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Abstract

The spectrum of viruses in insects is important for subjects as diverse as public health, vet-

erinary medicine, food production, and biodiversity conservation. The traditional interest in

vector-borne diseases of humans and livestock has drawn the attention of virus studies to

hematophagous insect species. However, these represent only a tiny fraction of the broad

diversity of Hexapoda, the most speciose group of animals. Here, we systematically probed

the diversity of negative strand RNA viruses in the largest and most representative collection

of insect transcriptomes from samples representing all 34 extant orders of Hexapoda and 3

orders of Entognatha, as well as outgroups, altogether representing 1243 species. Based

on profile hidden Markov models we detected 488 viral RNA-directed RNA polymerase

(RdRp) sequences with similarity to negative strand RNA viruses. These were identified in

members of 324 arthropod species. Selection for length, quality, and uniqueness left 234

sequences for analyses, showing similarity to genomes of viruses classified in Bunyavirales

(n = 86), Articulavirales (n = 54), and several orders within Haploviricotina (n = 94). Coding-

complete genomes or nearly-complete subgenomic assemblies were obtained in 61 cases.

Based on phylogenetic topology and the availability of coding-complete genomes we esti-

mate that at least 20 novel viral genera in seven families need to be defined, only two of

them monospecific. Seven additional viral clades emerge when adding sequences from the

present study to formerly monospecific lineages, potentially requiring up to seven additional

genera. One long sequence may indicate a novel family. For segmented viruses, cophyloge-

nies between genome segments were generally improved by the inclusion of viruses from

the present study, suggesting that in silico misassembly of segmented genomes is rare or

absent. Contrary to previous assessments, significant virus-host codivergence was
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Copyright: © 2019 Käfer et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All data are available

within the Supporting Information, except for

nucleotide sequences of the described viral

genomes. As these viral transcript sequences have

been extracted from transcriptomes of the 1KITE

consortium (Umbrella BioProject accession

number NCBI: PRJNA183205 (‘‘The 1KITE project:

evolution of insects’’)), they do not receive separate

NCBI accession numbers. Until all 1KITE

transcriptomes are publicly available, we deposit

these viral sequences with the permission of the

1KITE consortium on Dryad (https://doi.org/10.

http://orcid.org/0000-0003-3270-8348
http://orcid.org/0000-0003-2608-2596
http://orcid.org/0000-0001-5618-0547
http://orcid.org/0000-0001-7601-9873
http://orcid.org/0000-0003-1120-9531
http://orcid.org/0000-0001-8118-8313
http://orcid.org/0000-0002-1407-7952
http://orcid.org/0000-0002-5426-1092
http://orcid.org/0000-0002-3799-6011
https://doi.org/10.1371/journal.ppat.1008224
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1008224&domain=pdf&date_stamp=2019-12-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1008224&domain=pdf&date_stamp=2019-12-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1008224&domain=pdf&date_stamp=2019-12-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1008224&domain=pdf&date_stamp=2019-12-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1008224&domain=pdf&date_stamp=2019-12-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1008224&domain=pdf&date_stamp=2019-12-26
https://doi.org/10.1371/journal.ppat.1008224
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5061/dryad.87vt6hm


identified in major phylogenetic lineages based on two different approaches of codivergence

analysis in a hypotheses testing framework. In spite of these additions to the known spec-

trum of viruses in insects, we caution that basing taxonomic decisions on genome informa-

tion alone is challenging due to technical uncertainties, such as the inability to prove integrity

of complete genome assemblies of segmented viruses.

Author summary

The diversity of insect viruses is relevant to medical, environmental, and food sciences.

Our knowledge of insect viruses is highly biased because medical research has focused on

mosquitoes and a few other blood-feeding species. While insects are the most diversified

group of animals on the planet, the great majority of all insect species remain completely

unexamined for viruses. Here we searched the most comprehensive and most evenly com-

posed collection of insects for negative strand RNA viruses based on full transcriptomes.

In 1243 insect species of all orders, we found 488 independent viral sequences encoding

an RNA-directed RNA polymerase, a signature gene for RNA viruses. These data add con-

siderably to our knowledge on viral diversity, and reveal that viruses have coevolved with

insect hosts. However, our results also provide a reminder of the pitfalls associated with

virus discovery and taxonomic classification in the age of metagenomics.

Introduction

Negative strand RNA viruses contain major groups of pathogenic viruses that cause rabies,

hemorrhagic fevers, respiratory infections, measles, as well as a large range of important dis-

eases and economically important conditions in livestock and plants [1–4]. Our current

knowledge of negative strand RNA viruses is biased by the interest in medical disciplines and

provides an incomplete image when it comes to more fundamental questions in viral evolu-

tion, such as the contribution of codivergence in the formation of major viral genetic lineages.

These questions can only be addressed by systematic studies of larger taxonomic units of viral

hosts, corresponding to whole orders or classes of animals, which is complicated by the diffi-

culty to establish representative sample collections. Samples utilized for viral diversity studies

are often collected on an opportunistic basis or repurposed from other studies, resulting in

imbalance in host species representation, uncertainty in host classification, and uncertain

assignment of samples. This is especially true for studies of insects that show an enormous

genetic and morphological diversity.

Insects are the most speciose group of animals. Their origin has been dated to the early

Ordovician, 479 million years ago, a time that predates the formation of terrestrial ecosystems

[5]. Insects engage in symbiotic and parasitic relationships with a multitude of plants and ani-

mals, and are a vital component of the diet of animals, potentially facilitating virus transmis-

sion. Nevertheless, research on insect viruses has been mainly driven by interest in vector-

borne diseases, resulting in virological studies that have focused on blood-feeding species, with

rare exceptions [4, 6, 7]. However, blood-feeding insects represent only a minute fraction of

the biological diversity of insects. Studies using massively parallel sequencing of collections of

invertebrates have yielded an unprecedented diversity of novel RNA viruses [4, 6, 8]. However,

the samples used in these studies only covered a limited range of insect species, contained

many other groups of invertebrates such as spiders, worms, and molluscs, and were generated
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by sample pooling. Uncertain knowledge of host associations in these and other studies have

caused a tendency to abandon host association as an important auxiliary criterion for taxo-

nomic classification [9].

Here, we systematically probed the diversity of negative strand RNA viruses in the largest

and most representative collection of full transcriptome datasets of arthropods. The collection

is designed to represent all extant lineages of Hexapoda without representational bias. This

transcriptome database was first utilized for a phylogenomic re-assessment of the Hexapoda

phylogeny in 2014, based on 103 full transcriptomes [9]. Since that time, the collection has

been significantly extended to now cover 1243 full transcriptome datasets. All datasets includ-

ing their corresponding unassigned contigs and scaffolds were screened for negative strand

RNA viruses. The collection represents all orders of Insecta (insects, n = 1178), the orders Col-

lembola (springtails, n = 23), Protura (coneheads, n = 4), and Diplura (n = 14) of Entognatha,

as well as 24 outgroup species pertaining to Crustacea (n = 10), Myriapoda (n = 11), and Cheli-

cerata (n = 3).

Results

We based our search on conserved sequence motifs within the RdRp gene that is present in the

genomes of all replicating RNA viruses without a DNA stage except deltaviruses, and is not

present in the genome of the eukaryotic or prokaryotic cell. We utilized profile hidden Markov

models (pHMMs) to search for candidate viral RdRp motifs within 42,618,061 contigs and

scaffolds which were 66 to 20,314 amino acids long. pHMMs were trained on template amino

acid alignments covering the core conserved RdRp regions of representative viruses assigned

to the families Rhabdoviridae, Paramyxoviridae, Filoviridae, Nyamiviridae, and Orthomyxovir-
idae, as well as the genera Orthonairovirus,Mammarenavirus, Jonvirus, Orthohantavirus,
Orthobunyavirus, Tospovirus,Herbevirus, Phlebovirus, and Goukovirus.

According to the results of contig assembly, we initially detected 488 viral RdRp sequences.

These were identified in 324 arthropod species belonging to all insect orders and several out-

group taxa. The host associations, exact taxonomic classification, as well as sampling sites of

hosts for the viral genomes that appear in the phylogenetic trees in Fig 1 are summarized in S1

Table.

A large proportion of the viral sequences were co-detected with different pHMMs, owing to

the nature of the search algorithm which makes the detection of distant homologs possible.

This is of particular relevance since the template alignments, as well as the pHMM searches

were done before the release of any of the sequences described in [4] and [8]. All data were

later re-examined using BLASTp, with the inclusion of the data of [4] and [8], but no addi-

tional matches were retrieved. This confirms the sensitivity of the pHMM search approach

and demonstrates that the search strategy is not biased by a virus reference library that stems

from a fragmentary sample of insect species.

From the obtained contigs, 234 large sequences were selected for further analysis based on

length, quality, and dissimilarity toward other sequences in the dataset. These sequences were

later found to have highest similarity to members of Bunyavirales (n = 86), Articulavirales
(n = 54), orHaploviricotina (n = 94), respectively. For non-segmented viruses, full genome

assembly was often successful. For viruses with segmented genomes, assembly focused on the

RdRp-encoding segment was later on complemented by BLAST-based searches for other

genome segments expected. Thereby, 218 coding sequences from genes that are not encoded

on the same segment as the RdRp gene, such as glycoproteins, nucleoproteins, polymerase sub-

units, and proteins with unknown function were identified. Complete or coding-complete

genomes were assembled in 61 cases. Many additional large but incomplete genome assemblies
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were obtained that contain open reading frames of unknown function and represent unknown

genome architectures.

