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Abstract
Background: Exopolysaccharides with structural diversity have shown wide
applications in biomaterial, food, and pharmaceutical industries. Herein, we iso-
lated an endophytic strain, 14-DS-1, from the traditional medicinal plant Codo-
nopsis pilosula to elucidate the characteristics and anti-cancer activities of
purified exopolysaccharides.
Methods: HPLC and GC-MS were conducted to purify and characterize the exo-
polysaccharides isolated from 14-DS-1. Quantitative RT-PCR, cell migration
assays, immunofluorescence staining, and flow cytometry analysis were con-
ducted to investighate the biological activity of DSPS.
Results: We demonstrated that exopolysaccharides isolated from 14-DS-1
(DSPS), which were predominately composed of six monosaccharides, showed
anti-cancer activities. Biological activity analysis revealed that exposure to DSPS
induced macrophage activation and polarization by promoting the production of
TNF-α and nitric oxide. Further analysis revealed that DSPS treatment promoted
macrophage infiltration, whereas cancer cell migration was suppressed. In addi-
tion, DSPS exposure led to S-phase arrest and apoptosis in cancer cells. Immuno-
fluorescence staining revealed that treatment with DSPS resulted in defects in
spindle orientation and positioning.
Conclusion: These findings thus suggest that DSPS may have promising poten-
tial in cancer therapy.

Introduction

Endophytes are endosymbionts; these organisms, including
bacteria and fungi, are ubiquitously found in plants and
evolve along with the host plant.1–4 Endophytes provide the
host with many benefits: they can promote growth, con-
tribute to nutrient acquisition, or improve resistance to
biotic and abiotic stresses. Endophytes isolated from
medicinal plants are reported to be capable of producing
the same or similar secondary metabolites as their host
plants.5–10 For example, the endophytic fungus isolated
from the yew tree, Taxusbrevifolia, can produce the anti-

cancer drug, paclitaxel.11 Codonopsispilosula is an herba-
ceous perennial plant mainly grown in China, Japan, and
Korea that is widely used in traditional medicine.
C. pilosula extracts are very complex, consisting of polysac-
charides, saponins, sesquiterpenes, polyphenolic glycosides,
alkaloids, polyacetylenes, and phytosteroids.12–14 Polysac-
charides isolated from C. pilosula are one of the plant’s
important active constituents, with multiple biological
activities, including antioxidant, anti-cancer, and immuno-
modulatory properties.15–21 Given that C. pilosula endo-
phytes are able to produce similar bioactive molecules as
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the plant itself, isolation and identification of C. pilosula
endophytes could lead to the discovery of novel bioactive
molecules.
Microbial polysaccharides, including intracellular poly-

saccharides, capsular polysaccharides, and exopolysacchar-
ides (EPSs), are natural macromolecules abundant in
microorganisms that are important for the maintenance of
cell wall integrity and for the regulation of host-pathogen
interactions.22,23 EPSs secreted by microorganisms into the
extracellular environment are structurally diverse, allowing
for a variety of potential applications in the biomaterial
and pharmaceutical industries. A growing body of evidence
has revealed that microbial EPSs are beneficial to human
health; they show promising activities, including immuno-
modulation and cytotoxic effects against cancer cells.24–29

Importantly, emerging studies have revealed that the struc-
tural units of the EPS not only determine its function, but
the ecological niches of the host microorganism also con-
tribute to EPS activity.30–37 For example, EPS produced by
Paenibacilluspolymyxa, a bacterium isolated from Stemona
japonica (Blume) Miquel, exhibited robust scavenging
activities for superoxide and hydroxyl radicals.5 Thus, iso-
lating and characterizing novel EPSs from medicinal plants
may lead to the identification of promising biological mac-
romolecules. In this study, we sought to isolate endophytes
from the root of C. pilosula and to elucidate the character-
istics and anti-cancer activities of purified EPSs.

Methods

Chemicals and antibodies

All chemicals were purchased from Sigma-Aldrich
(St. Louis, MO, USA). Fluorescein isothiocyanate (FITC)-
conjugated phalloidin was obtained from ThermoFisher
Scientific (Waltham, MA, USA). Antibodies against
α-tubulin and γ-tubulin were obtained from Santa Cruz
Biotechnology Inc. (Santa Cruz, CA, USA). Rhodamine or
fluorescein-conjugated secondary antibodies were pur-
chased from Jackson ImmunoResearch Laboratories (West
Grove, PA, USA). The annexin V-FITC/PI apoptosis detec-
tion kit used was obtained from Sigma-Aldrich. Transwell
inserts were obtained from BD Biosciences (San Jose,
CA, USA).

