per min and per mg of PGRP-SB1.
doi:10.1371/journal.pone.0017231.g002
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(Fig. 1A and [34]). We used a homologous recombination approach

to replace approximately 1.5 kb, corresponding to the ORFs of the

two genes, with a copy of the white gene (Fig. 3A). We obtained

several independent fly lines and two of them, PGRP-SBD5 and

PGRP-SBD9, were selected for further analysis. We used RT-qPCR

and Western blot to confirm the absence of PGRP-SB2 transcript

and PGRP-SB1 protein respectively in homozygous PGRP-SBD5

and PGRP-SBD9 mutants (Fig. 3B and data not shown). We checked

that the PGRP-SB1/2 deletion did not affect the expression of the

flanking genes CG13026 and Dbp73D (Fig. 3A and data not shown).

As both alleles produced identical results, we only report here data

obtained with PGRP-SBD5. These mutants were perfectly viable and

fertile, exhibited no visible developmental defects and did not differ

from wild-type flies in longevity (Fig. 3C).

Analysis of the immune phenotype of PGRP-SBD5

mutants
PGRP-SBD5 mutants exhibit a wild-type resistance to

systemic microbial infections. To determine the function of

PGRP-SB1 in the Drosophila immune response, we assayed the

susceptibility of PGRP-SBD5 mutants to injection of different classes

of bacteria. PGRP-SBD5 mutants were as resistant as wild-type flies

to infections by DAP-type Gram-negative bacteria E. carotovora,

DAP-type Gram-positive bacteria L. innocua and Lys-type Gram-

positive bacteria E. faecalis (Fig. 4).

Induction of the systemic immune response after

injection of bacteria or PGN is not affected in PGRP-SBD5

mutants. We next tested the ability of PGRP-SBD5 mutants to

mount an efficient but regulated immune response after injection

of various bacteria. Other members of the PGRP family have been

implicated in both activation of the Toll and Imd pathways

(PGRP-SA, PGRP-LC, PGRP-LE and PGRP-SD) and down-

regulation of the Imd pathway (PGRP-LF, PGRP-LB and PGRP-

SC1A/B/2) [4]. We monitored Toll and Imd pathway activation

after different types of immune challenge by measuring the

expression of two of their target genes, Drosomycin (Drs) and

Diptericin (Dpt) respectively. PGRP-SBD5 mutants expressed Drs and

Dpt at a wild-type level after injection of E. carotovora (Fig. 5A),

M. luteus (Fig. 5B), L. innocua (Fig. 5C and 5D), or E. coli PGN

(Fig. 5E). However, Dpt expression was slightly higher in PGRP-

SBD5 mutants 24 h after infection with L. innocua and 6 h after

injection of E. coli PGN (Fig. 5C and 5E). The mild over-activation

of the Imd pathway at one time point after these two challenges

could indicate a moderate action of PGRP-SB1 as a negative

regulator, likely to be masked in most of the cases by the action of

more efficient regulators such as PGRP-LB.

Neither local nor systemic activation of the Imd pathway

after E. carotovora oral infection is affected by the loss of

PGRP-SB1/2. PGRP-SB1 is strongly induced in the fly gut after

oral infection with Gram-negative bacteria ([36] and data not

shown), suggesting a role in the intestinal immune response. We

evaluated such a function by measuring the level of induction of

the Imd pathway both locally and systemically after E. carotovora

oral infection. In wild-type adult flies, E. carotovora ingestion

induces a local immune response but barely any systemic immune

response in the fat body. In contrast to PGRP-LB RNAi flies [8],

PGRP-SBD5 mutants did not present an increased local immune

response or a strong activation of the systemic response as

compared to wild-type flies (Fig. 5F and 5G). We conclude that

PGRP-SB1/2 do not play a major role in the regulation of

antibacterial peptide genes after oral infection of adult flies.

