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Abstract: Chronic (continuous, non-interrupted) hypoxia and cycling (intermittent, transient) hy-
poxia are two types of hypoxia occurring in malignant tumors. They are both associated with
the activation of hypoxia-inducible factor-1 (HIF-1) and nuclear factor κB (NF-κB), which induce
changes in gene expression. This paper discusses in detail the mechanisms of activation of these
two transcription factors in chronic and cycling hypoxia and the crosstalk between both signaling
pathways. In particular, it focuses on the importance of reactive oxygen species (ROS), reactive
nitrogen species (RNS) together with nitric oxide synthase, acetylation of HIF-1, and the action of
MAPK cascades. The paper also discusses the importance of hypoxia in the formation of chronic
low-grade inflammation in cancerous tumors. Finally, we discuss the effects of cycling hypoxia on the
tumor microenvironment, in particular on the expression of VEGF-A, CCL2/MCP-1, CXCL1/GRO-α,
CXCL8/IL-8, and COX-2 together with PGE2. These factors induce angiogenesis and recruit various
cells into the tumor niche, including neutrophils and monocytes which, in the tumor, are transformed
into tumor-associated neutrophils (TAN) and tumor-associated macrophages (TAM) that participate
in tumorigenesis.

Keywords: cycling hypoxia; hypoxia-inducible factor; low-grade inflammation; tumor; cancer;
NF-κB; HIF-1α; HIF-1β

1. Introduction

The growing knowledge of tumors indicates the significance of the tumor microenvi-
ronment, a collection of factors that act on cancer cells in the tumor. These factors include
tumor-associated cells [1,2] along with elements of intercellular signaling, such as growth
factors [3], lipid mediators [4], chemokines [5], and many others. Nutrient levels, lactic
acid concentration, and acidification of the tumor microenvironment [6], as well as reduced
oxygen levels, i.e., hypoxia, associated with tumor growth, are also important for tumor
growth. Hypoxic conditions significantly alter the functioning of cancer cells as well as
tumor-associated cells.

An important aspect of hypoxia in the tumor microenvironment is chronic low-grade
inflammation. The role of inflammation supports the fight of the immune system against
pathogens and is an element strengthening the anti-tumor response [7]. However, inflam-
matory processes also include mechanisms that inhibit the body from unduly responding
to pro-inflammatory factors. They protect tissues from damage by their own over-reactive
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mechanisms designed to fight pathogens. During chronic inflammation, these mecha-
nisms lead to the inhibition of anti-tumor response [8] and thus promote cancerous tumor
growth [9].

This review expands on the mechanisms of the activation of hypoxia-inducible factors
(HIFs) and nuclear factor κB (NF-κB) presented in our previous reviews on the effects
of hypoxia on the CC [10] and CXC [11] sub-family chemokine systems. These papers
show the exact mechanisms responsible for the induction of the expression of individual
chemokines by chronic and cycling hypoxia. In this paper, we focus on the activation of
HIFs and NF-κB by different types of hypoxia and the crosstalk between the activation
pathways of these two transcription factors.

2. Chronic Hypoxia
2.1. Activation of the Hypoxia-Inducible Factor by Oxygen Reduction: The Role of Hydroxylation

The intense division of cancer cells results in the proliferation of tumor tissue. This
process does not go hand in hand with angiogenesis, i.e., the formation of new blood
vessels. In this way, due to the low availability of blood vessels, the tumor has areas
with chronically reduced oxygen concentration. This microenvironment is called chronic
(continuous, non-interrupted) hypoxia.

The most important and best-known proteins activated in hypoxia are three hypoxia-
inducible factors (HIF-1, HIF-2, and HIF-3). The first two, HIF-1 and HIF-2, are responsible
for the transcription of genes induced by hypoxia, while HIF-3, in addition to inducing
gene expression, also decreases the activity of HIF-1 and HIF-2 [12–14].

All three HIFs are composed of two subunits, alpha and beta. The HIF-β subunits,
also known as aryl hydrocarbon nuclear translocators (ARNT), are not regulated by any
changes in oxygen, although a study on high-risk multiple myeloma cells shows that
chronic hypoxia increases HIF-1β expression via NF-κB [15]. The highest expression of
HIF-2β occurs in the brain and kidneys [16]. HIF-2β interferes with the function of HIF-1
and is, therefore, a suppressor gene in cancers such as oral squamous cell carcinoma [17],
non-small cell lung cancer [18] and hepatocellular carcinoma [19].

In contrast to HIF-β subunits, the expression levels of HIF-1α, HIF-2α, and HIF-3α
subunits are tightly regulated by changes in oxygen concentration through proteolytic
degradation and transcriptional regulation. In addition, HIF-3α expression is upregulated
by HIF-1 and HIF-2 [14]. This represents one of the many mechanisms of self-regulation of
HIF transcriptional activity.

In normoxia, HIF-α undergoes hydroxylation on the proline residue in the N-terminal
oxygen-dependent degradation domain (NODD) and C-terminal oxygen-dependent degra-
dation domain (CODD) by three isoforms of prolyl hydroxylase (PHD) [20,21]—oxygen-
dependent enzymes with an iron atom in the catalytic center [22]. PHD2 and PHD3 have
similar rates of catalysis, while PHD1 has a three times lower rate than the remaining two
PHDs [23].

PHDs induce the hydroxylation of the proline residues Pro402 HIF-1α, Pro564 HIF-1α,
Pro405 HIF-2α, and Pro531 HIF-2α [24]. This leads to the ubiquitination of the hydroxylated
HIF-α subunits by the von Hippel–Lindau protein (pVHL) [22,25–27], followed by the
proteasomal degradation of HIF-1α and HIF-2α by 26S proteasome [28,29]. In the absence
of HIF-1α and HIF-2α in the cell, active transcriptional complexes with HIF-1β and HIF-2β
are not assembled.