Cell culture and treatment

RAW264.7 macrophages, BT549 and MDA-MB-231 breast
cancer cells, and HeLa cervical cancer cells were obtained
from American Type Culture Collection (Rockville, MD,
USA) and cultured in medium as described previously.38 Cells
were maintained at 37�C in a humidified incubator contain-
ing 5% CO2. Various concentrations of exopolysaccharides

isolated from 14-DS-1 (DSPS) were added to cell culture
medium for the indicated times.

Isolation of endophytes from C. pilosula

Fresh C. pilosula roots were washed several times under
running tap water and sterilized with 75% ethanol for
20 seconds and then with 2.5% sodium hypochlorite for
five minutes. C. pilosula roots were cut vertically into small
segments to expose the inner surface and then inoculated
on agar plates. Plates were incubated at 37�C for 48 hours
to promote endophyte growth.39 Each endophytic culture
was checked for purity and transferred to freshly prepared
agar plates. Appropriate controls were also set up in which
no plant tissues were inoculated.

Physiological characteristics and
phylogenetic relationship determination

The physiological characteristics of the isolated strain 14-
DS-1 were characterized according to the procedures out-
lined in Bergey’s Manual of Systematic Bacteriology.40 In
brief, 16S rDNA from the 14-DS-1strain was sequenced,
followed by analysis with the BLASTn program (https://
blast.ncbi.nlm.nih.gov/Blast.cgi). To analyze the phyloge-
netic relationship, a neighbor-joining phylogenetic tree was
constructed using the CLUSTAL program (http://www.
genome.jp/tools-bin/clustalw), as previously described.41–43

The defined strain 14-DS-1 was deposited in the China
General Microbiological Culture Collection Center.

Extraction and purification of
exopolysaccharides (EPSs) from C. pilosula
endophytes

The 14-DS-1 strain was cultured in Luria-Bertani liquid
medium and agitated at 37�C for 48 hours. The biomass of
the bacteria was removed by centrifugation at 5000 rpm
for 10 minutes, and then the cell-free supernatants were
treated once with Sevage reagent (Sinopharm, Shanghai,
China) to remove free protein at 4�C overnight. The vol-
ume ratio of the supernatants and Sevage reagent was 4:1,
while chloroform and butanol was 5:1. Samples were clari-
fied by centrifugation at 8000 rpm for 15 minutes, and the
supernatants were treated with 10% ethanol (v/v) at 4�C
overnight. The following day, the samples underwent cen-
trifugation at 10000 rpm at 4�C for 30 minutes. A crude
EPS sample was then dissolved in deionized water. The
EPS solution was loaded onto a Sephadex G-50 flow col-
umn (16 × 100 cm; Sigma-Aldrich) and eluted with deio-
nized water. Only one major fraction was detected, and the
collected fraction was termed DSPS.
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Molecular weight determination

The molecular weight of DSPS was determined by high
performance liquid chromatography. Size-exclusion chro-
matographic (SEC) separation was carried out using a Sho-
dex 803 column connected to a Waters model 515 HPLC
system (Waters, Rydalmere NSW, Australia) coupled to a
refractive index detector (Wyatt-OptilabrEX) and a Wyatt-
DAWN HELEOS-II laser light scattering spectrometer
(Wyatt Technology Corporation, Santa Barbara, CA, USA).

Monosaccharide composition analysis

The purified polysaccharide sample (2 mg) was hydrolyzed
with 2 mL of 2 M trifluoroacetic acid at 110�C for
1.5 hours. After hydrolysis, the solution was evaporated to
dryness at 50�C, and then a stream of methanol (3 mL)
was used to remove the excess acid. This procedure was
repeated five times. Sodium borohydride (60 mg) was then
added to obtain the reducing reaction at room temperature
for eight hours. Several drops of glacial acetic acid were
added to stop the reaction. The solution was then evapo-
rated to dryness at 50�C. Methanol (3 mL) was used to
remove the reducing agent five times, and then the residue
was dried at 110�C for 15 minutes. Acetylation was per-
formed using acetic anhydride (3 mL) and pyridine (1 mL)
at 100�C for five hours. The mixture was then evaporated
to dryness and trichloromethane (5 mL) was added to dis-
solve the residue. The organic phase consisted of washing
with distilled water (2 mL) four times to remove impuri-
ties. Finally, the water was removed with anhydrous
sodium sulfate and the mixture was transferred into a vial
for gas chromatography-mass spectrometer (GC-MS)
(Agilent Technologies, Santa Clara, CA, USA) analysis.
The GC-MS was used to separate the monosaccharides. A
capillary column Hp-5 (Agilent 19091J-413) (30 m × 0.25
mm × 320 μm) was used, with 30.0 mL/min for hydrogen,
400.0 mL/min for air, and with helium as carrier gas at a
constant flow of 1 mL/min. The temperature program was
set as: initial temperature 120�C, 3�C/min ramp to 250�C,
and held for five minutes. The total duration of analysis
was 35 minutes. The temperature of the injection port was
250�C and a 1 μL volume was injected in splitless mode.