E. carotovora and L. innocua persistence is similar in

PGRP-SBD5 mutants and wild-type flies. Our data indicate

that, in contrast to all PGRPs studied so far, the lack of PGRP-SB1/

Figure 3. Generation of a null PGRP-SB1/2 mutation by
homologous recombination. (A) Schematic representation of the
PGRP-SB1/2 deletion. The gene map was adapted from FlyBase (http://
flybase.org/) and includes PGRP-SB1, PGRP-SB2 and the neighboring
genes. The deleted segment replaced by the white gene (grey box) and
the flanking sequences used for recombination (dotted lines) are
indicated. (B) PGRP-SB1 is not expressed in PGRP-SBD5 and PGRP-SBD9

mutant flies. The PGRP-SB1 protein cross-reacts with a serum raised
against PGRP-LB and appeared as a band of about 18 kDa on this
Western blot (arrow head). The band was detected in wild-type female
extracts (Or: Oregon) 6 h after injection of E. Carotovora. The protein
was also detected in daughterless-Gal4/UAS-PGRP-SB1 (da.SB1) flies
over-expressing PGRP-SB1 in unchallenged condition. In contrast, the
protein was not detected in uninfected wild-type flies or in PGRP-SBD5

(SBD5) and PGRP-SBD9 (SBD9) mutants 6 h after injection of E. Carotovora.
SI: septic injury; UC: Unchallenged. (C) Lifespan is not affected in PGRP-
SBD5 mutant flies. The survival rates (%) of WT and PGRP-SBD5 mutant
flies at 29uC were measured over 36 days and did not reveal any
differences in longevity. Each line represents an independent experi-
ment for that genotype and gives the mean survival of 2-3 cohorts of 20
flies within that experiment.
doi:10.1371/journal.pone.0017231.g003
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2 does not affect either Toll or Imd pathway activity. Strikingly,

PGRP-SB1 is the most highly inducible PGRP, with an induction

level similar to that observed for antimicrobial peptide genes. A

previous study has indicated that PGRP-SB1 displays some

antibacterial activity against B. megaterium in vitro [32]. This

suggests that PGRP-SB1 could be an effector molecule,

participating in microbe elimination. To test this hypothesis

we monitored the persistence of E. carotovora, L. innocua and

B. megaterium 24 h and 48 h after their injection into wild-type or

PGRP-SBD5 mutant flies. Whole fly extracts were plated on LB or

BHI-agar medium to assess the number of recovered bacterial

colonies at different time points after infection. Our data indicated

that E. carotovora (Fig. 6A) and L. innocua (Fig. 6B) did not persist

better in PGRP-SBD5 mutants than in wild-type flies, although

surprisingly, the median persistence of E. carotovora at 48 h was

somewhat lower in PGRP-SBD5 mutants than in wild-type flies.

B. megaterium appeared unable to survive injection into flies,

preventing an assessment of the effect of PGRP-SB1/2 mutations

on its persistence (data not shown).

PGRP-SB1 over-expression is not sufficient to protect
from L.innocua infection

PGRP-SB1 being an efficient enzyme for DAP-type PGN

degradation, we last aimed to test the hypothesis that PGRP-SB1

had a protective function against Gram-positive DAP-type

containing bacteria, such as Listeria. Indeed, in these bacteria the

PGN participates to the outer cell wall layer and could thus be

directly accessible for PGRP-SB1, while in Gram-negative

bacteria the PGN is ‘‘hidden’’ by the outer lipopolysaccharide

layer. Therefore, we injected L. innocua in flies over-expressing

PGRP-SB1 and assessed their viability as well as the bacteria

persistence in these flies as compared to wild-type flies. Our data

show that PGRP-SB1 over-expression is not sufficient to protect

from the morbidity associated with this infection, or to decrease

the number of persisting bacteria in the fly at 24 hours (Fig. 7).

In conclusion, our thorough analysis of various immune

parameters (resistance to infections, activation of local and

systemic immune responses after infection by injection or feeding,

bacterial persistence in the fly) did not reveal a striking immune

function for PGRP-SB1 and SB2, despite the use of a null mutant.

Discussion

The PGRP family has been thoroughly studied in the last

decade, both in Drosophila and in vertebrates. We present here an

extensive analysis of the expression, enzymatic activity and

immune phenotype of PGRP-SB1, one of the last Drosophila PGRPs

(alongside PGRP-LA and PGRP-LD) whose functions remain

uncharacterized in vivo. This is also the first analysis of a complete

genetic knockout of two catalytic PGRPs in Drosophila, as

previously published in vivo studies of PGRP-LB and PGRP-SC1/2

have relied either on RNA interference or on uncharacterized

mutations [8,9,33].

In this study, we have demonstrated that PGRP-SB1 expression

is highly induced after infection, far more than for any other

PGRP and to an extent similar to that of effectors such as

antimicrobial peptide genes. PGRP-SB1 is abundantly produced

in the fat body, and then released into the hemolymph. It has an

amidase activity against DAP-type PGN. Taken together with the

in vitro bactericidal activity of PGRP-SB1 against a DAP-type

containing bacteria [32] these data suggest an effector function.