Another factor involved in the regulation of HIF-α transcriptional activity is the factor
inhibiting HIF (FIH), an oxygen-dependent enzyme with asparaginyl hydroxylase activity
for HIF-α subunits. This enzyme causes hydroxylation of HIF-α at the Asn803 HIF-1α
and Asn847 HIF-2α residues [30,31]. This hydroxylation inhibits the interaction of the
HIF-α subunit with CBP/p300 [30,32,33]. The interaction of HIF-α with this coactivator is
necessary for the transcription of HIF-dependent genes. Therefore, FIH action provides a
mechanism for reducing the transcriptional activity of HIFs in normoxia.
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FIH and PHD require different levels of oxygen to fully function. The activity of PHD
is significantly reduced when the oxygen concentration in the cell’s environment is reduced
to 5% [23]. The Michaelis constant (Km) for these enzymes relative to substrate oxygen
is 230–250 µM [34]. In hypoxia, there is an increase in PHD expression by HIFs which
increases the activity of these enzymes during reoxygenation [35–38]. In contrast, FIH
requires half the oxygen concentration necessary for PHD activity [39]. In this way, FIHs
inhibit the transcriptional activity of HIFs at oxygen concentrations where PHD activity is
already reduced.

The reduction in PHD’s activity results in a decrease in the level of hydroxylation of
the proline residue on HIF-α. This leads to (1) a decrease in the degradation of HIF-α, (2)
the accumulation of these proteins in the cell, (3) the dimerization of the corresponding HIF-
α and HIF-β subunits, and finally, (4) production of HIF-1, HIF-2, and HIF-3 transported
to the cell nucleus. The hydroxylation of HIF-α by FIH does not occur at low oxygen
concentrations. This leads to an interaction of the HIF-α subunit with CBP/p300 on the
promoters of genes with hypoxia response element (HRE) sequences [30,32,33] and then to
the increased expression of hypoxia-dependent genes.

The accumulation of individual HIF-α—and so, the activation of individual HIFs—depends
on the duration of hypoxia [40]. HIF-1 is activated in the first 4 h of chronic hypoxia, after
which HIF-1α protein levels decrease [40,41]. In contrast, maximum HIF-2α and HIF-3α levels
occur after 24–48 h of hypoxia [40]. This is associated with an increased expression of hypoxia-
associated factor (HAF), which causes pVHL-independent proteolytic degradation of HIF-1α [41].
In prolonged chronic hypoxia, reduced HIF-1α expression may also be caused by the activity of
heat shock protein 70 (Hsp70), which, together with the carboxyl terminus of Hsc70-interacting
protein (CHIP), causes the ubiquitination of HIF-1α but not HIF-2α [42].

It should be noted that the expression of HIF-2α varies in different tumors. It is absent
in small cell lung carcinoma, while it is present in non-small cell lung carcinoma [43].
Additionally, an in vivo study shows that in tumor cells, the levels of HIF-1α and HIF-2α
are high on average but vary depending on the type of cells [44]. In tumor-associated
macrophages (TAM), HIF-2α [44,45] and HIF-1α [46] levels are high.

2.2. Acetylation of HIF-α as a Possible Mechanism for the Regulation of HIF’s Activity
in Chronic Hypoxia

Hydroxylation is not the only mechanism that can alter HIF-α stability. Another
post-translational modification that regulates the stability of HIF-α is acetylation. HIF-1α
has 12 amino acid residues that are potentially subject to ubiquitination [47]. Depending
on which of these residues is acetylated, this post-translational modification may either
increase or decrease the stability and transcriptional activity of this HIF-1 subunit. This
process has been thoroughly described for the chronic hypoxia model. Nevertheless, the
effect of acetylation on HIF-1 activity in the model of cycling hypoxia is poorly understood.

In chronic hypoxia, protein 14-3-3ζ promotes the interaction of histone deacetylase
(HDAC)4 with HIF-1α, which reduces the acetylation of this HIF-1 subunit [48]. As
a consequence, the stability of the HIF-1α protein is increased. This mechanism has
been demonstrated in a hepatocellular carcinoma model [48]. Increased stability and
transcriptional activities of HIF-1α have also been observed in HDAC1, HDAC3 [49],
HDAC4 [50–52], HDAC5 [51], and HDAC6 [50]. Importantly, HDAC4 and HDAC5 bind to
HIF-1α, which prevents the hydroxylation of this subunit of HIF-1 via FIH [51]. In chronic
hypoxia, HDAC7 forms a complex with HIF-1α in the cell nucleus, which increases the
transcriptional activity of HIF-1 [53]. In contrast, acetylation of Lys532 HIF-1α by arrest
defective 1 (ARD1) reduces the stability and transcriptional activity of HIF-1α [54]. In
hypoxia, ARD1 expression is decreased, which increases HIF-1 activation.

Acetylation of HIF-1α may also increase the stability and transcriptional activity of
this HIF subunit in chronic hypoxia. HIF-1α, but not HIF-2α, undergoes acetylation at
the Lys709 residue by p300, which increases the stability of HIF-1α [55]. HIF-1α has 12
residues that undergo ubiquitination [47]. One of these is the Lys709 residue. Acetylation
of this residue prevents its ubiquitination; this results in an increase in the stability of
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HIF-1α. In addition, the deacetylation of the Lys674 residue of HIF-1α in normoxia by
sirtuin (SIRT)1 blocks recruitment of this HIF-1 subunit from p300 [56]. In hypoxia, a
decrease in SIRT1 activity causes acetylation of Lys674 HIF-1α by p300/CBP-associated
factor (PCAF). Other sirtuins also reduce HIF-1 pathway activation, including SIRT2 [57],
SIRT3 [58], and SIRT7 [59].