Quantitative reverse transcriptase-PCR

Quantitative reverse transcriptase-PCR (RT-PCR) assay
was performed as previously described.44,45 Briefly, total
RNA was extracted using Trizol reagent (Invitrogen, Carls-
bad, CA, USA) according to the manufacturer’s instruc-
tions. RNA was reverse transcribed to complementary
DNA using a reverse transcription PCR Purification kit
(Promega, Madison, WI, USA). TNF-α messenger RNA

expression was evaluated by quantitative RT-PCR (TNF-α
primers: 50-CCCAAAGGGATGAGAAGTTCCCAAAT-30

and 50-CCACTTGGTGGTTTGCTACGACG-30; β-actin
primers: 50-CAGAAGGAGATTACTGCTCTGGCT-30, and
50-TACTCCTGCTTGCTGATCCACATC-30).

Quantification of nitric oxide production

Nitric oxide (NO) production was examined as previously
described.46 In brief, RAW264.7 cells were treated with var-
ious concentrations of DSPS for 24 hours. NO production
was estimated by measuring nitrite levels in cell superna-
tants with Greiss reagent (1% sulfanilamide, 0.1% napthyl
ethyl diamine dihydrochloride, 2.5% phosphoric acid;
Sigma-Aldrich). Absorbance was read at 540 nm, and
NaNO2 was used as a standard to quantify NO production.

Cell migration assays

For transwell migration assay (BD Biosciences), RAW264.7
cells resuspended in serum-free medium were pretreated
with various concentrations of DSPS. Cells were then
added to insert chambers and incubated for 16 hours. Cells
on the upper surface of the inserts were completely wiped
off with a cotton swab, while cells that migrated to the
underside of the inserts were fixed with 4% paraformalde-
hyde for 15 minutes at room temperature. Cells were then
stained with 0.5% crystal violet in 20% methanol for
30 minutes, washed three times with distilled water, and
visualized with a Leica stereomicroscope (Leica Microsys-
tems, Wetzlar, Germany).47,48 For wound healing assay,
cells were grown to 90% confluence in a 12-well plate, and
a scratch wound was created in the monolayer using a
pipette tip. Cell debris was removed by washing three times
with phosphate-buffered saline (PBS). Cells were incubated
in complete culture medium for the indicated times to
allow wound healing. Phase-contrast images of the wound
were captured at the indicated time points.

Fluorescence microscopy

Cells were fixed with 4% paraformaldehyde for 20 minutes,
permeabilized with 0.05% Triton X-100 (Sigma-Aldrich) in
PBS for 30 minutes, and blocked with 2.5% bovine serum
albumin for one hour at room temperature. Cells were
then sequentially incubated with the indicated primary and
secondary antibodies, followed by staining with 40,6-diami-
dino-2-phenylindole. Coverslips were mounted with 90%
glycerol and visualized with a Leica TCS SP8 confocal
microscope (Leica Microsystems). The spindle angle and
positioning were determined as previously described.49–51
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Fluorescence-activated cell sorting
analysis

Cell cycle progression and apoptosis analysis were per-
formed as previously described.52 In brief, cells were col-
lected and washed twice with ice cold PBS, and then fixed
with 70% ethanol. Cell suspensions were clarified by centri-
fugation at 1000 × g for 10 minutes, and the pellets were
resuspended in phosphate/citrate buffer (pH 7.5) for
30 minutes. To analyze cell cycle progression, cells were
washed with PBS and stained with propidium iodide
(PI) for 30 minutes. To analyze apoptosis, cells were
stained with Annexin V-FITC/PI for 15 minutes using the
Annexin V-FITC/PI Apoptosis Detection Kit (Sigma-
Aldrich). Samples were analyzed using a flow cytometer
(BD Accuri C6 Plus, BD Biosciences).