Although our mutant analysis did not reveal any increase in

susceptibility to infection or in bacterial persistence in PGRP-SBD5

flies, it is expected that the removal of one out of many effectors

Figure 4. PGRP-SB1 is not required for resistance to bacterial
infections. The survival rates (%) of PGRP-SBD5 mutant flies injected
with the DAP-type PGN containing Gram-negative bacteria E. caroto-
vora (A), the Lys-type PGN containing Gram-positive bacteria E. faecalis
(B) or the DAP-type PGN containing Gram-positive bacteria L. innocua
(C) were compared to wild-type flies Oregon (Or) and Canton-S (Cs) and
flies defective in either the Toll pathway (spätzle mutants; spzrm7) or the
Imd pathway (Relish mutants; RelE20). PGRP-SBD5 mutation did not
modify the fly resistance to these bacterial infections. Optical densities
of the bacterial strains used in these experiments are indicated in the
Material and Methods section. One representative experiment out of
three (E. carotovora, L. innocua) or two (E. faecalis) repeats is shown.
doi:10.1371/journal.pone.0017231.g004
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would not induce a major immune deficiency, due to redundancy

or synergy. This could also explain the non-protective effect of

PGRP-SB1 over-expression after L. innocua infection. For example,

PGRP-SB1 could need the activity of another protein to have

sufficient access to its PGN substrate. On the other hand, PGN

cleavage by PGRP-SB1 could increase with its over-expression but

not be sufficient to eliminate the bacteria in absence of expression

of a co-factor. Therefore a function of PGRP-SB1 as an effector

remains a possibility.

There are several other possible explanations for the lack of an

immune phenotype in the PGRP-SBD5 mutants. Firstly, PGRP-

SB1/2 could have a function at a specific stage or tissue that would

not be revealed by our analysis, based as it was on whole organism

infections/responses and restricted to the adult stage. Indeed,

Figure 5. Antimicrobial peptide gene expressions in PGRP-SB1/2 mutant flies after different immune challenges. (A) Injection of
E. carotovora in PGRP-SBD5 mutants induced Diptericin (Dpt) expression, a read-out of the Imd pathway activation, at a similar level to wild-type flies.
(B) PGRP-SBD5 mutants injected with M. luteus expressed Drosomycin (Drs), a read-out of the Toll pathway activation, at a wild-type level. (C) Injection
of L. innocua in PGRP-SBD5 mutants induced Dpt expression at a similar level to wild-type flies, except at 24 h after infection when Dpt expression was
slightly higher in PGRP-SBD5 mutants than in wild-type flies. (D) Injection of L. innocua in PGRP-SBD5 mutants induced Drs expression at a similar level
to wild-type flies. (E) Injection of E. coli PGN in PGRP-SBD5 mutants induced Dpt expression at a similar level to wild-type flies, except at 6 h after
injection when Dpt expression was slightly higher in PGRP-SBD5 mutants than in wild-type flies. (F and G) PGRP-SBD5 mutants orally infected (OI) with
E. carotovora expressed Dpt at a wild-type level both locally in the gut (F) and systemically in the fat body (G). UC: unchallenged. Dpt or Drs gene
expression was monitored by RT-qPCR performed on total RNA extracts from wild-type (WT; Oregon) and PGRP-SBD5 mutant females. mRNA levels
were normalized to RpL32 mRNA. (A–E) The ratios indicated are either relative to wild-type ratio at 24 h (A and B) or 6 h (C–E) after infection, or
absolute (F–G). The results are presented as the mean and standard error of three independent experiments.
doi:10.1371/journal.pone.0017231.g005
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PGRP-SB2 is solely expressed at the pupal stage, suggesting that it

could have a role during metamorphosis, although we did not

notice any developmental defect of PGRP-SBD5 mutants. Secondly,

PGRP-SB1 could have a more subtle immune function against a

specific natural pathogen of the fly, untested here, or in other

immune reactions, e.g. phagocytosis (as published for PGRP-

SC1A [33]). Thirdly, as the deletion we have generated affects

both PGRP-SB1 and SB2, we cannot exclude the possibility that

the phenotype of one mutation is suppressed by the phenotype of

the other, as could be the case if the functions of these two genes

were antagonistic. However, we consider this hypothesis unlikely

because of the restriction of PGRP-SB2 expression to the pupal

stage. Finally, PGRP-SB1 could have redundant regulatory

functions with other catalytic PGRPs, as suggested by the mild

and time restricted over-activation of the Imd pathway we noticed

after injection of L. innocua bacteria and E. coli PGN. This

hypothesis could be addressed by generating fly lines carrying

mutations of multiple PGRPs.