2.3. The Role of ROS and NO in the Activation of HIFs during Chronic Hypoxia

An important part of the cellular response to hypoxia are reactive oxygen species
(ROS), which increase HIF-1 stability. In chronic hypoxia, this process is much less impor-
tant than the effects of ROS on signaling pathways in cycling hypoxia. Chronic hypoxia is
associated with an increase in ROS generation by complex III of the mitochondrial electron
transport chain [60–62]. Circadian locomotor output cycle protein kaput (CLOCK) may
also be responsible for increasing ROS levels in chronic hypoxia [63]. ROS increase the
activation of HIF-1 and NF-κB. Specifically, in the cytoplasm, ROS inhibit the activity of
PHD [62,64] and FIH [31]. Importantly, the changes that ROS cause in these enzymes vary.
FIH is more sensitive to ROS but is inactivated more permanently than PHD [31]. In the
case of PHD, it has been suggested that ROS cause oxidation of the iron atom, important
in the activity of these enzymes that regulate HIF-α stability and function [65]; no mecha-
nism has been established for FIH [31]. At the same time, ROS activates NF-κB through
various mechanisms [63,66,67], and subsequently, NF-κB increases the expression of HIF-
1α mRNA. In chronic hypoxia, there is also an increase in ROS generation in cytoplasm.
HIF-1 can increase NADPH oxidase (NOX)4 expression and thus ROS generation in the
cytoplasm [68,69], although it is possible that, in hypoxia, NOX4 expression is increased
directly by NF-κB p65/RelA [70]. Significantly, the relevance of mitochondrial ROS for
HIF-1α stability is disputed by some researchers [71]. The inhibition of PHD by ROS during
chronic hypoxia is also questioned [71].

Activation of HIFs is dependent on nitric oxide (NO) levels (Figure 1). This is im-
portant because many cancers are accompanied by an increase in inducible nitric oxide
synthase (iNOS) expression and an increase in NO production, resulting in a poorer progno-
sis for the patient [72–74]. HIF-1α is S-nitrosylated on Cys533 by NO, resulting in increased
stability of this protein in normoxia [75]. NO also binds to the iron atom at the catalytic cen-
ter in PHD, which inhibits the activity of this enzyme [76]. On the other hand, in hypoxia,
NO can interfere with HIF-1 activation and function [77]. In combination with ROS, NO
increases the concentration of calcium ions in the cytoplasm which activates calpain [78]—a
protease that degrades HIF-1α, independently of the 26S proteasome. In chronic hypoxia,
NO also restores the activity of enzymes involved in HIF-α hydroxylation [64,79] in a
mechanism dependent on the interaction between NO with ROS.

2.4. MAPK and AP-1 Kinases in Chronic Hypoxia

During hypoxia, mitogen-activated protein kinase (MAPK) cascades are activated and
play an important role in the cellular response to reduced oxygen concentration. These
processes have been thoroughly researched in the chronic hypoxia model as opposed to
cycling hypoxia. Nevertheless, the activation of MAPK cascades is similar in both hypoxia,
and therefore, in all likelihood, the molecular mechanisms described in this section reflect
HIF-1 activation in cycling hypoxia.



Int. J. Mol. Sci. 2021, 22, 10701 5 of 26

Figure 1. The effects of ROS and NO on the activation of HIF-1 in chronic hypoxia. Chronic hypoxia
there is associated with an increase in the level of ROS which inactivate FIH and PHD. This increases
the activation of HIF-1. ROS are also involved in the activation of NF-κB, a transcription factor
important in the full activation of HIF-1. HIF-1 activation can also be induced by NO, especially at
sites of inflammatory reactions. NO causes the S-nitrosylation of HIF-1α, which increases the stability
of this protein. Another post-translational modification of HIF-1α induced by NO is phosphorylation
associated with the inactivation of DUSP1. NO can also bind to the iron atom in PHDs and thus
inactivate these enzymes. However, in combination with ROS, NO can restore activity of PHDs in
chronic hypoxia. It can also increase calcium ion levels in the cytoplasm which activates calpain—a
protease that degrades HIF-1α independently of the 26S proteasome.

The activation of MAPK cascades in chronic hypoxia is dependent on an increased
concentration of calcium ions or ROS [80,81]. An influx of calcium ions in hypoxia is caused
by the opening of the L-type voltage gated Ca2+ channels [82]. ROS or calcium ions activate
the p38 MAPK [61,81–84], extracellular signal-regulated kinase (ERK) MAPK [81,82,85]
and c-Jun N-terminal kinase (JNK) MAPK [81,86]. This results in the activation of c-Jun
and JunB, but also a decrease in the levels of c-Fos, and JunD [87]. However, it is not
only that the activation of MAPK cascades activates HIFs; in a reverse process, HIF-1 may
influence the activation of MAPK cascades. The increase in c-Jun expression in chronic
hypoxia in mouse embryonic fibroblasts is HIF-1 dependent [88], similar to the activation
of the ERK MAPK cascade [89]. c-Jun and JunB are elements of activating protein-1 (AP-1),
a transcription factor that plays an important role in the expression of various genes
in hypoxia.

MAPK cascades can also affect the activation and transcriptional activity of HIF-1
(Figure 2). Chronic hypoxia induces the activation of ERK MAPK [85], p38 MAPK [90],
and JNK MAPK [91]. ERK MAPK causes phosphorylation on Ser641 and Ser643 of HIF-1α.
This post-translational modification of HIF-1α is important for the accumulation of this
subunit in the cell nucleus and interaction of this subunit with the p300 coactivator [92,93].
Additionally, HIF-1α is phosphorylated by p38 MAPK, which increases the stability of this
HIF-1 subunit [90]. Another mechanism affecting HIF-1 activation is the phosphorylation of
the seven in absentia homolog 2 (SIAH2) at the Thr24 and Ser29 residues by p38 MAPK [94].
This is followed by the degradation of PHD3, an enzyme responsible for hydroxylation
and degradation of HIF-1α. Activation of p38 MAPK results in decreased degradation
of HIF-1α.
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Figure 2. The importance of MAPK cascades for the HIF-1 activation pathway. During chronic
hypoxia, MAPK cascades, in particular ERK MAPK and p38 MAPK, are activated by ROS and
increased calcium ions. These kinases cause phosphorylation of HIF-1α and consequently increase
the stability and transcriptional activity of HIF-1. p38 MAPK can also cause the activation of SIAH2,
which results in the ubiquitination and degradation of PHD3. Important in this model of HIF-1
activation are also phosphatases, in particular DUSP1 and DUSP2—enzymes that catalyze a reaction
reverse to ERK MAPK and p38 MAPK. In chronic hypoxia, there is a decrease in DUSP2 expression
but an increase in DUSP1, which is a mechanism for regulating HIF-1 activation.