Of note, poly-A purification was applied on all samples due to the intended use for tran-

scriptome analysis [5]. We expected a general loss of sensitivity in detecting viral sequences

but did not expect a huge bias against viral genomes as opposed to viral mRNAs. For instance,

Fig 1. Maximum likelihood phylogenies of viruses found in the present study, viruses defined by ICTV as species, as well as selected unclassified viruses. Novel

viruses from the present study are identified by an asterisk. Novel viruses to be considered for taxonomic proposals because of unique phylogenetic position and

availability of a coding-complete genome are identified by numbers corresponding to Table 1. Trees were inferred in RAxML based on alignments of viral sequences

pertaining to: A: Rhabdoviridae; B: Xinmoviridae, Nyamiviridae, Bornaviridae, Artoviridae, Lispiviridae, Paramyxoviridae, Sunviridae, Filoviridae, and Pneumoniviridae;
C: Chuviridae,Qinviridae, and Yueviridae; D:Orthomyxoviridae; E:Hantaviridae, Cruliviridae, Peribunyaviridae, and Fimoviridae; F: Phasmaviridae; G: Phenuiviridae;
H: Arenaviridae,Mypoviridae, Nairoviridae, andWupedeviridae. Branch colors show host associations: Black, viruses associated with vertebrates; red, insects; orange,

invertebrates other than insects; green, plants. Bootstrap supports on tree nodes are shown by circles (> = 95) and triangles (>70). Designated host infraorders for

Blattodea: CCR: Cockroaches; for Coleoptera: CCJ: Cucujiformia; for Diptera: CCM: Culicomorpha, MSM: Muscomorpha, PSM: Psychodomorpha; for Hemiptera:

STR: Stenorrhyncha; for Hymenoptera: ACL: Aculeata, PRS: Parasitica; for Lepidoptera: HTN: Heteroneura; for Odonata: ANS: Anisoptera.

https://doi.org/10.1371/journal.ppat.1008224.g001
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even during single-cycle infection, more viral genomic RNA than viral mRNA is obtained

from poly-A preparation in mononegaviruses, in spite their mRNAs but not genomes contain

poly-A tails [10]. In natural infections an even larger excess of genomes over mRNA is

expected, because genomic RNA accumulates once packed, while viral mRNA is degraded at a

rate that weighs against new synthesis. Also in members of Bunyavirales a poly-A–related bias

is not expected because neither mRNAs nor genomes of these viruses have poly-A tails.

Novel viruses found in this study are named after their host order, related viral family, and

the designation “OKIAV” (for 1KITE insect-associated virus), followed by a number (e.g.,
Hemipteran orthomyxo-related virus OKIAV183). All sequences, including genome annota-

tions, host associations, and sampling sites, are available on the Dryad Digital Repository

under https://doi.org/10.5061/dryad.87vt6hm. All sequences will be released in GenBank

along with the release of transcriptomes from the 1KITE project (BioProject PRJNA183205:

’The 1KITE project: evolution of insects’).

Phylogeny and implications on taxonomy

To enable phylogenetic analysis, contigs were translated and grouped into eight alignments

based on preliminary sequence matching and phylogenies. The eight resulting trees as shown

in Fig 1 were generated following intense optimization of alignments by trimming and focus-

ing on conserved domains, with the aim to leave sufficient information in alignments while

allowing large taxonomic groups of viruses to be compared. The trees A-H in Fig 1 cover the

Rhabdoviridae (Fig 1A), all otherMononegavirales (Fig 1B), Chu-, Qin-, and Yueviridae (Fig

1C), Orthomyxoviridae (Fig 1D),Hanta-, Cruli-, Peribunya-, and Fimoviridae (Fig 1E), Phas-
maviridae (Fig 1G), Phenuiviridae (Fig 1G), as well as Arena-,Mypo-, Nairo-, andWupedeviri-
dae (Fig 1H). Detailed phylogenies including host associations down to the host species level,

as well as viral taxonomy information are shown in Supporting Information S1–S3 and S5–

S33 Figs. A detailed description of current taxonomy including the novel virus findings, as

well as classification suggestions resulting from the present data are provided in Supporting

Information S1 Text.

The tree structures in Fig 1 suggest a remarkable separation between vertebrate and insect

viruses, as noted already on the basis of a less inclusive sample of insect diversity [4, 8]. With

the exception of the subtree of non-plant-associated rhabdoviruses that still remains star-like

and may thus be undersampled, many insect-associated clades now appear well-differentiated

with a balanced proportion of intermediate versus terminal branches. In spite of the more

inclusive insect sampling contributed by the present study, novel insect viruses remain absent

in well-known clades of pathogenic vertebrate viruses, such as the genus Lyssavirus, the fami-

lies Paramyxoviridae, Bornaviridae, Filoviridae,Hantaviridae, and Arenaviridae. Also, some

major groups of pathogenic arboviruses do not show an expansion of host associations follow-

ing our search. For instance, the phleboviruses and orthobunyaviruses that are known to be

mosquito-, sandfly-, midge-, or tick-borne, do not yield any novel insect-associated viruses in

our sample in spite of its enormous genetic diversity (note that there are no sandfly, no mos-

quito, and only two midge species in our sample). This absence is remarkable as also the stud-

ies of [4] and [8] did not find any novel phleboviruses in the insects they sampled, while they

did find novel phleboviruses in ticks. There may exist an ecologically-driven association of

these viruses with blood-feeding insects. The additional association with ticks makes it possible

that viruses could be exchanged between insects and ticks based on common bloodmeal

sources.

Classification criteria exist only for a minority of viral genera. For instance, amino acid

sequence distances of 4% and 5% have been proposed for species demarcation in
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orthobunyaviruses and phleboviruses, respectively. Our distance-based selection of sequences

for inclusion in trees exceeds this distance criterion, making it likely that all novel sequences

identified by an asterisk in Fig 1 could be classified as novel species. While many recently-

described viruses still form solitary lineages in trees, a deep topological separation and struc-

tured host association emerges after inclusion of data from the present study. Large subclades

within viral families are often associated with insect orders or suborders, indicating an impor-

tant auxiliary criterion for subdivision of these viral families into genera. Structured host asso-

ciations become particularly obvious in the families Rhabdoviridae, Xinmoviridae,
Nyamiviridae, Artoviridae, Lispiviridae, Chuviridae, Phasmaviridae, and Feraviridae (Support-

ing Information S1 Text). Table 1 lists those virus clades that we propose to be considered for

classification on the genus level based on sequence distance and host associations, while taking

into account the completeness of available genome sequences. All in all, the analyzed

sequences suggest a potential for classifying at least 27 novel genera based on coding-complete

virus genomes, 20 of them without any previously known representative, and identify deep-

branching viral lineages that in the future may be classified as three novel families or subfami-

lies. Host associations are especially informative for subclassification of rhabdo- and xinmo-

viruses, chuviruses, orthomyxoviruses, and phasmaviruses. Furthermore, we add the first

independent description of a full qinvirus genome (Collembolan qin-related virus

OKIAV112), detected in the entognath Anurida maritima (seashore springtail, class Collem-

bola) (Fig 1C). Detailed taxonomical considerations are provided in the Supporting Informa-

tion S1 Text.

The discovery of a large diversity of novel lineages warrants a re-assessment of the overall

topology of negative strand viruses. Based on a manually curated alignment, we inferred a tree

as shown in Fig 2 using Bayesian phylogeny. Only few of the topological relationships differ

from those in Fig 1, which incorporates more alignment information specific for the smaller

units of diversity covered therein. For instance, there is weak support for the branching point

of rhabdoviruses, as also observed by [13]. As in Shi et al. [8] and as implied by current taxon-

omy, but unlike the results by Wolf et al. [13], the members of the order Articulovirales branch

to the exclusion of all members of Bunyavirales, while the deep topology of Bunyavirales is well

supported. A noteworthy finding is Collembolan phasma-related virus OKIAV223, a large

sequence of 8154 nucleotides extending beyond the L-gene ORF, albeit not covering segment

termini. It clusters with Phasmaviridae and branches from the phasmavirus lineage short after

the split from the last common ancestor of Peribunyaviridae and Phasmaviridae (Fig 2). It is

therefore the most appropriate outgroup for the peribunyavirus tree (Fig 1E), which has been

considered for rooting that tree. It is interesting to note that this topology suggests acquisitions

of tospo- and emaraviruses by plants from invertebrates, rather than an evolution of peribu-

nyaviruses from plant viruses as suggested by alternative tree topologies. A number of other

findings that indicate deeply diverged and novel virus groups are described in Supporting

Information S1 Text.

Genome composition

Tentative structures of complete or nearly-complete genomes are summarized in Fig 3. It is

noteworthy that genomes of chuviruses were found to appear in linear, circular, and seg-

mented circular forms [4]. Fig 1C includes an additional 25 exemplary chuviruses from the

present study, including seven with at least one complete segment and one with two complete

segments. According to the mapping of raw RNAseq reads, all genomes or genome segments

of these viruses are linear. Gene order is L-G-N, or N-G-L (Fig 3), confirming the two princi-

pal gene orders described in Li et al. [4]. Genomes with a missing glycoprotein gene or over-
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Table 1. List of phylogenetic groups to be considered for taxonomic proposals.

Superordinate

taxon

Putative

taxonomic level

Clade

annotation

Included tentative species (full

genomes)

Source Remarks No. in

Fig 1

Rhabdoviridae Genus ARR Hymenopteran almendra-

related virus OKIAV1

This study Monospecific

1

Genus MBAR Blattodean rhabdo-related virus

OKIAV14,

Mantodean rhabdo-related virus

OKIAV15

This study

2

3

Genus DHCR Dipteran rhabdo-related virus

OKIAV19,

Coleopteran rhabdo-related virus

OKIAV28,

Wuhan mosquito virus 9�

This study and Li et al.[4]

4

5

Genus CAR Coleopteran rhabdo-related virus

OKIAV20

This study Monospecific

6

Genus HAR2 Hymenopteran rhabdo-related

virus OKIAV22,

-OKIAV23,

-OKIAV24

This study

7

8

9

Genus LAR Lepidopteran rhabdo-related virus

OKIAV34

This study

10

Genus HAR1 Hymenopteran rhabdo-related

virus OKIAV38,

-OKIAV46,

-OKIAV109,

Hubei rhabdo-like virus 1

This study and Shi et al.[8]

11

12

13

Xinmoviridae Genus Anphevirus
lineage I

Xincheng anphevirus��
Aedes aegypti anphevirus��,

Hymenopteran anphe-related virus

OKIAV71

This study, Shi et al.[8], and Di

Giallonardo et al.[11]