Our data demonstrate that while it efficiently degrades

polymeric and DAP-type PGN fragments, PGRP-SB1, unlike

PGRP-LB, does not cleave TCT ([8] and this study). This suggests

that the presence of large quantities of PGRP-SB1 in the

hemolymph, in spite of degrading PGN polymers, would not fully

suppress Imd pathway activation by Gram-negative bacteria, due

Figure 6. Persistence of E. carotovora and L. innocua bacteria is
not affected by the PGRP-SBD5 mutation. Persistence of
E. carotovora (A) and L. innocua (B) bacteria in PGRP-SBD5 mutant flies
and wild-type flies was assayed at 0 h, 24 h and 48 h after injection, by
spotting serial dilutions of fly extracts on LB- or BHI-agar Petri dishes (20
flies per data point). The values, which correspond to the results of
three independent experiments, each made in duplicate, indicate the
number of CFU (colony-forming unit) per fly. The median is indicated by
a horizontal line. Wild-type flies: Oregon (Or); PGRP-SBD5 mutant flies:
SBD5.
doi:10.1371/journal.pone.0017231.g006

Figure 7. Over-expression of PGRP-SB1 is not sufficient to
protect from L. innocua infection. (A) The survival rate (%) of flies
over-expressing PGRP-SB1 (daughterless(da)-Gal4/UAS-PGRP-SB1;
da.SB1) injected with the DAP-type PGN containing Gram-positive
bacteria L. innocua was compared to the survival rate of wild-type flies
Oregon (Or) and flies defective in the Imd pathway (Relish mutants;
RelE20). PGRP-SB1 over-expression did not modify the fly resistance to
this infection. L.i.: L. innocua; UC: unchallenged. One representative
experiment out of three is shown. (B) Persistence of L. innocua bacteria
in flies over-expressing PGRP-SB1 (da.SB1) and wild-type flies (Oregon;
Or) was assayed at 0 h and 24 h after injection, by spotting serial
dilutions of fly extracts on LB- or BHI-agar Petri dishes (20 flies per data
point). The values, which correspond to the results of two independent
experiments, each made in duplicate, indicate the number of CFU
(colony-forming unit) per fly. The median is indicated by a horizontal
line.
doi:10.1371/journal.pone.0017231.g007
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to the fact that these bacteria constantly release TCT during

growth and division. By contrast, PGRP-LB degrades all

immunogenic forms of DAP-type PGN and thus can completely

suppress the immune response to PGN [8]. This substrate

specificity among catalytic PGRPs might reflect a requirement

for an effector function which does not eliminate the immune

response. The specificity of PGRP-SB1 enzymatic activity could

contribute to the elimination of bacteria by degrading their cell

wall, while allowing TCT to accumulate and continue to activate

the other branches of the immune response. Similarly, the

cleavage of PGN could allow a distinction to be made between

dead bacteria, whose lysis would release polymeric PGN, and

alive, rapidly dividing bacteria, which are potentially harmful and

would release TCT. The substrate specificity of PGRPs might thus

allow fine-tuning of the immune response. From this point of view,

it would be interesting to determine the substrate specificity and

minimal molecular requirements of PGRP-SC1A, SC1B and SC2.

Recent work on PGRPs has highlighted the complexity of the

interactions between bacterial PGN and host proteins [37]. In

addition, it seems that these interactions have evolved differently

depending on needs and bacterial exposure of the host species.

Thanks to the broad spectrum of their ligand and substrate

specificities, PGRPs function both as symbiosis facilitators and as

immune activators, effectors and regulators [4,13,14,15,16,18].

This diversification reflects the importance of PGN/host protein

interactions for the communication between symbiotic, commen-

sal or pathogenic bacteria and their host. We believe that the

systematic analysis of PGRP expression patterns, enzymatic

activities and in vivo functions is a powerful approach to decipher

the complexity of these interactions.

Materials and Methods

Fly stocks and transgenic and mutant generation
OregonR flies were used as wild-type controls. spzrm7 and RelE20

alleles are null mutations in spätzle and Relish respectively [20,38].

Drosophila stocks were maintained at 25uC using standard fly

medium.