Chronic hypoxia increases the expression of dual specificity protein phosphatase-
(DUSP)-1/mitogen-activated protein kinase phosphatase 1 (MKP1) [95]. The increased
expression of DUSP1 in neurons in chronic hypoxia is dependent on neuronal nitric oxide
synthase (nNOS) and NO produced by nNOS [96]. NO inactivates DUSP1; in contrast,
protein kinase C (PKC)ζ is responsible for increasing DUSP1 expression in fibroblasts
under chronic hypoxia [97]. However, DUSP1 expression in chronic hypoxia may also
be dependent on p38 MAPK, as shown by experiments on pheochromocytoma cells [98].
The use of cobalt chloride or deferoxamine (both these compounds being PHD inhibitors)
showed that HIF activation may result in increased DUSP1 expression [98], although, to
date, there has been no proof of a direct effect of HIF on the expression of DUSP1. Cobalt
chloride and deferoxamine may also inhibit the activity of histone demethylase which leads
to an altered expression of many genes [99,100]. In chronic hypoxia, DUSP2 expression is
also decreased by HIF-1 [101,102]. DUSP1 and DUSP2 are enzymes that inactivate MAPK
kinases (ERK MAPK and p38 MAPK) by their dephosphorylation [103]. The upregulation
of DUSP1/MKP1 expression is a mechanism that protects against excessive HIF-1 activation
by ERK MAPKs in chronic hypoxia.

MAPK cascades enhance the stability and transcriptional activity of HIF-1α in hy-
poxia. Similar mechanisms also occur in tumor cells in normoxia, where the activation of
MAPK cascades also occurs [104], in particular as a result of exposure to various growth
factors [105,106].

MAPK kinases in hypoxia also cause NF-κB activation. However, which MAPK
cascade is responsible for this varies from model to model. In macrophages, NF-κB
activation is induced by ERK cascade [107], while in Hey-A8 human ovarian carcinoma
cells, it is by p38 MAPK cascade [83]. In addition, ERK MAPK causes phosphorylation of
Ser276 p65/RelA NF-κB which results in the activation of this transcription factor [89].
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2.5. NF-κB Activation during Chronic Hypoxia Is Important for the Full Activation of HIFs

In hypoxia, the transcriptional activity of HIFs is increased by decreasing hydroxyla-
tion and degradation of HIF-α. However, maximal HIF activation requires the activation
of other pathways. In particular, NF-κB is activated during the first hours of chronic
hypoxia [40]. This leads to an increase in HIF-1α mRNA expression due to the presence of
an NF-κB binding site in the HIF1A gene promoter [66,108–111]. Therefore, the activation
of p50 NF-κB and p65/RelA NF-κB, but not c-Rel NF-κB, results in increased HIF-1α
mRNA expression [112–114]. HIF-1β expression is also directly upregulated by NF-κB in
chronic hypoxia [15,115]. The relationship of these two transcription factors is important
in hypoxia because NF-κB is activated by low oxygen concentration via multiple mecha-
nisms [116]. Like HIF-1α, the IκB kinase β subunit (IKKβ) is also hydroxylated on Pro191 by
PHD1 [117,118]. This leads to ubiquitination of the Lys63 residue of IKKβ by pVHL [119].
This post-translational modification prevents transforming growth factor (TGF)-β-activated
kinase 1 (TAK1) from attaching to IKKβ. This decreases IKKβ activity and thus reduces NF-
κB activation. However, ubiquitination of IKKβ does not lead to proteolytic degradation of
this protein [119]. In chronic hypoxia, there is a decrease in PHD1 activity, which results
in a decrease in IKKβ hydroxylation by this enzyme and, consequently, in an increase
in IKKβ activity. PHD2 also plays an important role in regulating the NF-κB activation
pathway [120]. This enzyme indirectly regulates phosphorylation of the inhibitor of NF-κB
α subunit (IκBα). Additionally, in chronic hypoxia, there is an increase in calcium ion
levels in cytoplasm, which results in activation of calcium/calmodulin-dependent kinase
2 (CaMK2). This leads to ubiquitination of Lys63 Nemo/IKKγ by ubiquitin-conjugating
enzyme 13 (Ubc13) [121]. This results in the activation of IKK.

Chronic hypoxia also affects other components of the NF-κB activation pathway. FIH
can catalyze the hydroxylation of IκBα (Figure 3) [122]. Nevertheless, this has no effect and
is not relevant for NF-κB activation in chronic hypoxia. Activation of CaMK2 causes Lys21

IκBα sumoylation by Sumo-2/3 and consequently prevents IκBα ubiquitination [121]. This
leads to the release and activation of NF-κB in the absence of IκBα degradation [121]. The
MAPK cascades are also activated in hypoxia, resulting in NF-κB activation. Depending on
the model, ERK MAPK, which phosphorylates Ser276 p65/RelA NF-κB, is responsible for
NF-κB activation in macrophages and primary mouse keratinocytes [89,107]. In contrast, in
ovarian carcinoma cell line Hey-A8 [83] and lung adenocarcinoma A549 cells [123], the p38
MAPK cascade is responsible for NF-κB activation. In addition to these mechanisms, NF-κB
activation occurs in hypoxia via the phosphatidylinositol 3-kinase (PI3K)→Akt/protein
kinase B (PKB) pathway [83]. This pathway is activated either by ROS or by activation of
membrane receptors [83]. Additionally, this pathway can be activated in hypoxia by 14-3-
3ζ, as shown in hepatocellular carcinoma [124]. Akt/PKB kinase phosphorylates p65/RelA
NF-κB cause activation of this transcription factor, but this process is independent of
IκBα degradation [83]. Akt/PKB can also activate mTOR, which phosphorylates Thr23

IKKα and Thr559 and Ser634 IKKβ [125]. This induces IKK activation, which leads to
IκBα phosphorylation and degradation. Another pathway of NF-κB activation in chronic
hypoxia is the activation of protein kinase D2 (PRKD2) [126], although the exact mechanism
of activation of this kinase has not been thoroughly researched.