14

Genus Anphevirus
lineage II

Odonatan anphe-related virus

OKIAV57,

-OKIAV59

This study

15

16

Genus Anphevirus
lineage III

Coleopteran anphe-related virus

OKIAV54

This study Subcomplete

genome 17

Genus Anphevirus
lineage V

Odonatan anphe-related virus

OKIAV90,

Mantodean anphe-related virus

OKIAV92,

Orthopteran anphevirus

This study and Shi et al. [8]

18

19

Nyamiviridae Genus Orinovirus
lineage I

Hymenopteran orino-related virus

OKIAV85,

-OKIAV87

This study

20

21

Lispiviridae Genus Arlivirus lineage

I

Strepsipteran aril-related virus

OKIAV104,

Hubei arlivirus

This study and Shi et al.[8]

22

Genus Arlivirus lineage

III

Hymenopteran arli-related virus

OKIAV98,

-OKIAV99

This study

23

24

Genus Arlivirus lineage

IV

Hemipteran aril-related virus

OKIAV94

This study

25

Chuviridae Genus OAM Odonatan chu-related virus

OKIAV136,

-OKIAV137,

Odonate mivirus

This study and Shi et al.[8]

26

27

Genus HyAM Hymenopteran chu-related virus

OKIAV123,

-OKIAV124

This study

28

29

(Continued)
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Table 1. (Continued)

Superordinate

taxon

Putative

taxonomic level

Clade

annotation

Included tentative species (full

genomes)

Source Remarks No. in

Fig 1

Orthomyxoviridae Genus O1 Hemipteran orthomyxo-related

virus OKIAV183,

Coleopteran orthomyxo-related

virus OKIAV184

This study

30

31

Genus O2 Blattodean orthomyxo-related

virus OKIAV181,

Lepidopteran orthomyxo-related

virus OKIAV178

This study

32

33

Genus O3 Dermapteran orthomyxo-related

virus OKIAV162,

Hymenopteran orthomyxo-related

virus OKIAV171,

Phasmatodean orthomyxo-related

virus OKIAV172

This study

34

35

36

Genus O4 Siphonapteran orthomyxo-related

virus OKIAV157,

Coleopteran orthomyxo-related

virus OKIAV158

This study Only 4 segments

37

38

Genus O5 Dipteran orthomyxo-related virus

OKIAV164

This study

39

Genus O6 Hemipteran orthomyxo-related

virus OKIAV188

This study

40

Genus O7 Dipteran orthomyxo-related virus

OKIAV199,

Coleopteran orthomyxo-related

virus OKIAV200,

Hubei orthomyxo-like

virus 2

This and Shi et al.[8]

41

42

Bunyavirales Family Novel group Dipluran hanta-related virus

OKIAV217,

-OKIAV218

This study Only 2 segments

43

44

Bunyavirales Family Not annotated Collembolan phasma-related virus

OKIAV223

This study Only L-gene

Fig 2

Phasmaviridae Genus CAP Coleopteran phasma-related virus

OKIAV235,

-OKIAV236

This study

45

46

Genus HAP Hymenopteran phasma-related

virus OKIAV227,

-OKIAV229,

-OKIAV230,

-OKIAV228,

-OKIAV233,

-OKIAV234,

-OKIAV232,

Ganda bee virus

This study and Schoonvaere et al.
[12] 47

48

49

50

51

52

53

Genus MAP1 Coleopteran phasma-related virus

OKIAV243

This study

54

Genus DAP2 Dipteran phasma-related virus

OKIAV226

This study

55

Genus HAF Hymenopteran phasma-related

virus OKIAV244,

-OKIAV250,

-OKIAV252

This study

56

57

58

(Continued)
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assembled contigs, as described in the same work, are not observed in the present study. To

check for circular genome organization, we have re-mapped all raw RNAseq reads to consen-

sus alignments of chuviral sequences joined head to tail. This approach did not find any reads

crossing the potential head/tail sequence boundaries, as would be expected in the case of

genome segments that are circular. While we do not claim to refute circular genomes in chu-

viruses, we cannot confirm this genome conformation based on our data (Supporting Infor-

mation S34 Fig) and recommend further experimental validation.

The genome segment termini in members of Bunyavirales form complementary panhandle

structures [15, 16]. These short sequences are identical within, and similar between genome

segments of a given viral genome, and are usually conserved in viruses that belong to one same

genus. Because segment termini in most of the members of recently-defined novel viral genera

have not been analyzed (including in the present study; refer to Supporting Information S1

Text), we determined segment co-segregation as an indicator of grouping congruence of

genome elements. Tanglegrams are shown in Supporting Information S15, S19, S24, S28,

S29, and S33 Figs. In most major clades there is congruence among segments. Some clades,

such as clade C of the orthomyxoviruses (Supporting Information S15 Fig) or the clades that

define Shanga- andHerbevirus in the peribunyaviruses, show signs of reassortment in lineage

precursors, as topological incongruence is observed for all members of the respective clades. In

cases where individual incongruences are seen, such as in Dipteran phasma-related virus

OKIAV224, Zorapteran phasma-related virus OKIAV242, or Coleopteran phasma-related

virus OKIAV243, we cannot discriminate between in silicomisassembly of genomes and actual

reassortment based on the present data. Confirmation by virus isolation or re-sequencing

including genome ends will be necessary.

To obtain an overall impression of segment co-segregation in newly-discovered segmented

RNA viruses, we analyzed cophylogenies of RdRp-encoding segments and other segments

from the same putative viral genomes using Jane [17]. We compared cophylogeny costs against

that of datasets with randomized segment associations. As summarized in Fig 4, addition of

the present findings rather improved the cophylogeny costs except in cophylogenies between

L- and M-segments (RdRp- and glycoprotein-encoding) of phasma- and phenuiviruses where

there was no relevant change (Fig 4). Also, in some viral trees the addition of the present data

reveal segment cosegregation where this was not evident from the genomes of previously

Table 1. (Continued)

Superordinate

taxon

Putative

taxonomic level

Clade

annotation

Included tentative species (full

genomes)

Source Remarks No. in

Fig 1

Phenuiviridae Subfamily Putative

subfamily

Dipteran phenui-related virus

OKIAV273,

Salarivirus,

Shuangao insect virus 3

This study and Li et al.[4]

59

Bunyavirales Family Not annotated Myriapodan Negavirus

OKIAV320,

Jiangxia mosquito virus 1

This study and Li et al.[4] Genome status

uncertain 60

�Wuhan mosquito virus 9, but none of the other members of the clade, is an endogenous viral element

��Xincheng anphevirus and Aedes aegypti anphevirus, but none of the other members of the clade, are likely to be endogenous viral elements.

ARR: Almendra-related rhabdovirus; DHCR: Diptera-, Hemiptera-, Coleoptera-related rhabdovirus; HAR: Hymenoptera-associated rhabdovirus; LAR: Lepidoptera-

associated rhabdovirus; MBAR: Mantodea-/Blattodea-associated rhabdovirus; CAR: Coleoptera-associated rhabdovirus; OAM: Odonata-associated Mivirus; HyAM:

Hymenoptera-associated Mivirus; O1-O7: Orthomyxovirus clades 1–7; CAP: Coleoptera-associated phasmaviruses; HAP: Hymenoptera-associated phasmaviruses;

MAP1: Multiple host-associated phasmaviruses clade 1; DAP2: Diptera-associated phasmaviruses clade 2; HAF: Hymenoptera-associated feraviruses.

https://doi.org/10.1371/journal.ppat.1008224.t001
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described viruses. We thus assume that our segmented genome findings overall do not suffer

from in silicomisassembly or other artifacts. However, the genomes of exemplary strains defin-

ing novel genera should be confirmed experimentally.

Fig 2. Bayesian phylogeny of negative strand RNA viruses based on MrBayes. Red dots identify virus orders according to current taxonomy. Blue

clouds show virus families. Selected viral species are identified for orientation. Asterisks indicate posterior probabilities> 0.9.

https://doi.org/10.1371/journal.ppat.1008224.g002

Re-assessing the diversity of negative strand RNA viruses in insects

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1008224 December 12, 2019 10 / 32

https://doi.org/10.1371/journal.ppat.1008224.g002
https://doi.org/10.1371/journal.ppat.1008224


Host-virus co-segregation

Recent studies on invertebrate-associated RNA viruses found no evidence of host-virus co-seg-

regation, and proposed frequent cross-host transmission of viruses between insect hosts that

co-occupy the same ecological niches [4]. However, these results were based on a limited and

spatially restricted sample of insects and other invertebrates. For the present study we have

subjected all viral phylogenies to formal cophylogenetic comparisons on the basis of resolved

and updated phylogenies of insects as in [5].

The phylogenies shown in Fig 1 were subjected to tests of breaches of cophylogeny using

Jane [17] (refer to Supporting Information S1 Table for host associations). To determine the

contribution of the novel sequences, separate analyses were done without the OKIAV

sequences but incorporating all known and novel viruses as per ICTV taxonomy update end of

2018. The limited knowledge of host associations in most studies restricted the resolution of

these analyses to the level of insect orders. Significant virus-host co-segregation was identified

in both analyses (with and without OKIAV findings) for the majority of trees (Fig 5A). For the

Fig 3. Annotations of full or nearly-full genomes and selected full bunyaviral L-segments found in the present study. Annotation was done using InterProScan [14].

Bunyaviral putative nonstructural genes, as well as other significant subgenomic reading frames were annotated manually.

https://doi.org/10.1371/journal.ppat.1008224.g003
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trees including Chuviridae andHanta-/Peribunyaviridae, significant co-segregation could only

be detected when including findings from the present study. Only for the tree summarizing

members of Phasmaviridae, no host-virus co-segregation could be detected.