Results

Strain isolation and biochemical and
molecular characterization of 14-DS-1

To isolate and identify endophytes capable of producing
bioactive molecules, we collected fresh C. pilosula root tis-
sue and successfully isolated a strain, 14-DS-1, which was
capable of producing EPSs. Characterization of this strain
revealed that 14-DS-1 is an aerobic, gram-positive bacte-
rium that utilizes sucrose, glucose, and maltose as carbon
sources (Fig 1a,b). We then analyzed the phylogeny of this
strain by 16S rDNA sequencing. The 16S rDNA gene
sequences of 14-DS-1 (GenBank accession number:

KY658460) were amplified by PCR, sequenced, and com-
pared to all sequences in GenBank. The 14-DS-1 strain
belonged to a sub-branch of the genus Bacillus, Bacillusar-
yabhattai; based on sequence alignment, 14-DS-1 is 99%
similar to this strain. To elucidate the evolutionary rela-
tionship, we constructed a phylogenetic tree using the
neighbor-joining method. We found that 14-DS-1 is the
closest match to Bacillus sp., a genus that includes the
Bacillus sp. SG1-2, Bacillus megaterium, and Bacillus
aryabhattai strains, with 98% similarity (Fig 1c).

Characterization of EPSs purified from 14-
DS-1

As EPSs constitute the major active biomolecule produced
by endophytic bacteria, we next isolated and purified EPSs
from 14-DS-1. The deproteinized and decolorized constitu-
ents secreted by 14-DS-1 contained ~32% EPSs. The crude
EPSs were further purified by Sephadex G-50 flow column
chromatography (Sigma-Aldrich). Only one fraction was
obtained, which was named DSPS (Fig 2a). The molecular
weight of DSPS was determined using a Wyatt-DAWN
HELEOS-II laser light scattering spectrometer (Wyatt
Technology Corporation), and the molecular weight was
found to be 1.68 × 104 Da (data not shown). The mono-
saccharide composition of DSPS was analyzed by GC-MS,
revealing that it is mainly composed of galactose and glu-
cose, as well as rhamnose, fucose, arabinose, and mannose
(Fig 2b). Additionally, we obtained the infrared spectrum
of DSPS (Fig 2c).

Figure 1 Determination of the
physiological characteristics and
phylogenetic relationships of the
isolated strain. (a) Characteristics
of the endophytic strain 14-DS-1
isolated from Codonopsis pilo-
sula. (b) Carbon-source utilization
analysis of the strain 14-DS-1. (c)
Neighbor-joining phylogenetic
relationship analysis based on
16S rDNA sequencing. Genbank
accession numbers are annotated
in parentheses. Scale bars, 0.02
substitutions per nucleotide
position.
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DSPS promotes macrophage polarization
toward the classically activated
macrophage (M1) phenotype

As the primary phagocytic cell type, macrophages are acti-
vated to phagocytose foreign cells and cellular debris.53 We
investigated the effect of DSPS on macrophage activation
in RAW264.7 cells. Activated macrophages undergo mor-
phological transformation, changing from round-shaped
cells to flattened spreading cells with pseudopodium-like
protrusions. We found that in the control cells and those
treated with low concentrations of DSPS, cells remained
round; however, exposure to a higher concentration of
DSPS (5 mg/mL) led to macrophage activation, as evi-
denced by an elongated morphology in appropriately 25%
of cells (Fig 3a,b). Macrophages can be polarized toward
an anti-cancer, M1, or alternatively, pro-tumor, M2, phe-
notype, depending on the stimuli. To determine the role
of DSPS in macrophage activation, we analyzed the pro-
duction of inflammatory mediators, TNF-α and NO, both
of which are secreted by the M1 macrophage subset.54 We
found that higher concentrations of DSPS significantly
elevated the production of TNF-α and NO, indicating a
critical role of DSPS in promoting polarization of macro-
phages to the M1 phenotype (Fig 3c,d). This result may
provide valuable information for the development of

macrophage-mediated immune therapy for cancer
treatment.