After activation, NF-κB forms a complex with its coactivators. These complexes
include PHD2 [127] and PHD3 [128]. The property of these PHDs does not depend
on enzymatic activity. This is important in inflammatory reactions and in a cell’s re-
sponse to chronic hypoxia. In hypoxia, PHD expression is increased in a HIF-dependent
manner [35–38], which may increase the transcriptional activity of NF-κB and hence in-
crease HIF-1α expression.

HIF-1 and HIF-2 also increase the expression of p65/RelA NF-κB in macrophages [129].
HIF-1 can also activate NF-κB indirectly by increasing the expression of alarmin recep-
tors [130] activated by damage-associated molecular patterns (DAMPs), i.e., molecules
secreted from cells during necrosis, e.g., in an environment with hypoxia. Activation of
alarmin receptors results in the activation of NF-κB. There is also an increased expression
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of thioredoxin reductase 1 (TrxR1) [131]. This increases the level of ROS in the cytoplasm,
which leads to increased activation of NF-κB [132,133].

Figure 3. The hypoxia-induced mechanism of NF-κB activation. In hypoxia, NF-κB is an important
factor in the increase in HIF-1 mRNA expression, which is activated when oxygen concentration
is decreased. This process occurs through multiple pathways. Like HIF-1α, IKKβ activation is
inhibited by hydroxylation by PHD1. In hypoxia, PHD1 activity is reduced, which enables IKKβ

activation. NF-κB activation during hypoxia also involves ROS and calcium ion mobilization into
the cytoplasm. These factors cause the ubiquitination of IKKγ/NEMO, which increases IKK activity.
IκBα is SUMOylated, which decreases the activity of this inhibitor of the NF-κB activation pathway.
Chronic hypoxia is also associated with the activation of kinases such as p38 MAPK, ERK MAPK,
and Akt/PKB, which phosphorylate NF-κB and IKKβ, thus activating this transcription factor.

2.6. Inhibition of Inflammatory Responses by Chronic Hypoxia

Hypoxia is associated with a decrease in PHD1 activity, which leads to a decrease in
the hydroxylation of IKKβ [117,118] and HIF-α [20,21]. This activates this kinase which
leads to NF-κB activation and an increase in HIF-1α mRNA expression by NF-κB. This
is followed by transcription of hypoxia-induced genes but also some pro-inflammatory
genes [40]. However, also in inflammatory responses, including the action of lipopolysac-
charide (LPS), PHD is inactivated, and thereby, NF-κB is activated, which induces expres-
sion of pro-inflammatory genes and increases HIF-1α expression [134,135]. However, both
pathways, i.e., NF-κB and HIF, if activated simultaneously, will be mutually exclusive
(Figure 4) [136–138]. This is because the transcription of genes induced by hypoxia (HIF)
and inflammation (NF-κB) requires the coactivator p300 [139,140] and both transcription
factors compete with each other for this coactivator. Additionally, there are mechanisms of
inhibition of the NF-κB pathway by the HIF activation pathway, which is important in re-
ducing overly intense inflammatory responses as well as reducing inflammatory responses
in chronic hypoxia [137,138]. TAK1 and cyclin-dependent kinase 6 (CDK6) play essen-
tial roles in this process, although the exact mechanism remains to be investigated [137].
Nevertheless, in chronic hypoxia there is a HIF-1-independent increase in IκBα expres-
sion [138]. Additionally, IκBα inhibits HIF-1α hydroxylation by FIH [141], i.e., an inhibitor
of the NF-κB pathway activates the HIFs activation pathway. In inflammatory reactions,
proteolytic degradation of IκBα occurs, which inhibits HIF activation by increasing FIH
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activity [141]. Another mechanism that reduces inflammatory responses is the increase in
PHD3 expression, which blocks the interaction of IKKβ and heat shock protein 90 (Hsp90),
preventing the activation of this kinase [35–37,142]. On the other hand, Hsp90 induces
activation of PRKD2 in chronic hypoxia, which activates NF-κB [126]. The two discussed
pathways may interact via other mechanisms. For example, NF-κB increases in PHD3
expression [128]. This protein, independent of its enzymatic properties, is a coactivator
of p65 NF-κB [128], similar to PHD2 [127]. PHD2 and PHD3 also reduce HIF activity by
participating in the degradation of HIF-α subunits. Another mechanism is the involvement
of HIF-1β in TNF receptor associated factor 6 (TRAF6) expression and therefore in NF-κB
activation [143]. HIF-1α decreases TRAF6 expression, probably by binding HIF-1β into the
HIF-1 complex.

Figure 4. The inhibition of the NF-κB pathway activation by HIF. Chronic hypoxia is associated with
NF-κB activation, although there are also mechanisms that silence the proinflammatory response,
such as an increase in PHD3 expression, which inhibits IKK activity. Additionally, there is an HIF-1
induced increase in the expression of IκBα, an inhibitor of NF-κB. The simultaneous activation of
NF-κB and HIF causes these two transcription factors to compete for the coactivator p300.

Thanks to the aforementioned mechanisms, there is no simultaneous response of
the cell to hypoxia and to pro-inflammatory factors. Nevertheless, NF-κB is activated in
chronic hypoxia, leading to an increase in the expression of some inflammatory genes [40].

2.7. Chronic Hypoxia vs. Cycling Hypoxia in a Tumor

The signaling pathways activated during chronic hypoxia are very well understood.
Hydroxylation of HIF-α is reduced, which results in an accumulation of these subunits in
the cell. Phosphorylation by MAPK kinase, change in acetylation, or influence of ROS are
also responsible for the increase in HIF-α stability during chronic hypoxia. There is also an
activation of NF-κB, which increases the expression of HIF-1α. Ultimately, chronic hypoxia
occurs in 23 to 54% of the tumor area, depending on the tumor model and the adoption of
threshold oxygen levels from which hypoxia is defined [144,145]. In comparison, cycling
hypoxia covers between 29 and 62% of the tumor area, depending on the tumor model and
the adopted oxygen threshold level in the definition of hypoxia [144,145]. Nevertheless, this
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microenvironment is not often studied. For this reason, the activated signaling pathways
and thus the cellular response to cycling hypoxia are poorly understood.