Because analysis in Jane does not take branch lengths into account, does not incorporate

topological uncertainty, and mainly penalizes breaches of phylogenetic congruence between

virus and host tree, an alternative algorithm, CoRe-PA [18], was applied to further examine

host-virus co-segregation. This more sophisticated algorithm takes into account the recon-

struction of co-speciation and host-switching separately, and also discriminates these from

duplication events. To exclude potential bias introduced by the analysis of small phylogenetic

trees, we utilized trees that represent the complete tree topologies ofHaploviricotina and Poly-
ploviricotina, including topological uncertainty based on 1000 bootstrap replicates. All possible

rootings (i.e., tree versions rooted on every branch) of all replicate trees were modeled in order

to exclude the impact of false co-segregation signals among outgroup branches in insect and

host trees. Randomization of host associations was performed as previously and used as null

hypotheses in separate formal tests of co-segregation and host switching, respectively. As sum-

marized in Fig 5B and 5C, trees of both virus subphyla showed significantly more co-

Fig 4. Genome segment cophylogeny costs. Red dotted lines show lowest possible costs for breaches of cophylogeny

when using Jane [17] to optimize the tip opposition of RdRp-encoding genome segment trees with the corresponding

trees for genome segments indicated in each figure panel name. Black curves show the same costs accrued during each

of 1000 different randomizations of the dataset. Percent values in panels show the cophylogeny costs of the real

cophylogeny dataset divided by the costs with randomization (medians from 1000 randomizations). Lower percent

values indicate better agreement between the RdRp and the respective genome segment cophylogeny.

https://doi.org/10.1371/journal.ppat.1008224.g004
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segregation events with real host associations as opposed to randomized host associations. In

contrast, tests for host-switching events were not different when analyzing real versus random-

ized host associations. This suggests that earlier indications of predominance of host-switching

were likely to have been caused by uneven sampling, incorrect host attributions, or issues with

viral phylogenies.

Discussion

Our study summarizes curated results from the most comprehensive metagenomic virus

screen of a whole class of animals. The host dataset is resolved to all known orders of insects

Fig 5. Analysis of host-virus phylogenetic co-segregation. A: Histograms of costs for co-segregation of randomized

host associations (1000 iterations) compared to the original host associations (red dotted lines) for all phylogenies,

without (left) and with (right) OKIAV sequence inclusion, calculated with Jane [17]. The p-values of all z-tests indicate

an increase in costs of over 5% above the original costs. N.S. indicates non-significant cost differences. B: Ratio

between number of co-speciations in original and randomized data sets calculated forHaploviricotina and

Polyploviricotina with CoRe-PA [18]. C: Ratio between number of host switching events in original and randomized

data sets calculated forHaploviricotina and Polyploviricotina with CoRe-PA.

https://doi.org/10.1371/journal.ppat.1008224.g005
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and involves an evenly selected representation of insect families. Because every sample has

been genetically classified, the present work provides exact knowledge of host associations for

a large range of insect-associated viruses for the first time. This knowledge is essential to study

viruses as potential agents of vector-borne diseases in animals or plants, as well as to under-

stand insect viruses in the context of biodiversity conservation and food production [19]. It

also offers important criteria to define novel viral species and higher taxa. In this and other

regards, our work complements the recent work by Li et al. [4] and Shi et al. [8] that was

mainly focused on the description of viral diversity. For several taxa described in these studies,

host associations are specified for the first time. Furthermore, some of the recent taxonomic

proposals or re-classifications by ICTV are reconciled by the present data.

While our search has revealed an even greater diversity of positive strand RNA viruses, it

has been challenging to curate large numbers of viral sequences while keeping track with tax-

onomy as it is being changed. The present frequency of taxonomy revisions makes it difficult

to design basic analyses, such as phylogenies, so that they incorporate the latest viral taxonomy.

The process of taxonomic classification owes to be more conservative and undergo slower

cycles of renewal. It should allow time for independent reproduction of sequence findings

before these go into taxonomic classification. Independent reproduction is becoming more

important as ICTV has recently decided to allow classification on the sole basis of genome

sequence data. As our study exemplifies, classification may be uncertain when full genomes

cannot reliably be obtained, e.g., in segmented viruses. Genome segment termini should be

tested for complementarity among segments, but are often not covered in sequencing studies

[4, 8, 20]. Even in the few cases where genome ends are known and identical, this does not

prove that detected segments stem from one viral genome, because the ends of e.g., bunyaviral

segments are identical between viral species and can agree across genera and even families

[21]. The study of viral sequences derived from mixtures of insects is particularly difficult, as

they may be assembled into chimeric genomes whose fragments may, more likely, stem from

different viruses than one virus. The ICTV executive board has stated, with regards to the dan-

ger of assembling chimeric genomes, that “These are all caveats that must be addressed experi-

mentally for MG [metagenomic] sequence data to be used for classification purposes” [9].

From a virological view, segmented viruses that are to be classified as species based only on

sequence data should have full genome coverage including genome ends, and should stem

from individual insects. They should also be examined for phylogenetic congruence between

genome segments. Multiple infections should be considered as a source of potential mis-classi-

fication. In the present study we were able to infer phylogenies of several segments other than

RdRp-encoding segments and perform analyses on co-segregation between the RdRp and the

proteins encoded by those segments. While many clades of accepted genera formed monophy-

letic groups in segment trees, the topology between trees was not always congruent (Support-

ing Information S15, S19, S24, S28, S29, and S33 Figs). This suggests that reassortment was

involved in the formation of major viral taxa. Topological conflicts in individual virus genomes

appeared to occur more often in clades consisting of recently discovered viruses ([4, 8, 20],

and our study), than in known and functionally-characterized viruses. Even if the present data

were not found to disturb topological congruence in phylogenetic analyses of segment associa-

tion, this emphasizes the general concern regarding hasty classification of viruses identified in

metagenomic studies in the absence of experimental evidence.

In many instances, the comprehensiveness of our dataset allows us to estimate the extent of

genetic space occupied by taxonomic entities below the family level. Issues such as long-branch

attraction and loss of information by reduction of alignments [22] are alleviated by the addi-

tion of novel members to formerly solitary lineages, even if their genome sequences are incom-

plete [23]. The delineation of taxon-specific genetic space is further assisted by reliance on the
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assumption of long-term co-segregation. In the absence of any other criteria, the knowledge of

host associations can provide valuable information to define taxonomic units when newly dis-

covered viruses are added to formerly monogeneric and monospecific families. In light of the

obvious under-sampling within viral phylogenies, we regard it as an omission to not use host

associations as assistance for virus classification decisions. Host associations allow the intuitive

use of the principle of co-segregation that is confirmed for distinct, but related, insect-associ-

ated viruses in the present study. Several monophyletic clades in a number of viral families

were found to be associated with defined orders of insects, yet all these associations were previ-

ously undiscovered [4, 8].

Our data suggest a potential to classify at least 27 novel genera (20 of them without any pre-

viously known species), and probably three novel families. Regarding viruses for which com-

plete genomes or live isolates could not be obtained, the knowledge of host associations will

orient future efforts to identify or isolate viruses in a more targeted manner. This will be of

particular importance in insect groups that have relevance in food production or act as vectors

of disease, as well as insect species that change their distribution and abundance due to envi-

ronmental change.

The utilization of host associations for species classification is an accepted approach in

virology, even if, in rare cases, spillovers or dual host associations will have to be taken into

account and corrected for [24]. We expect cross-host transmission to be comparatively rare

based on our analyses, and challenge the notion of frequent occurrence of cross host-virus

transmission in the context of ecological and geographic proximity. The available studies are

based on under-sampled viral trees and may suffer from other issues related to host assign-

ment and topological correctness, in particular of viral phylogenies [4]. Tests of co-segregation

need to take topological uncertainty into account and should be contrasted to null hypotheses.

We furthermore have concerns regarding the sole reliance on distance-based classification

tools in the latest taxonomy proposals for negative strand RNA viruses [25, 26]. The utilized

tool, DEmARC [27], analyzes concatenated sets of homologous protein domains that are con-

served across the family of interest. It detects local regions of discontinuity in the pairwise dis-

tance spectrum within protein primary sequence alignments. Regions of discontinuity define

putative limits of taxonomic units below the family level. It has only been evaluated for three

families of vertebrate-infecting viruses (Picornaviridae, Coronaviridae, Filoviridae) and not for

taxa that contain more than one family. Results for some of the larger virus groups, such as the

genera Enterovirus versus Rhinovirus, have been controversial [28]. If applied to taxonomic

units that exceed the family level, changes in genome architecture are common, and it becomes

unclear whether protein-encoding genes other than the RdRp are homologous or have instead

been acquired by lateral gene transfer [4, 8, 29]. The rate of recombination in newly-discovered

viruses is unknown, and in segmented viruses this problem is aggravated by genome segment

reassortment. Notably, DEmARC has not been validated at all for segmented viruses. On this

basis, the analysis by distance-based tools has to be restricted to the RdRp gene and thus is

hardly different from a phylogeny based only on RdRp genes. Other tools, such as the

recently-proposed GRAViTy algorithm that incorporates genome composition, should be

used and evaluated on the same problem [30].

As demonstrated in the present study and elsewhere [4, 8, 13], there is considerable topo-

logical uncertainty in large RNA virus phylogenies that comprise units of genetic diversity cor-

responding to viral orders. While genetic distance can be estimated in trees, its estimation is

based on evolutionary models that cannot accommodate all biological factors of sequence evo-

lution. For instance, viral population sizes, host generation times and infection or coinfection

rates are expected to vary considerably between major lineages of viruses carried by hosts as

different as mammals, birds, reptiles, fish, insects, spiders, crustaceans, worms, and protists.
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As these host associations may have been in place since millions of years, effects such as substi-

tution saturation or footprints of recombination are expected to influence the inference of

deep phylogenetic relationships. Considering the shortcomings of evolutionary distance as a

single classification criterion, additional biological criteria including host associations should

be included in taxonomic considerations, if only as a test of plausibility.

Like all other approaches to detect viruses based on sequence information, our work has

several additional limitations. For instance, it remains difficult to differentiate endogenous

viral elements from replicating viruses. Our approach to extract virus sequence data from

insect transcriptomes makes it highly unlikely that integrated, non-transcribed viruses are

falsely assigned as viral matches. Earlier studies have relied on abundance of viral transcripts

in comparison to total RNA content in RNAseq datasets, without the knowledge of complete

transcriptome data. However, none of these approaches can exclude endogenous viral ele-

ments with certainty. For this reason, independent confirmation of findings is necessary before

taxonomic conclusions are drawn. Our exact knowledge of host associations will enable host

genome, as well as virus isolation studies that will ultimately exclude endogenization of viruses

in the host germ line and confirm viral replication.