A deletion of the PGRP-SB1 and SB2 locus was obtained by

homologous recombination [39]. 3,715 bp and 4,252 bp sequences of

DNA flanking the 59 and 39 ends, respectively, of the PGRP-SB1/2

locus (Fig. 3A) were cloned in the pW25 vector [39]. The primers used

were F: 59-GCAGCGGCCGC CAGTTGCAATTCCACGCC-39

and R: 59-CGTGGTACCCTTTCGGTCACCGATCTGC-39 for

the 3,715 bp fragment, and F: 59-GCAGGCGCGCCTTTTACGG-

GAAACGAAGCG-39 and R: 59-CGTCGTACGAATCCGGCA-

CATGTGCG-39 for the 4,252 bp fragment. 1,525 bp of PGRP-SB1

and SB2 sequences (3L: from nucleotide 16719625 to 16721150) were

replaced by the white gene.

To generate UAS-PGRP-SB1 transgenic flies, a full-length cDNA

of PGRP-SB1 (using the CG9681_cDNA full length IP02762 from

DGRC) was inserted in the pDONR221 Gateway entry clone

(Invitrogen) and finally subcloned in pTW transgenesis vector. The

transgenic flies were obtained by P-element transgenesis. Over-

expression of PGRP-SB1 was achieved by crossing the resulting

UAS-PGRP-SB1 transgenic flies with flies carrying the ubiquitous

daughterless-Gal4 driver. F1 progeny was transferred to 29uC at late

pupal stage for optimal efficiency of the UAS/Gal4 system.

Bacterial strains and infection experiments
Systemic bacterial infections were performed by pricking adults

in the thorax with a thin needle previously dipped into a

concentrated pellet of a bacterial culture [40]. Infected flies were

subsequently maintained at 29uC. A minimum of 40 flies were

used for survival experiments and survival was scored either twice

a day or daily as appropriate. The bacteria strains used and their

respective optical density (O.D.) at 590 nm were: the DAP-type

PGN containing Gram-negative bacteria Erwinia carotovora [41]

(E. carotovora, O.D. 200), the DAP-type PGN containing Gram-

positive bacteria Listeria monocytogenes (L. monocytogenes, O.D. 80),

Listeria innocua (L. innocua, O.D. 200) or Bacillus megaterium

(B. Megaterium, O.D. 200), and the Lys-type PGN containing

Gram-positive bacteria Micrococcus luteus (M. luteus, O.D. 200) and

Enterococcus faecalis (E. faecalis, O.D. 15). Strains were cultured in

Brain-Heart Infusion Broth (BHI - Listeria) or Luria Broth (LB - all

others) at 29uC (E. carotovora) or 37uC (Listeria, E. faecalis,

B. megaterium, M. luteus). E. coli PGN was used at a monomer

equivalent concentration of 5 mM and injected into the thorax of

adult females at 18.4 nl per fly using a Nanoject apparatus

(DrummondTM).

For the measurement of in vivo persistence, 9.4 nl of bacterial

culture at O.D. 10 were injected into the thorax of female adults

(3–4 days old) using a Nanoject apparatus (DrummondTM).

Persistence of the bacteria was evaluated at 24 and 48 h post-

infection by crushing 20 flies in either BHI (L. innocua) or LB

(E. carotovora, B. megaterium) culture medium. Serial dilutions of

these extracts were spotted in triplicate on appropriate medium

and incubated overnight at 29uC (E. carotovora) or 37uC (L. innocua,

B. megaterium). Colonies were counted from spots containing more

than 10 colonies.

Oral infections were performed by feeding adults with an O.D.

200 pellet of E. carotovora supplemented with sucrose, as described

previously [40].

Western blot analysis
Western blots were performed with a mouse polyclonal

antibody directed against recombinant PGRP-LB (30 kDa) that

also recognizes PGRP-SB1. Indeed, a band of about 18 kDa was

detected in wild-type fly extracts 6 h after E. carotovora injection as

well as in unchallenged flies over-expressing PGRP-SB1 (daughter-

less-Gal4, UAS-PGRP-SB1), but not in extracts from PGRP-SBD5

mutants (Fig. 3B). A monoclonal anti a-tubulin antibody

(Molecular ProbesTM) was used as a loading control. Samples

corresponding to hemolymph from 50 female flies (extracted as

described in [8]), were lysed in 26Laemmli solution. 15 mg of the

protein extracts were loaded on a 7.5% SDS-polyacrylamide gel.

Following SDS-PAGE, proteins were blotted onto Hybond ECL

nitrocellulose membranes (Amersham LIFE Science). The blots

were developed using the ECL system (Amersham) and X-ray

films.