3. Cycling Hypoxia
3.1. Cycling Hypoxia in a Tumor

In the initial stages of tumor growth, the intense proliferation of tumor cells is not
matched by the development of blood vessels that supply cells inside the tumor with
nutrients and oxygen. Therefore, chronic (continuous, non-interrupted) hypoxia occurs
inside the tumor [146]. This causes activation of signaling pathways that result in an-
giogenesis. The blood vessels produced in the tumor are characterized by structural
abnormalities [147,148]. They do not show a conventional hierarchy compared to normal
vessels, which impedes blood flow. In addition, endothelial cells and pericytes are poorly
connected to each other, resulting in the leakiness of blood vessels in a tumor [149]. The
structural abnormalities of blood vessels result in periodic oxygen deficiencies coupled
with reoxygenation in various regions of the tumor [150]. This process is known as cycling
(intermittent, transient) hypoxia. This is associated with changes in the vascular blood flow
pathway characterized by the absence of conventional hierarchy. There is a segmentation
of the tumor into regions that experience hypoxia and normoxia at a specific time [151].
Fluctuations in oxygen concentration range from a few minutes [144,145,151–153] to a few
hours [154,155]. At the same time, the pattern of fluctuation depends on the type of tumor,
including the line that produced the tumor in in vivo studies [151,154,156]. It has been
shown that the more frequent the fluctuations in oxygen levels, the stronger the responses
of the cells [157,158]. In contrast, the amplitude depends on the size of the tumor. The
larger the tumor, the greater the fluctuations in oxygen concentration [156].

Cycling hypoxia is a characteristic feature of malignant tumors. This type of hypoxia
is also associated with further tumor growth. In particular, cycling hypoxia increases
the tumor growth rate [159,160]. It also causes apoptotic resistance by increasing B-cell
lymphoma-extra large (Bcl-xL) expression in cancer cells [161]. Simultaneously, cycling
hypoxia causes migration and metastases [162–164] associated with the induction of the
epithelial-to-mesenchymal transition (EMT) of tumor cells. Additionally, cycling hypoxia
increases self-renewal of cancer stem cells [163,164], which is associated with an increased
expression of transcription factor BTB and CNC homology 1 (Bach1) [160]. In experi-
ments on macrophages, cycling hypoxia increased the pro-inflammatory phenotype of M1
macrophages, while it had no pro-inflammatory effect on M2 macrophages [165]. On the
other hand, experiments on lung carcinoma LLC1 cells have shown that cycling hypoxia
reduces the number of M1 macrophages in a tumor [159]. In contrast, chronic hypoxia
causes M2 polarization of macrophages [166].

3.2. Cycling Hypoxia: Intracellular Signaling Pathways

Cycling hypoxia alters the expression of fewer genes than chronic hypoxia [167],
although the cellular response is similar for both. Cycling hypoxia has been shown to
strongly activate the epidermal growth factor (EGF) pathway through a greater (compared
to chronic hypoxia) increase in the expression of activators of the epidermal growth factor
receptor (EGFR) family of receptors [167]. Cycling hypoxia, just like chronic hypoxia,
is pro-inflammatory [168,169]. By activating NF-κB, it increases the expression of pro-
inflammatory genes including cyclooxygenase-2 (COX-2).

Both discussed types of hypoxia alter the expression of similar genes, due to the
fact that cycling hypoxia activates HIF-1 and NF-κB, the same transcription factors as
chronic hypoxia [167,170]. However, the mechanisms of activation, as well as the degree
of their activation, are different. In cycling hypoxia, activation of HIF-1 is stronger and
longer [163,171,172]. In addition, the expression level of HIF-1α protein is increasingly
higher with successive hypoxia cycles [173]. The higher the frequency of cycles (number
of cycles per hour), the higher the activation of HIFs [158]. In contrast, reoxygenation
is followed by HIF-α degradation, in part through increased PHD expression via HIF-1
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activated in the period of reduced oxygen concentration [35–38]. The frequency of oxy-
gen concentration fluctuations in the tumor depends on the cell line that produced the
tumor [151,154,156]. Additionally, the more frequent the fluctuations in oxygen concentra-
tion, the greater the activation of NF-κB [157,158].

The mechanism of HIF-α accumulation in cycling hypoxia is ROS-dependent [161,174].
Cycling hypoxia induces the upregulation of NOX1 [173] and NOX4 [172,175], which
generate ROS. ROS is also produced via the activation of xanthine oxidase [176,177], which
may occur due to a NOX2-induced increase in intracellular calcium levels [177]. Another
source of ROS in cycling hypoxia is the mitochondrial electron transport chain [178,179].
Increased levels of ROS increase the synthesis and stability of HIF-1α by decreasing PHD
activity [171,180], probably due to the oxidation of the iron atom which is important in
PHD activity [62,64,65]. ROS also inactivates FIH, although the exact mechanism of this
inactivation has been poorly researched [31]. On the other hand, ROS causes activation of
calpains, which cause HIF-2α degradation in cycling hypoxia [176]. Nevertheless, more
research is required on whether HIF-2 has some role in cycling hypoxia.

Other signaling pathways also play an important role in cycling hypoxia. In particular,
ROS activates MAPK cascades—ERK MAPK [175]—and the activation of JNK MAPK cas-
cade leads to the activation of AP-1 [178]. However, there are no studies showing the effect
of activated MAPK cascades in cycling hypoxia on phosphorylation of the HIF-1α subunit.
This subunit may undergo phosphorylation in chronic hypoxia, which increases its stability
and accumulation in the cell nucleus [92,95,181,182]. In cycling hypoxia, there is increased
expression of DUSP1 [183,184]—a phosphatase that inactivates MAP kinases [103] but
also increases the expression of manganese superoxide dismutase (MnSOD) that decreases
ROS levels [184]. ROS activate phospholipase C-γ (PLCγ), resulting in increased calcium
ion levels in the cytoplasm and PKC activation [177,180]. This leads to the activation of
the mammalian target of rapamycin (mTOR). This kinase, probably through S6K, causes
phosphorylation of HIF-1α and thus increases its stability.