Materials and methods

Insect transcriptome data

We screened 1243 insect transcriptomes sequenced within the 1KITE project [5] including

species from all recognized extant insect orders and additional arthropod orders. Samples

were collected worldwide and RNAseq data were sequenced in an Illumina HiSeq2000 plat-

form. Raw RNAseq data were assembled using SOAPdenovo-Trans-31kmer (version 1.01)

[31], and checked for quality and cross contaminations with VecScreen (www.ncbi.nlm.nih.

gov/tools/vecscreen/), and UniVec database build 7.0 (www.ncbi.nlm.nih.gov/tools/vecscreen/

univec/).

Viral sequence generation and sorting

Template alignments for building profile hidden Markov models (pHMMs) were created

using characterized RdRp amino acid sequences of negative strand RNA virus families. Due to

the high sequence divergence of viral genes, even for closely related species, the sequence

search was conducted at the amino acid level. Sequences were downloaded from the NCBI

database, in October 2014, and aligned with the web-based alignment tool T-coffee in Expresso

mode [32]. Transcriptome assemblies were translated in all six ORFs with the fastatranslate
program within the package EXONERATE (version 2.2.0) [33]. This ORF library was scanned

using HMMER version 3 [34] and only sequences with contiguous ORFs were regarded as

viral matches. HMMER builds a pHMM from a template alignment and uses it to extract

sequences that match the underlying probabilities of the model. This allows for detection of

evolutionary distantly related sequences, with the advantage of remote RdRp homolog detec-

tion, but also the disadvantage of inflating the results with redundant duplicate sequences.

Viral amino acid matches were checked for redundancy with a twofold approach: a) matches

from each RdRp-pHMM were aligned to the original template alignments with MAFFT ver-

sion 7.123, E-INS-i [35]. Poorly aligned regions and sequences that were too short and did not

overlap with the selected alignment region were removed using trimAl [36] or manually upon

inspection of the alignment in Geneious (Geneious v.9.1.8, Biomatters, Auckland, New Zea-

land, https://www.geneious.com), always complying with the preservation of known RdRp

motifs. Trees were inferred with PhyML v.3.2.0 [37], using 1000 bootstrap replicates and Blo-

sum62 amino acid substitution matrix. b) viral hits were compared with BLAST+ v.2.2.28+
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[38] against the non-redundant NCBI protein database which had previously been filtered for

viral sequences. This twofold approach enabled sorting the viral hits, thus removing any

redundancy introduced by the HMM-search among different virus families.

Inference of alignments and phylogenies

To compose alignments for phylogeny, viral sequence hits (OKIAVs) from the present study

were compared to GenBank as of August 2018 using BLASTP with an e-value cutoff of 10−6.

Sequences over 30% similarity to any OKIAV were selected. All species and genera listed in

the ICTV taxonomy table as of end of 2018 were added. During the revision, selected addi-

tional species from the ICTV species update released in February 2019 were added. The follow-

ing literature contributions were additionally consulted and relevant unclassified viruses were

added: [39–57].

In total, 234 of the RdRp sequences found in insects in the present study were used for phy-

logenetic analyses (Supporting Information S1 Table). Alignments were calculated anew and

refined with trimAl as described above. Model testing in MrBayes identified Blosum62 to be

the amino acid substitution matrix compatible with all alignments. Trees were inferred in

RAxML-NG version 0.7.0 BETA [58] plotting the transfer bootstrap expectation values [59].

Confirmatory phylogenetic analyses were done in PhyML v.3.2.0 [37] and MrBayes v3.2.6

[60], using the same substitution model and four different substitution rate categories with

gamma distribution. For RAxML and PhyML, 1000 bootstrap replicates were computed, and

for MrBayes chains were run until fully converged. All trees were plotted and annotated using

the R package ggtree [61].

Virus genome organization

All ORFs of the full-length viral hits were annotated after comparing them against our custom-

ized viral database as well as with the InterProScan protein domain search tool [14].

Phylogenetic co-segregation of virus segments

Considering that orthomyxo- and bunyaviruses have segmented genomes, we additionally

searched for proteins encoded by other segments (nucleoprotein, glycoprotein, PB2, and PA).

For this search, we used the available protein sequences of the respective genera (NCBI) for a

BLASTp search within transcriptomes we had detected the RdRp segments in already. Trees

shown in Supporting Information S15, S19, S24, S28, S29, and S33 Figs include only those

taxa for which additional protein genes were found. The R package dendextend [62], was used

to create tanglegram figures, that allow examination of topological consistency among the

trees. Jane [17] was used to match trees of the RdRp-encoding genome segments to trees of the

other segments, based on costs for breaches of cophylogeny (best match = lowest costs). Costs

were also determined when segment-segment associations were randomized and these pairs of

trees were then subjected to cophylogeny optimization in Jane. To obtain a quantitative mea-

sure of topological congruence, the costs associated with the real datasets were divided by the

costs with randomization (median from 1000 randomizations). The resulting value is a per-

centage that expresses the cophylogeny cost relative to a randomly-associated cophylogeny of

same tree size and structure (resulting in 0 for perfect cophylogeny and 1 for absence of cophy-

logeny). These relative costs are expressed as percentages in Fig 4. Because adding branches to

cophylogenies is expected to increase cophylogeny costs in randomized datasets, this was

tested by Wilcoxon´s paired samples test. In all comparisons, the differences were highly

significant.
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Analysis of co-segregation of viruses with their hosts

Host-virus associations for each phylogenetic tree were examined to assess concurrent phylo-

genetic relationships using Jane [17]. As a basis for the host tree we used a modified version of

the arthropod phylogeny from Misof et al. [5]. Since Jane needs a host for each taxon of the

virus tree, unknown or undefined hosts cannot be assessed. Therefore, we added outlier

branches of unidentified insect, unidentified arthropod, and non-arthropod hosts, to enable

mapping to non-arthropod and pooled insect/arthropod hosts. The co-evolution costs of the

original phylogenies were compared to 1000 iterations of randomized host-virus associations.

A one-sided z-test (implemented in the R package BSDA [63]) was used to test whether the

randomized costs are at least 5% higher than the original costs. This threshold was set to

ensure that miniscule cost changes do not lead to false interpretations.

CoRe-PA [18] was used to evaluate the co-evolutionary dependencies of the two major

virus subphyla ofHaploviricotina and Polyploviricotina with their corresponding insect hosts.

Given a co-segregating scenario, CoRe-PA aims to find the most parsimonious reconciliation

between host and virus trees by evaluating four co-evolutionary events: co-speciation, sorting,

duplication, and host-switching. Each type of event is assigned a certain cost and the co-phylo-

genetic assessment that minimizes the total cost of events is accepted. Since bothHaplovirico-
tina and Polyploviricotina trees were unrooted, all possible rooted versions were evaluated,

meaning that for every edge a rooted tree was created. Insect phylogenies were rooted to the

arthropod order Chelicerata. For each of the previously 1000 unrooted RAxML bootstrap

trees, 229 and 266 rooted trees were created forHaploviricotina and Polyploviricotina respec-

tively. A reconciliation for each of these trees to the corresponding insect phylogeny was com-

puted. To determine the strength and significance of host-virus co-evolution, each

reconciliation was compared against a randomized association of each co-phylogenetic sce-

nario, keeping the tree topologies unchanged. 100 randomized scenaria were computed by

randomly renaming the host tree tips. This preserved the structure of host-virus associations,

while avoiding bias introduction from sampling random trees. To estimate the fit of each ran-

domized scenario, reconciliations were computed with the following costs: 0 for sorting and

duplication, -1000 for co-speciation, and -0.001 for a host-switching event.

Completeness of genome segments

The completeness of viral segments was assessed for all segmented-related findings. Segments

with size similar to known relative viruses were regarded as at least coding-complete regions, if

the segment ORF was terminated by a stop codon within the segment. Bunyaviruses have seg-

ments that form panhandles, with conserved, species-specific termini [15, 16]. We examined

the genome termini for complementarity, and also evaluated whether the termini of one seg-

ment match those of the other segments.

Cytochrome oxidase subunit 1 (COI) barcode analysis

To investigate the possibility that other organisms were accidentally collected and therefore

whether the hosts of the OKIAV viruses might not actually be the intended sampled organ-

isms, a barcode search was conducted based on two databases. First, 2,534,455 cytochrome c

oxidase subunit 1 (COI) gene sequences from GenBank sequences were retrieved on October

10, 2019 with the query “txid2759[Organism:exp] AND cytochrome oxidase subunit 1[All

fields]”. Second, the German Barcode of Life (GBOL) database, which contains barcode

sequences from species recovered in Germany (Animalia: 287,377 barcodes including 261,015

hexapods; Plantae 7,884 barcodes, Fungi 1,038 barcodes). Contigs assembled from the 1243

insect transcriptomes were matched against these databases using BLAST+ (version 2.6.0).
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The BLAST results were filtered for matches of length at least 500 nucleotides, with a nucleo-

tide identity of at least 98%.

Of the 1243 insect transcriptomes, 34 (2.73%) have at least one contig that matches a non-

Hexapoda barcode. The non-Hexapoda barcodes fall into 20 phylum/class categories, as

shown in Supporting Information S3 Table.

Four of these 34 transcriptomes contained one or more negative strand RNA OKIAV, com-

prising a total of nine negative strand RNA viruses out of a total of 488 (1.8%) negative strand

RNA viruses identified overall. Details of these four assemblies, their nine OKIAV viruses, and

the matched non-Hexapoda barcodes are shown in Supporting Information S4 Table. Of the

nine viruses, four are shown in the phylogenies in Fig 1, marked with an empty triangle to

indicate the presence of a non-Hexapoda barcode in the associated assembly.

Supporting information

S1 Text. Supplementary results and discussion text.

(DOCX)

S1 Table. Additional data for the identified viral genomes. Information such as the host tax-

onomy, insect sample location, and collection date is provided.

(XLSX)

S2 Table. Read count and insect transcriptome library size for the full and nearly-full

OKIAV genomes.

(XLSX)

S3 Table. Non-Hexapoda COI barcodes found across all insect transcriptome assemblies.

Twenty combinations of non-Hexapoda phylum/class were found across all 1243 assemblies.

Matches were required to be of at least 500 nucleotides, with at least a 98% nucleotide identity

level.