DSPS plays roles in the differentiation and
migration of macrophages and in cancer
cell migration

As macrophage infiltration to the site of tumors is a prereq-
uisite for macrophages to inhibit tumor progression, we
explored the regulatory role of DSPS in macrophage migra-
tion. RAW264.7 cells were treated with different concentra-
tions of DSPS, and cell migration was analyzed using a
transwell assay. We found that high concentration of DSPS
(1 mg/mL and 5 mg/mL) significantly promoted RAW264.7
cell migration across the permeable membrane (Fig 4a,b).
To investigate the underlying mechanism of the DSPS

mediated enhancement of macrophage migration, we
analyzed the effect of DSPS on the formation of filopo-
dia: actin-rich membrane protrusions critical for cell
adhesion and migration. Immunostaining of F-actin
revealed that high concentrations of DSPS led to an
increase in filopodia formation (Fig 4c,d), suggesting a
role of DSPS in filopodium-mediated microphage migra-
tion. Additionally, we investigated the effect of DSPS on
cancer cell migration. In contrast to the results observed
in macrophages, DSPS remarkably repressed the

Figure 2 Characterization of DSPS
purified from the strain 14-DS-1. (a)
Exopolysaccharides were isolated
using a Sephadex G-50 flow column.
(b) Analysis of the monosaccharide
composition of DSPS. Rha, Fuc, Ara,
Man, Glc, Gal. (c) The infrared spec-
trum of DSPS.
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migration of BT549 and MDA-MB-231 breast cancer
cells (Fig 4e,f), suggesting its potential as an inhibitor of
tumor metastasis.

DSPS affects cell cycle progression and
promotes apoptosis of cancer cells

To further investigate the anti-cancer properties of DSPS,
we analyzed its effect on cell cycle progression. MDA-MB-
231 cells treated with various concentrations of DSPS were
stained with 40,6-diamidino-2-phenylindole and analyzed
by flow cytometry. Treatment with DSPS (5 mg/mL)
resulted in an increase in S phase cells and a decline in
G2/M cells, indicating that DSPS inhibits the DNA replica-
tion process (Fig 5a,b).
Next, we sought to determine whether DSPS treatment

could induce cell death. Using Annexin V-FITC/PI stain-
ing, we found that treatment with DSPS (5 mg/mL)
remarkably increased the percentage of apoptotic cells,
including cells in both early and late stages of apoptosis
(Fig 5c–f). Collectively, these data suggest a promising
anti-proliferative role of DSPS in the treatment of cancer
cells.

DSPS affects spindle orientation and
positioning in cancer cells

As spindle orientation is essential for proper cell division
and cell fate determination, we investigated the effect of

DSPS on this process. Immunofluorescence microscopy
revealed that DSPS treatment increased the z-value
between the bipolar spindles without affecting the overall
morphology or spindle length (Fig 6a,b); this change
resulted in an increase in the spindle angle (Fig 6a–c).
Next, we measured the distance between the cell center
and the spindle center to determine the effect of DSPS on
spindle positioning (Fig 6d). Exposure to DSPS (5 mg/mL)
significantly increased the distance between the cell center
and the spindle center, suggesting a spindle-positioning
defect (Fig 6e,f). Taken together, these data reveal a critical
role of DSPS in the regulation of spindle orientation and
positioning.

Discussion

C. pilosula is a traditional medicinal plant with promising
anti-cancer activity. However, little progress has been made
in isolating and identifying endophytes from this plant
capable of producing active secondary metabolites.45,55–57 In
this study, we isolated an endophyte strain, 14-DS-1, char-
acterized its phylogenetic relationships, and analyzed its
physiological properties. Importantly, our study revealed
that EPS is the predominant component of 14-DS-1
extracts, and DSPS, as its active ingredient, exhibits

Figure 3 DSPS activates macrophages. (a) RAW264.7 cells were trea-
ted with various concentrations of DSPS for 24 hours, and the cellular
morphology was analyzed with a phase-contrast microscope. (b) Quan-
tification of activated macrophages for experiments performed as
described in (a). (c) Quantitative reverse transcriptase-PCR analysis of
the relative expression of TNF-α messenger RNA (mRNA). (d) Quantifi-
cation of nitric oxide (NO) production by RAW264.7 cells.

Figure 4 DSPS affects cell migration. (a) Transwell migration assay show-
ing the effect of DSPS treatment on RAW264.7 cell migration. (b) Quantifi-
cation of cell migration; cells were treated as in panel (a). (c)
Immunofluorescence staining of actin (fluorescein isothiocyanate-
conjugated phalloidin) and nuclei (40, 6-diamidino-2-phenylindole) in
RAW264.7 cells. Scale bars, 5 μm. (d) Quantification of filopodia presented
in panel (c). (e) Representative wound healing assay analyzing the effects
of DSPS on the migration of BT549 and MDA-MB-231 breast cancer cells.
(f) Quantification of migrated cells treated as in panel (e).
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promising immunoregulatory and anti-cancer properties.
EPSs, which are composed of repeating units of sugars or
sugar derivatives, can be grouped into homopolysacchar-
ides or heteropolysaccharides, depending on their

monosaccharide compositions.45,58–61 Our analysis revealed
that DSPS is a heteropolysaccharide comprising six mono-
saccharides. EPSs produced by endophytes are strain-
dependent, and their structural and compositional diversity