Cycling hypoxia also causes activation of protein kinase A (PKA) (Figure 5) [185].
This kinase causes the phosphorylation of Thr63 and Ser692 in HIF-1α, which increases the
stability of this HIF-1 subunit [185,186]. The mechanism of PKA activation is independent
of cyclic adenosine monophosphate (cAMP) but is ROS-dependent [187]. The increase in
HIF-1α stability induced by phosphorylation by PKA and mTOR is independent of PHD
and oxygen levels.

In cycling hypoxia, ROS activates nuclear factor erythroid 2-related factor (Nrf2) [173],
which results in an increased expression of thioredoxin 1 (Trx1), which then increases
HIF-1α signaling. This effect is related to the interaction of Trx1 with HIF-1 in the cell
nucleus, but not to the reductase activity of Trx1 [188,189].

Cycling hypoxia also causes changes in HIF-1α acetylation. Cycling hypoxia results
in decreased expression of HDAC3 and HDAC5 proteins, but not the other HDACs [190],
as demonstrated in rat pheochromocytoma PC12 cells. A change in HDAC5 activity levels
increases HIF-1α acetylation and thus the stability of this HIF-1 subunit. With this model,
HDAC3 does not appear to affect transcriptional activity or HIF-1α stability. There are
no other (i.e., other than Wang et al. 2021) studies on the alteration of HIF-1α acetylation
in cycling hypoxia. However, in normoxia and chronic hypoxia, this post-translational
modification of the HIF-1α subunit is frequently studied [48,49,52,53,56].

In cycling hypoxia, ROS activates NF-κB [161,174,175,191]. In breast cancer, this is
dependent on IκBα degradation [169]. In melanoma, this process is independent of IKK
activation and of IκBα degradation [192]. NF-κB activation may depend on ERK MAPK,
p38 MAPK, and JNK MAPK [170,179,193,194]. On the other hand, a study on cycling
hypoxia in the renal tubular epithelial cell model showed a reduction in the expression of
ubiquitin-specific peptidase 8 (USP8) [195], which leads to ubiquitination of Lys63 TAK1
and activation of the entire NF-κB activation pathway.
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Figure 5. Effect of ROS in cycling hypoxia on the activation of HIF-1 and NF-κB. Cycling hypoxia
induces the generation of ROS, which cause the activation of HIF-1 and NF-κB. In particular, ROS
inactivate FIH and PHD, which results in increased stability of HIF-1α protein. ROS also activate
PKA and mTOR, which phosphorylate HIF-1α and thus increase the stability of this protein and its
accumulation in the cell. ROS also causes an increase in the expression of Trx1, which enhances the
transcriptional activity of HIF-1.

3.3. Cycling Hypoxia: Effects on the Tumor Microenvironment

Chronic hypoxia is accompanied by an activation of NF-κB, which increases the
expression of HIF-1α and some pro-inflammatory genes [40]. However, it seems that, in
cycling hypoxia, the activation of NF-κB is greater than in chronic hypoxia, and thus this
type of hypoxia has a very pro-inflammatory character [168,169,192,196]. It increases the
expression of genes associated with inflammatory responses as well as increases the cellular
response to pro-inflammatory factors. In particular, there is an increased expression of
COX-2 [167–169,197], CC motif chemokine ligand 2 (CCL2)/monocyte chemoattractant
protein 1 (MCP-1) [192,194,198,199], CXC motif chemokine ligand (CXCL)1/growth related
oncogene (GRO)-α [167], CXCL8/interleukin (IL)-8 [167,168,200,201], and IL-6 [168]. All of
these are inflammatory mediators involved in various neoplastic processes.

Both types of hypoxia also increase vascular endothelial growth factor (VEGF)-A
expression. This effect depends on the cancer cell line. VEGF-A expression in the tumor
cell is increased much more under chronic hypoxic conditions than in cycling hypoxia.
This has been shown in melanoma WM793B cells and prostate cancer PC-3 cells [167], as
well as hepatocellular carcinoma HepG2 cells [202]. At the same time, in ovarian cancer
SK-OV-3 cells, cycling hypoxia did not increase VEGF-A expression [167]. However, in
melanoma A-07 cells, both types of hypoxia increased VEGF-A equally [203].

VEGF-A is one of the best described pro-angiogenic factors in a tumor (Figure 6) [204,205].
However, in a tumor, there is not only VEGF-A, but also other angiogenesis-inducing factors.
These include factors whose expression is associated with cycling hypoxia, in particular
the aforementioned CCL2/MCP-1, CXCL1/GRO-α, CXCL8/IL-8, and prostaglandin E2
(PGE2)—the product of COX-2 activity. The main mechanism of the proangiogenic properties
of CCL2/MCP-1 is the recruitment of monocytes into the tumor niche, which are transformed
into TAM [206,207], which secrete VEGF-A but also other proangiogenic factors such as
matrix metalloproteinase 9 (MMP-9) and PGE2 [208]. CCL2/MCP-1 can also directly act on
endothelial cells [209]. CXCL1/GRO-α and CXCL8/IL-8 are chemokines that activate CXC
motif chemokine receptor (CXCR)2 [210,211], responsible for their pro-angiogenic proper-
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ties [212–214]. These chemokines also recruit tumor-associated neutrophils (TAN) to the tumor
niche [215–218]—cells that secrete MMP-9 into the tumor microenvironment [219,220]; MMP-9
is a metalloproteinase that causes a VEGF release from the extracellular matrix (ECM) [221].