Quantitative real-time PCR (RT-qPCR)
For Dpt, Drs, PGRP-SB1 and PGRP-SB2 mRNA quantification

from whole animals or guts, RNA was extracted using RNA

TRIzolTM. For whole animals, 10 flies were used for each sample;

for guts, 20 dissected guts from the crop to just above the

malpighian tubules were used. cDNAs were synthesized using

SuperScript II (Invitrogen) and PCR was performed using dsDNA

dye SYBR Green I (Roche Diagnostics). Primer pairs for Dpt

(sense, 59-GCTGCGCAATCGCTTCTACT-39 and antisense, 59-

TGGTGGAGTGGGCTTCATG-39), Drs (sense, 59-CGTGAGA-

ACCTTTTCCAATATGATG-39 and antisense, 59-TCCCAGG-

ACCACCAGCAT-39), PGRP-SB1 (sense, 59-ATGAACACATC-

AACGGCA-39 and antisense, 59-CCGGAAATCCTAGAAGGC-

39), PGRP-SB2 (sense, 59-GCTCTCGTTCTATGTGGA-39 and

antisense, 59-CCCTGAACTTTCTGCG-39) and RpL32 (sense,

59-GACGCTTCAAGGGACAGTATCTG-39 and antisense, 59-

AAACGCGGTTCTGCATGAG-39) were used. SYBR Green
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analysis was performed on a Lightcycler (Roche). The amount of

mRNA detected was normalized to control RpL32 mRNA values.

We used normalized data to quantify the relative level of a given

mRNA according to cycling threshold analysis (DCt), hence data

are plotted for example as DCt Dpt/DCt RpL32.

Purification of peptidoglycan and peptidoglycan
fragments

Gram-negative and Gram-positive PGN preparations were

described in [20]. E. coli PGN was purified from the BW25113

Dlpp::CmR strain that does not express the Braun lipoprotein.

Digestion of this material by pure SltY lytic transglycosylase was

used to produce mg quantities of TCT and dimer of TCT purified

as described previously [29]. Radiolabelled PGN was generated by

incorporation of meso-[3H]DAP in the FB8 lysA::kan strain grown in

M63 minimal medium supplemented with 0.2% glucose and

100 mg.ml21 of lysine, threonine and methionine, as previously

described. Muropeptide fragments of PGN were generated by

digestion with mutanolysin as described in [29]. Muropeptides

were not reduced before incubation with PGRP-SB1 and HPLC

separation. In these conditions they are eluted in two peaks

(anomers a and b).

Amino acid and amino sugar compositions were determined

and quantified with a Hitachi L8800 amino acid analyzer

(ScienceTec) after hydrolysis of samples with 6 M HCl for 16 h

at 95uC. The structure and purity of isolated PGN fragments and

synthesized compounds were further confirmed by MALDI-TOF

mass spectrometry.

Expression of recombinant PGRP-SB1 and assay for
N-acetylmuramoyl-L-alanine amidase activity

His-tagged PGRP-SB1 was expressed in S2 cells and purified as

described previously [32].

The amidase activity of PGRP-SB1 was assayed in a reaction

mixture (50-100 ml) containing 50 mM Tris buffer (pH 8), 2 mM

ZnSO4, pure PGN (100-20 mg) or PGN fragment (2-20 nmoles),

and PGRP-SB1 (1-2 mg). After incubation at 37uC for 26 h or

16 h, the reaction was stopped by addition of 2 ml phosphoric or

acetic acid and 500 ml HPLC elution buffer: 50 mM sodium

phosphate, pH 4.5. To analyze the effects of PGRP-SB1 on the

PGN structure in more detail, samples of PGN were first

incubated with PGRP-SB1, as described above, for different

periods of time, from 20 min to 24 h. Then, reactions were

stopped by boiling for 5 min and mixtures were centrifuged.

Supernatants were stored for subsequent HPLC analysis of the

released soluble peptides (tri, tetra, tetra-tetra…). Pellets of

remaining polymeric PGN were treated for 24 h by pure SltY

enzyme and the pattern of muropeptides thus generated (TCT,

TCT dimer…) was analyzed by HPLC [29]. In all cases, mixtures

were injected on a column of Nucleosil 5C18 (4.66150 or 250 mm)

(Alltech France) and products were eluted at a flow rate of

0.6 ml.min21 using a gradient of methanol or acetonitrile from 0

to 20% in 40 or 100 min. Peaks were detected either by

measurement of the absorbance at 215 nm (and collected for

analysis) or by detection of radioactivity (radioactive flow detector,

model LB506-C1, Berthold).
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