Figure 5 DSPS alters cell cycle progression and promotes apoptosis. (a) MDA-MB-231 cells treated with various concentrations of DSPS were stained
with PI, and the cells were analyzed by flow cytometry to determine cell cycle progression. (b) Quantification of the percentage of cells in G1, S, and
G2/M phases of cells treated as in panel A. 0 mg/mL, 0.5 mg/mL, 5 mg/mL. (c–f) MDA-MB-231 cells treated with various concentrations of DSPS
and stained with Annexin V fluorescein isothiocyanate (FITC)/propidium iodide (c); the percentage of total apoptotic cells (d), cells in early apoptosis
(e), and cells in late apoptosis (f ) were quantified.

Figure 6 DSPS impairs spindle orien-
tation and positioning. (a) HeLa cells
treated with various concentrations of
DSPS were stained with α-tubulin
(green) and γ-tubulin (red) antibodies
and 40, 6-diamidino-2-phenylindole
(blue). The position of the z stage is
indicated in micrometers; 3D, xy pro-
jection. Scale bars, 5 μm. (b) A dia-
gram illustrating the spindle angle (α)
measurement. (c) Determination of
average spindle angle of cells treated
as in panel (a). 0 mg/mL, 0.5 mg/mL,
5 mg/mL. (d) A diagram illustrating
the distance (d) between the cell cen-
ter (c) and the spindle center (o). (e)
HeLa cells treated with DSPS were
immunostained with γ-tubulin to visu-
alize spindle poles. Scale bars, 5 μm.
(f) Quantification of the distance
between the cell center and the spin-
dle center. 0 mg/mL, 0.5 mg/mL,
5 mg/mL.
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conveys unique and varied biological activities.31,44,62–64

Given that endophytes can be grown in large-scale cul-
tures, have a short growth period, and are easily isolated,
the 14-DS-1 strain isolated in this study may have great
potential for future applications.
Because of their role in phagocytosis and antigen presen-

tation, macrophages are critical for cancer immunosurveil-
lance.65–68 Macrophage activation and infiltration in
response to inflammation is important for macrophage-
related immunosurveillance. Our data demonstrate that
DSPS promotes macrophage activation and migration, sug-
gesting an immunomodulatory function for this EPS. While
macrophages are important to inhibit tumor development, a
growing body of evidence demonstrates that cancer cells can
foster macrophages present in the tumor microenvironment
to promote tumor growth.69–71 Specifically, macrophages
play distinct roles in cancer progression depending on their
polarized phenotype.72 Classically activated macrophages
(M1) suppress tumor growth, metastasis, and angiogenesis.
However, in response to the tumor microenvironment, M1
cells can be induced to become alternatively polarized M2
cells, a change that facilitates the escape of cancer cells from
immune surveillance. M1 and M2 subtypes can be shifted
reversibly in response to different environmental stim-
uli.67,72,73 Therefore, identification of biological molecules
that can repolarize the tumor-promoting M2 cells into anti-
cancer M1 subsets would be of therapeutic value for the
treatment of cancer. Importantly, we revealed that DSPS iso-
lated from 14-DS-1 enhances the production of TNF-α and
NO, inflammatory mediators secreted by anti-cancer M1
subsets,74–76 suggesting a potential application for this mole-
cule in cancer treatment.
Further analysis revealed that treatment with DSPS also

increased macrophage migration; in contrast, cancer cell
migration was inhibited by this polysaccharide. However,
the molecular mechanism underlying the role of DSPS in
cell migration remains to be elucidated. Additionally, we
found that exposure to DSPS resulted in synthesis phase
(S phase) cell cycle arrest and apoptosis of cancer cells,
demonstrating its anti-cancer activity. Furthermore, our
data demonstrate that treatment with DSPS resulted in
impaired spindle orientation and positioning, events criti-
cal for proper cell division and cell fate determination.50,51

Given that inappropriate cell division can affect cell cycle
progression and initiate apoptotic cell death, DSPS-induced
defects in spindle orientation and positioning suggest a
mechanism for the anti-cancer effect of this molecule,
underscoring its potential for use in cancer therapy.
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