Figure 6. Effect of cycling hypoxia on angiogenesis in cancer. Cycling hypoxia activates HIF-1 and NF-κB in the tumor cell.
(a) This leads to increased production of VEGF-A, CCL2/MCP-1, CXCL1/GRO-α, CXCL8/IL-8, and PGE2. (b) Subsequently,
CCL2/MCP-1, CXCL1/GRO-α and CXCL8/IL-8 induce recruitment of TAM and TAN to the tumor niche. Cells that possess
pro-angiogenic properties. TAN secrete MMP-9 into the tumor microenvironment, whereas TAM secrete MMP-9 and
VEGF-A. MMP-9 is a metalloproteinase that releases VEGF-A. PGE2 also increases the expression of proangiogenic factors.
(c) VEGF-A, CCL2/MCP-1, CXCL1/GRO-α and CXCL8/IL-8 directly cause angiogenesis.

PGE2 is also a pro-angiogenic factor, although not directly. It participates in angio-
genesis and lymphangiogenesis by increasing the expression of various angiogenic and
lymphangiogenic factors such as VEGF-A, VEGF-C, basic fibroblast growth factor (bFGF),
platelet-derived growth factor (PDGF), endothelin-1 [222–226] and causes an increase in
the expression of CXCR4, the receptor for angiogenic CXCL12 [227].

The aforementioned pro-inflammatory factors induced by cycling hypoxia also act
on tumor-associated cells. For example, they recruit various cells into the tumor niche.
CCL2/MCP-1 is a TAM recruiting factor [206,228,229], while CXCL1/GRO-α and CXCL8/IL-
8 are TAN recruiting factors [215–218]. PGE2, through its action on anti-tumor cells, is one of
the mechanisms of cancer immunoevasion. It inhibits the anticancer function of NK cells
and dendritic cells and enhances the pro-cancer function of M2 macrophages and regulatory
T cells (Treg) [230–234].

4. Mediators of Inflammatory Responses Induced by Chronic Hypoxia
as a Therapeutic Target

Cycling hypoxia is a feature of all solid tumors [145,151–155]. It activates the same
signaling pathways and alters the tumor microenvironment identically or similarly in
all tumors. Therefore, understanding the mechanisms of action of cycling hypoxia will
either allow the development or improvement of anti-cancer therapies against many types
of cancer.
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Cycling hypoxia is associated with elevated COX-2 expression and consequently
an increase in PGE2 production [167–169,197]. For this reason, the use of nonsteroidal
anti-inflammatory drugs (NSAID) together with standard anticancer therapy provides
beneficial effects for patients with various solid tumors [235], especially breast cancer [236],
colorectal cancer [235], oesophageal cancer [235], and prostate cancer [237]. Nevertheless,
in patients with non-small-cell lung cancer, NSAIDs improve the overall response rate but
have no effect on patient survival after therapy [238–240].

Additionally, cycling hypoxia increases CCL2/MCP-1 production in the tumor [192,
194,198,199]. Therefore, taking the CCL2→CC motif chemokine receptor 2 (CCR2) axis
as a therapeutic target is an approach with great therapeutic potential. In particular, a
CCR2 antagonist [241–243] and CCL2-neutralizing antibody [244–247] are being tested for
the treatment of many types of cancer.

In addition to CCL2/MCP-1, cycling hypoxia increases in the expression of CXCL1/GRO-
α [167] and CXCL8/IL-8 [167,168,200,201]. For this reason, a CXCL1-neutralizing anti-
body [248] and CXCL8-neutralizing antibody [249–252] are being tested as potential an-
ticancer agents. Another therapeutic approach is the use of receptor antagonists for sub-
family CXC chemokines, such as CXCR2 antagonists SB225002 [253–255] and SB265610 [256].
CXCR1/CXCR2 dual antagonists that act on both CXCL8/IL-8 receptors have also been
tested [257–261]. Because CXCR2 is a receptor for CXCL1/GRO-α [210], such dual antag-
onists also reduce the effects of this chemokine. It is also possible during cancer therapy
to inhibit the entire NF-κB activation pathway by using proteasome inhibitors and IKKβ

inhibitors [262]. This prevents the activation of NF-κB and so the expression of all genes is
dependent on the activation of this transcription factor by cycling hypoxia.

Another option is to improve the anti-cancer anti-angiogenic therapy, e.g., by using
bevacizumab—an anti-VEGF-A monoclonal antibody [263]. However, resistance to be-
vacizumab is very common, which is related to the presence of pro-angiogenic factors
other than VEGF-A in the tumor. These factors complement or, in the absence of VEGF-A,
replace VEGF-A in their functions [263,264]. For this reason, it has been suggested that
bevacizumab be used together with drugs that inhibit other pro-angiogenic factors, par-
ticularly those induced by cycling hypoxia, such as anti-CCL2 antibody [265] and CCR2
inhibitor [266]. CCR2 is the receptor for CCL2/MCP-1 and both therapeutic approaches tar-
get the CCL2→CCR2 axis. Another option is to use bevacizumab with NSAID [267], mainly
COX-2 inhibitors that reduce PGE2 production. As already mentioned, PGE2 has no direct
angiogenic effect, but it increases the expression of pro-angiogenic factors [222–226]. There-
fore, decreased PGE2 production results in decreased expression of other pro-angiogenic
factors. Another possibility is to combine bevacizumab with a CXCR1/CXCR2 dual in-
hibitor [268]. It is also possible to combine bevacizumab with an inhibitor of the NF-κB
activation pathway, e.g., NPI-0052/salinosporamide A, which is a proteasome inhibitor
that blocks proteolytic degradation of IκBα [269]. NF-κB activation in cycling hypoxia
is the most important mechanism in increasing the expression of all the aforementioned
pro-angiogenic factors [168,169,192,196]. Therefore, decreased NF-κB activation decreases
the expression of pro-angiogenic factors induced by this transcription factor.

5. Conclusions: A Perspective for Further Research on Chronic Hypoxia

The vast majority of published in vitro experiments on hypoxia in cancer relate to
chronic hypoxia. Most of the available work has not investigated the effect of cyclic changes
in oxygen concentration on tumor cells. For this reason, this type of research model does not
reflect the actual state of the cancerous tumor, with cycling hypoxia affecting a considerable
part of the tumor. In this way, the results of studies showing the effect of chronic hypoxia
only reflect the situation in one area in a tumor. For this reason, it is advisable that each
study on hypoxia in a tumor should use an in vitro model that includes cycling hypoxia.
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