(XLSX)

S4 Table. Detection of non-Hexapoda COI barcodes. Four assemblies (from which a total of

nine OKIAV viruses were recovered) contained contigs that matched non-Hexapoda barcode

sequences from the GBOL and NCBI databases (see Materials and Methods). Four of those

nine viruses appear in phylogenies in Fig 1, where they are marked with an empty triangle.

The five other viruses, indicated by asterisks, do not appear in Fig 1 because they were not

included in trees due to criteria of length, quality, and uniqueness. The table columns show, in

order: the assembly identifier, the list of OKIAV viruses found in the assembly, the phylum

and class of the non-Hexapoda organism(s) whose barcode was matched, and then for both

GBOL and NCBI databases (when matches were found) the percentage nucleotide identity of

the match and the length of the match.

(XLSX)

S1 Fig. Viruses pertaining to Rhabdoviridae. Maximum likelihood phylogenies based on

RAxML. Black branches show ICTV-accepted taxa, grey branches show unclassified taxa, and

red branches show OKIAVs. Columns on the right summarize contig length, genome com-

pleteness, taxonomic grouping of hosts, and viral genus and family. The outgroup taxon (not

shown) isMammalian 1 orthobornavirus (Bornaviridae). Analyses based on PhyML and

MrBayes can be found in S2 and S3 Figs.

(TIF)
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S2 Fig. Maximum likelihood phylogenies with PhyML of viruses pertaining to Rhabdoviri-
dae. Black branches show ICTV-accepted taxa, grey branches show unclassified taxa, and red

branches show OKIAVs. Columns on the right side summarize contig length, genome com-

pleteness, taxonomic grouping of hosts, and viral genus and family. The outgroup taxon not

shown) isMammalian 1 orthobornavirus (Bornaviridae).
(TIF)

S3 Fig. Bayesian phylogeny inference with MrBayes of viruses pertaining to Rhabdoviridae.

Black branches show ICTV-accepted taxa, grey branches show unclassified taxa, and red

branches show OKIAVs. Columns on the right side summarize contig length, genome com-

pleteness, taxonomic grouping of hosts, and viral genus and family. The outgroup taxon not

shown) isMammalian 1 orthobornavirus (Bornaviridae).
(TIF)

S4 Fig. Alignment of Almendravirus viroporins and the potential precursor ORF of Hyme-

nopteran almendra-related virus OKIAV1. Reference sequences belong to Arboretum almen-
dravirus (ABTV), Puerto Almendras almendravirus (PTAMV), Coot Bay almendravirus
(CBV), Balsa almendravirus (BALV), and Rio Chico almendravirus (RCHV). The hydrophobic

stretches with multiple leucins (L) and isoleucins (I) interact with the cell membrane to facili-

tate cell entry [1].

(TIF)

S5 Fig. Subtree of the sister clade of Cyto-, Nucleo-, Dichorhabdo-, and Varicosavirus. Max-

imum likelihood phylogenies based on RaxML (A) and Bayesian inference of phylogeny with

MrBayes (B). Grey branches show unclassified taxa, and red branches show OKIAVs. Col-

umns on the right side summarize contig length, genome completeness, and taxonomic group-

ing of hosts.

(TIF)

S6 Fig. Viruses pertaining to Xinmoviridae, Nyamiviridae, Bornaviridae, Artoviridae, Lis-
piviridae, Paramyxoviridae, Sunviridae, Filoviridae, and Pneumoviridae. Maximum likeli-

hood phylogenies based on RAxML. Black branches show ICTV-accepted taxa, grey branches

show unclassified taxa, and red branches show OKIAVs. Columns on the right summarize

contig length, genome completeness, taxonomic grouping of hosts, and viral genus and family.

The outgroup taxon (not shown) is Salmonid rhabdovirus (Rhabdoviridae). Analyses based on

PhyML and MrBayes can be found in S7 and S8 Figs.

(TIF)

S7 Fig. Maximum likelihood phylogeny with PhyML of viruses pertaining to Xinmoviridae,
Nyamiviridae, Bornaviridae, Artoviridae, Lispiviridae, Paramyxoviridae, Sunviridae, Filo-
viridae, and Pneumoviridae. Black branches show ICTV-accepted taxa, grey branches show

unclassified taxa, and red branches show OKIAVs. Columns on the right side summarize con-

tig length, genome completeness, taxonomic grouping of hosts, and viral genus and family.

The outgroup taxon (not shown) is Salmonid rhabdovirus (Rhabdoviridae).
(TIF)

S8 Fig. Bayesian phylogeny inference with MrBayes of viruses pertaining to Xinmoviridae,
Nyamiviridae, Bornaviridae, Artoviridae, Lispiviridae, Paramyxoviridae, Sunviridae, Filo-
viridae, and Pneumoviridae. Black branches show ICTV-accepted taxa, grey branches show

unclassified taxa, and red branches show OKIAVs. Columns on the right side summarize con-

tig length, genome completeness, taxonomic grouping of hosts, and viral genus and family.
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The outgroup taxon (not shown) is Salmonid rhabdovirus (Rhabdoviridae).
(TIF)

S9 Fig. Viruses pertaining to Chuviridae, Qinviridae, and Yueviridae. Maximum likelihood

phylogenies based on RAxML. Black branches show ICTV-accepted taxa, grey branches show

unclassified taxa, and red branches show OKIAVs. Columns on the right summarize contig

length, genome completeness, number of segments, taxonomic grouping of hosts, and viral

genus and family. Genomic protein-coding regions are: R = RdRp, G = glycoprotein, N =

nucleoprotein, Hy = hypothetical protein with unknown function. Segment length and organi-

zation are shown in parentheses: linear (L) or circular (C). For linear segments, information

on the segment ends is given as: (n) = segment ends not matching the ends of the RdRp seg-

ment, (y) = segment ends matching the ends of the RdRp segment, (p) = segment ends par-

tially matching the ends of the RdRp segment. The tree is rooted to Yuevirus (Yueviridae).
Analyses based on PhyML and MrBayes can be found in S10 and S11 Figs.

(TIF)

S10 Fig. Maximum likelihood phylogeny with PhyML of viruses pertaining to Chuviridae,

Qinviridae, and Yueviridae. Black branches show ICTV-accepted taxa, grey branches show

unclassified taxa, and red branches show OKIAVs. Columns on the right side summarize con-

tig length, genome completeness, number of segments, taxonomic grouping of hosts, and viral

genus and family. Genomic protein-coding regions are: R = RdRp, G = glycoprotein, N =

nucleoprotein, Hy = hypothetical protein with unknown function. Segment length and organi-

zation are shown in parentheses: linear (L) or circular (C). For linear segments, information

on the sequence similarity of segment ends among different genome segments is given as well:

(n) = segment ends not matching the ends of the RdRp segment, (y) = segment ends matching

the ends of the RdRp segment, (p) = segment ends partially matching the ends of the RdRp

segment. The tree is rooted to Yuevirus (Yueviridae).
(TIF)

S11 Fig. Bayesian phylogeny inference with MrBayes of viruses pertaining to Chuviridae,

Qinviridae, and Yueviridae. Black branches show ICTV-accepted taxa, grey branches show

unclassified taxa, and red branches show OKIAVs. Columns on the right side summarize con-

tig length, genome completeness, number of segments, taxonomic grouping of hosts, and viral

genus and family. Genomic protein-coding regions are: R = RdRp, G = glycoprotein, N =

nucleoprotein, Hy = hypothetical protein with unknown function. Segment length and organi-

zation are shown in parentheses: linear (L) or circular (C). For linear segments, information

on the sequence similarity of segment ends among different genome segments is given as well:

(n) = segment ends not matching the ends of the RdRp segment, (y) = segment ends matching

the ends of the RdRp segment, (p) = segment ends partially matching the ends of the RdRp

segment. The tree is rooted to Yuevirus (Yueviridae).
(TIF)

S12 Fig. Viruses pertaining to Orthomyxoviridae. Maximum likelihood phylogenies based

on RAxML. Black branches show ICTV-accepted taxa, grey branches show unclassified taxa,

and red branches show OKIAVs. Columns on the right summarize contig length, genome

completeness, number of segments, taxonomic grouping of hosts, and viral genus and family.

Genomic protein-coding regions are: PB1 = polymerase subunit PB1, PB2 = polymerase sub-

unit PB2, PA = polymerase subunit PA, G = glycoprotein, N = nucleoprotein, H = hemaggluti-

nin, NA = neuraminidase, M = matrix protein, NS = non-structural protein, and Hy =

hypothetical protein with unknown function. Segment lengths are shown in parentheses.

Information on the segment ends is indicated by: (n) = segment ends not matching the ends of
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the PB1 segment, (y) = segment ends matching the ends of the PB1 segment, (p) = segment

ends partially matching the ends of the PB1 segment. The outgroup taxon (not shown) is

Salmon isavirus (Isavirus, Orthomyxoviridae). Analyses based on PhyML and MrBayes can be

found in S13 and S14 Figs.

(TIF)

S13 Fig. Maximum likelihood phylogeny with PhyML of viruses pertaining to Orthomyxo-
viridae. Black branches show ICTV-accepted taxa, grey branches show unclassified taxa, and

red branches show OKIAVs. Columns on the right side summarize contig length, genome

completeness, number of segments, taxonomic grouping of hosts, and viral genus and family.

Genomic protein-coding regions are: PB1 = polymerase subunit PB1, PB2 = polymerase sub-

unit PB2, PA = polymerase subunit PA, G = glycoprotein, N = nucleoprotein, H = hemaggluti-

nin, NA = neuraminidase, M = matrix protein, NS = non-structural protein, and Hy =

hypothetical protein with unknown function. Segment lengths are shown in parentheses.

Information on the sequence similarity of segment ends among different genome segments is

given as well: (n) = segment ends not matching the ends of the PB1 segment, (y) = segment

ends matching the ends of the PB1 segment, (p) = segment ends partially matching the ends of

the PB1 segment. The outgroup taxon (not shown) is Salmon isavirus (Isavirus,Orthomyxoviri-
dae).
(TIF)

S14 Fig. Bayesian phylogeny inference with MrBayes of viruses pertaining to Orthomyxo-
viridae. Black branches show ICTV-accepted taxa, grey branches show unclassified taxa, and

red branches show OKIAVs. Columns on the right side summarize contig length, genome

completeness, number of segments, taxonomic grouping of hosts, and viral genus and family.

Genomic protein-coding regions are: PB1 = polymerase subunit PB1, PB2 = polymerase sub-

unit PB2, PA = polymerase subunit PA, G = glycoprotein, N = nucleoprotein, H = hemaggluti-

nin, NA = neuraminidase, M = matrix protein, NS = non-structural protein, and Hy =

hypothetical protein with unknown function. Segment lengths are shown in parentheses.

Information on the sequence similarity of segment ends among different genome segments is

given as well: (n) = segment ends not matching the ends of the PB1 segment, (y) = segment

ends matching the ends of the PB1 segment, (p) = segment ends partially matching the ends of

the PB1 segment. The outgroup taxon (not shown) is Salmon isavirus (Isavirus,Orthomyxoviri-
dae).
(TIF)

S15 Fig. Phylogenetic co-segregation between PB1 and PB2, PB1 and PA, and PB1 and

nucleoprotein of the viruses pertaining to Orthomyxoviridae. Topologically congruent

clades are highlighted in color. Branches in black indicate taxa that do not share a common

topological pattern in the respective tree pairs. Not all genomic segments have been identified

for all viral taxa; therefore, the number of taxa varies among the tree pairs. Clade H, mainly

composed of the Orthomyxoviridae genera, is not congruent between the PB1 and the nucleo-

protein trees and shows two different topologies within Thogotovirus. The PB1 segments of

Coleopteran orthomyxo-related virus OKIAV196 and -200 are both found within the same

insect transcriptome (Ips typographus). Within this transcriptome we have also identified one

PB2, one PA, and one nucleoprotein segments. The co-segregation analysis allowed us to

assign all the latter segments to Coleopteran orthomyxo-related virus OKIAV200 rather than

-196.

In the phylogenies of PB1 and PA, 52 of 54 taxa are distributed in eight monophyletic clades.

Clade B consists of three distinct inner clades that are topology-wise stable and share
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similarities within their inner parts. Whereas clades D and E are direct sisters in the PB1 tree,

clade D is not directly linked to clade E in the PA tree. However, the PA tree has a higher sup-

port in this region of the tree. The position of clade G is maintained across all trees, except of

Coleopteran orthomyxo-related virus OKIAV196 in the PA tree, which actually belongs next

to Zygentoman orthomyxo-related virus OKIAV204 (clade A). Clade H consists exclusively of

ICTV-accepted genera of Orthomyxoviridae, exceptHubei orthoptera virus 6. These clades (G

and H) show identical topology in both trees.

In the phylogenies of PB1 and PB2, 43 of 46 taxa are distributed in six monophyletic clades.

Clades D and E are merely represented by Archaeognathan orthomyxo-related virus

OKIAV189, Hemipteran orthomyxo-related virus OKIAV188, and Neuropteran orthomyxo-

related virus OKIAV190. Clade B shows a similar topology as in PA and PB1, and Clade G

maintains its phylogenetic position, except of Coleopteran orthomyxo-related virus

OKIAV196 in the PB2 tree, because it belongs next to Zygentoman orthomyxo-related virus

OKIAV204 of clade A.

For the nucleoprotein, 45 of 57 taxa were distributed in eight monophyletic clades. Clade G

maintains its topology in this phylogeny as well, showing additionally that the identified N-

segment is indeed part of Zygentoman orthomyxo-related virus OKIAV204. Clade E is a sister

to clade G on the nucleoprotein tree, in contrast to the PB1 tree where it is sister to clade D.

(TIF)

S16 Fig. Viruses pertaining to Hantaviridae, Cruliviridae, Peribunyaviridae, and Fimoviri-
dae. Maximum likelihood phylogenies based on RAxML. Black branches show ICTV-accepted

taxa, grey branches show unclassified taxa, and red branches show OKIAVs. The outgroup

taxon (not shown) is Collembolan hanta-related virus OKIAV223 (shown in S20 Fig). Analy-

ses based on PhyML and MrBayes can be found in S17 and S18 Figs.

(TIF)

S17 Fig. Maximum likelihood phylogeny with PhyML of viruses pertaining to Hantaviri-
dae, Cruliviridae, Peribunyaviridae, and Fimoviridae. Black branches show ICTV-accepted

taxa, grey branches show unclassified taxa, and red branches show OKIAVs. Columns on the

right side summarize contig length, genome completeness, number of segments, taxonomic

grouping of hosts, and viral genus and family. Genomic protein-coding regions are: R = RdRp,

G = glycoprotein, N = nucleoprotein, Hy = hypothetical protein with unknown function. Seg-

ment lengths are shown in parentheses. Information on sequence similarity of the segment

ends among different genome segments is given as well: (n) = segment ends not matching the

ends of the RdRp segment, (y) = segment ends matching the ends of the RdRp segment, (p) =

segment ends partially matching the ends of the RdRp segment. The outgroup taxon (not

shown) is Collembolan hanta-related virus OKIAV223 (shown in S20 Fig).

(TIF)

S18 Fig. Maximum likelihood phylogeny based on RAxML (A) and Bayesian phylogeny

inference with MrBayes (B) of viruses pertaining to Hantaviridae, Cruliviridae, Peribunya-
viridae, and Fimoviridae. Black branches show ICTV-accepted taxa, grey branches show

unclassified taxa, and red branches show OKIAVs. Columns on the right side summarize con-

tig length, genome completeness, number of segments, taxonomic grouping of hosts, and viral

genus and family. Genomic protein-coding regions are: R = RdRp, G = glycoprotein, N =

nucleoprotein, Hy = hypothetical protein with unknown function. Segment lengths are shown

in parentheses. Information on sequence similarity of the segment ends among different

genome segments is given as well: (n) = segment ends not matching the ends of the RdRp seg-

ment, (y) = segment ends matching the ends of the RdRp segment, (p) = segment ends

Re-assessing the diversity of negative strand RNA viruses in insects

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1008224 December 12, 2019 23 / 32

http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1008224.s021
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1008224.s022
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1008224.s023
https://doi.org/10.1371/journal.ppat.1008224


partially matching the ends of the RdRp segment. The outgroup taxon (not shown) is Collem-

bolan hanta-related virus OKIAV223 (shown in S20 Fig).

(TIF)

S19 Fig. Phylogenetic co-segregation between RdRp and glycoprotein, and RdRp and

nucleoprotein of the viruses pertaining to Hantaviridae, Cruliviridae, Peribunyaviridae,

and Fimoviridae. Topologically congruent clades are highlighted in color. Branches in black

indicate taxa that do not share a common topological pattern in the respective tree pairs.

In the phylogenies of RdRp and glycoprotein, 55 of 59 taxa were distributed in five monophy-

letic clades represented by the genera Orthobunyavirus,Herbevirus, Tospovirus, Orthohanta-
virus, and Emaravirus. Despite spanning four different families, the phylogenies are well-

supported and some of the (sub)topologies can be confirmed. Tospovirus and Emaravirus have

a completely congruent topology, while Orthobunyavirus and Orthohantavirus have some

topologically stable subclades. Noteworthy are not only the congruent topologies, but also the

very similar branch lengths of Tospovirus, Orthohantavirus, and Emaravirus. Based only on

the tree topology, an assignment of the M-segment to either Dipluran hanta-related virus

OKIAV217 or -218 cannot be assessed. In the phylogenies of RdRp and nucleoprotein, 44 of

49 taxa distributed in the genera Orthobunyavirus,Herbevirus, Tospovirus, Orthohantavirus,
and Emaravirus. Tospovirus is the only genus that retains its inner topological structure among

all trees, except of the position of Bean necrotic mosaic virus, that in the nucleoprotein tree is

sister to all other tospoviruses. However, the position of Tospovirus within Peribunyaviridae is

not supported by the nucleoprotein phylogeny. Apart from that, all genera are still monophy-

letic. The position of Khurdun virus as the first split fromHerbevirus can be confirmed by both

nucleoprotein and glycoprotein phylogenies.

(TIF)

S20 Fig. Representative viruses of Bunyavirales. Bayesian inference of phylogeny based on

MrBayes. Black branches show selected reference taxa, and red branches show some OKIAVs.

(TIF)

S21 Fig. Viruses pertaining to Phasmaviridae. Maximum likelihood phylogenies based on

RAxML. Black branches show ICTV-accepted taxa, grey branches show unclassified taxa, and

red branches show OKIAVs. Columns on the right summarize contig length, genome com-

pleteness, number of segments, taxonomic grouping of hosts, and viral genus and family.

Genomic protein-coding regions are: R = RdRp, G = glycoprotein, N = nucleoprotein, Hy =

hypothetical protein with unknown function. Segment lengths are shown in parentheses.

Information on the segment ends is indicated by: (n) = segment ends not matching the ends of

the RdRp segment, (y) = segment ends matching the ends of the RdRp segment, (p) = segment

ends partially matching the ends of the RdRp segment. The tree was rooted using a hantavirus

outgroup. The outgroup was then removed, the tree recalculated, and the rooting between

Orthophasmavirus vs. (HAF, Feravirus,Wuhivirus, and Jonvirus) was maintained. Analyses

based on PhyML and MrBayes can be found in S22 and S23 Figs.

(TIF)

S22 Fig. Maximum likelihood phylogeny with PhyML of viruses pertaining to Phasmaviri-
dae. Black branches show ICTV-accepted taxa, grey branches show unclassified taxa, and red

branches show OKIAVs. Columns on the right side summarize contig length, genome complete-

ness, number of segments, taxonomic grouping of hosts, and viral genus and family. Genomic

protein-coding regions are: R = RdRp, G = glycoprotein, N = nucleoprotein, Hy = hypothetical

protein with unknown function. Segment lengths are shown in parentheses. Information on

sequence similarity of the segment ends among different genome segments is given as well:
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(n) = segment ends not matching the ends of the RdRp segment, (y) = segment ends matching

the ends of the RdRp segment, (p) = segment ends partially matching the ends of the RdRp seg-

ment. The tree is rooted to the exclusion of the lower clade of Phasmaviridae (HAF, Feravirus,
Wuhivirus, Jonvirus) following preliminary analyses using a hantavirus outgroup.

(TIF)

S23 Fig. Bayesian phylogeny inference with MrBayes of viruses pertaining to Phasmaviri-
dae. Black branches show ICTV-accepted taxa, grey branches show unclassified taxa, and red

branches show OKIAVs. Columns on the right side summarize contig length, genome com-

pleteness, number of segments, taxonomic grouping of hosts, and viral genus and family.

Genomic protein-coding regions are: R = RdRp, G = glycoprotein, N = nucleoprotein,

Hy = hypothetical protein with unknown function. Segment lengths are shown in parentheses.

Information on sequence similarity of the segment ends among different genome segments is

given as well: (n) = segment ends not matching the ends of the RdRp segment, (y) = segment

ends matching the ends of the RdRp segment, (p) = segment ends partially matching the ends

of the RdRp segment. The tree is rooted to the lower clade of Phasmaviridae (HAF, Feravirus,
Wuhivirus, Jonvirus) following preliminary analyses using a hantavirus outgroup.

(TIF)

S24 Fig. Phylogenetic co-segregation between RdRp and glycoprotein, and RdRp and

nucleoprotein of the viruses pertaining to Phasmaviridae. Topologically congruent clades

are highlighted in color. Branches in black indicate taxa that do not share a common topologi-

cal pattern in the respective tree pairs. In the phylogenies of RdRp and nucleoprotein, 34 of 40

taxa were distributed in three monophyletic clades that consist of the ICTV-accepted genera

Feravirus,Wuhivirus, and Orthophasmavirus. In the nucleoprotein phylogeny, clades DAP

and HAP form inner congruent monophyletic groups within Orthophasmavirus. The same

pattern applies to 30 of 36 taxa in the glycoprotein phylogeny. Within Orthophasmavirus, HAP

is the most stable clade, with a subclade of five taxa that have identical topology among the

phylogenies. However, the bootstrap support of the Orthophasmavirus subclades is below 80%.

The clear subdivision into clades A and B on the RdRp and nucleoprotein trees is not verified

in the glycoprotein phylogeny, yet Feravirus and HAF group together with a high support

(99%), and maintain their inner topological structures. Most of the Orthophasmavirus taxa

have not been subjected to laboratory studies. Additionally, the OKIAV sequences are only

fragmentarily assembled. Obtaining stable and congruent phylogenies among genomic seg-

ments can thus not be expected.

(TIF)

S25 Fig. Viruses pertaining to Phenuiviridae. Maximum likelihood phylogenies based on

RAxML. Black branches show ICTV-accepted taxa, grey branches show unclassified taxa, and

red branches show OKIAVs. Columns on the right summarize contig length, genome com-

pleteness, number of segments, taxonomic grouping of hosts, and viral genus and family.

Genomic protein-coding regions are: R = RdRp, G = glycoprotein, N = nucleoprotein,

Hy = hypothetical protein with unknown function. Segment lengths are shown in parentheses.

Information on the segment ends is indicated by: (n) = segment ends not matching the ends of

the RdRp segment, (y) = segment ends matching the ends of the RdRp segment, (p) = segment

ends partially matching the ends of the RdRp segment. The tree is rooted to the putative sub-

family. Analyses based on PhyML and MrBayes can be found in S26 and S27 Figs.

(TIF)

S26 Fig. Maximum likelihood phylogeny with PhyML of viruses pertaining to Phenuiviri-
dae. Black branches show ICTV-accepted taxa, grey branches show unclassified taxa, and red
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branches show OKIAVs. Columns on the right side summarize contig length, genome com-

pleteness, number of segments, taxonomic grouping of hosts, and viral genus and family.

Genomic protein-coding regions are: R = RdRp, G = glycoprotein, N = nucleoprotein,

Hy = hypothetical protein with unknown function. Segment lengths are shown in parentheses.

Information on sequence similarity of the segment ends among different genome segments is

given as well: (n) = segment ends not matching the ends of the RdRp segment, (y) = segment

ends matching the ends of the RdRp segment, (p) = segment ends partially matching the ends

of the RdRp segment. The tree is rooted to the putative subfamily.

(TIF)

S27 Fig. Bayesian phylogeny inference with MrBayes of viruses pertaining to Phenuiviri-
dae. Black branches show ICTV-accepted taxa, grey branches show unclassified taxa, and red

branches show OKIAVs. Columns on the right side summarize contig length, genome com-

pleteness, number of segments, taxonomic grouping of hosts, and viral genus and family.

Genomic protein-coding regions are: R = RdRp, G = glycoprotein, N = nucleoprotein,

Hy = hypothetical protein with unknown function. Segment lengths are shown in parentheses.

Information on sequence similarity of the segment ends among different genome segments is

given as well: (n) = segment ends not matching the ends of the RdRp segment, (y) = segment

ends matching the ends of the RdRp segment, (p) = segment ends partially matching the ends

of the RdRp segment. The tree is rooted to the putative subfamily.

(TIF)

S28 Fig. Phylogenetic co-segregation between RdRp and glycoprotein, and RdRp and

nucleoprotein of the viruses pertaining to Phenuiviridae. Topologically congruent clades are

highlighted in color. Branches in black indicate taxa that do not share a common topological

pattern in the respective tree pairs. The lack of complete genomes for most of the taxa that

appear on the trees causes high topological conflict between the phylogenies of the different

segments. The glycoprotein- and nucleoprotein-segments have not been identified for most of

the OKIAV. The bootstrap support on the clades of the single-species generaHudovirus, Pid-
chovirus,Hudivirus, Beidivirus, andHorwuvirus is low in comparison to the rest of the tree.

Thus, the phylogenetic signal is probably not sufficient to draw meaningful conclusions on co-

segregations for these genera. Additionally, within the putative subfamily, the lack of genomic

segments for co-segregation analysis does not allow us drawing conclusions either.

In the phylogenies of RdRp and nucleoprotein, 45 of 64 taxa are distributed in topologically

stable monophyletic clades within the genera Phasivirus,Wubeivirus, Tenuivirus, Phlebovirus
(with the exception of clade B), Banyangvirus, Goukovirus, and additionally the unclassified

clades A, E, and F. Within Phlebovirus, clade B is sister to clade A and includes the genus

Tenuivirus. Clade C is topologically congruent among all three phylogenies. Both clades C and

D maintain their taxa composition across all three trees as well as their relation to Banyang-
virus. The topological stability of the Banyangvirus clade within the Phlebovirus clade, suggests

that Banyangvirus should rather be classified as a sub-genus of Phlebovirus.
In the phylogenies of RdRp and glycoprotein, 35 of 41 taxa are distributed in topologically sta-

ble monophyletic clades that are accepted genera and the unclassified clades D, E, and F.Hudi-
virus and Beidivirus group together in this case, indicating a close relationship. A doubtful

classification is the one ofWubeivirus: it is monophyletic only in the glycoprotein phylogeny,

but groups consistently with Phasivirus in all phylogenies.

(TIF)

S29 Fig. Phylogenetic co-segregation between RdRp and glycoprotein, and RdRp and

nucleoprotein of the viruses pertaining to Phlebovirus and Banyangvirus. Topologically
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congruent clades are highlighted in color. Branches in black indicate taxa that do not share a

common topological pattern in the respective tree pairs. Banyangvirus is sister to the main

Phlebovirus clades in the RdRp phylogeny, indicating that Banyangvirus should not be

regarded as an independent genus.

(TIF)

S30 Fig. Viruses pertaining to Arenaviridae, Mypoviridae, Nairoviridae, and Wupedeviri-
dae. Maximum likelihood phylogenies based on RAxML. Black branches show ICTV-accepted

taxa, grey branches show unclassified taxa, and red branches show OKIAVs. Columns on the

right summarize contig length, genome completeness, number of segments, taxonomic group-

ing of hosts, and viral genus and family. Genomic protein-coding regions are: R = RdRp,

G = glycoprotein, N = nucleoprotein, Hy = hypothetical protein with unknown function. Seg-

ment lengths are shown in parentheses. Information on the segment ends is indicated by: (n)

= segment ends not matching the ends of the RdRp segment, (y) = segment ends matching the

ends of the RdRp segment, (p) = segment ends partially matching the ends of the RdRp seg-

ment. The outgroup taxon (not shown) is Rift Valley fever phlebovirus (Phenuiviridae). Analy-

ses based on PhyML and MrBayes can be found in S31 and S32 Figs.

(TIF)

S31 Fig. Maximum likelihood phylogeny with PhyML of viruses pertaining to Arenaviri-
dae, Mypoviridae, Nairoviridae, and Wupedeviridae. Black branches show ICTV-accepted

taxa, grey branches show unclassified taxa, and red branches show OKIAVs. Columns on the

right side summarize contig length, genome completeness, number of segments, taxonomic

grouping of hosts, and viral genus and family. Genomic protein-coding regions are: R = RdRp,

G = glycoprotein, N = nucleoprotein, Hy = hypothetical protein with unknown function. Seg-

ment lengths are shown in parentheses. Information on sequence similarity of the segment

ends among different genome segments is given as well: (n) = segment ends not matching the

ends of the RdRp segment, (y) = segment ends matching the ends of the RdRp segment, (p) =

segment ends partially matching the ends of the RdRp segment. The outgroup taxon (not

shown) is Rift Valley fever phlebovirus (Phenuiviridae).
(TIF)

S32 Fig. Bayesian phylogeny inference with MrBayes of viruses pertaining to Arenaviridae,
Mypoviridae, Nairoviridae, and Wupedeviridae. Black branches show ICTV-accepted taxa,

grey branches show unclassified taxa, and red branches show OKIAVs. Columns on the right

side summarize contig length, genome completeness, number of segments, taxonomic group-

ing of hosts, and viral genus and family. Genomic protein-coding regions are: R = RdRp,

G = glycoprotein, N = nucleoprotein, Hy = hypothetical protein with unknown function. Seg-

ment lengths are shown in parentheses. Information on sequence similarity of the segment

ends among different genome segments is given as well: (n) = segment ends not matching the

ends of the RdRp segment, (y) = segment ends matching the ends of the RdRp segment, (p) =

segment ends partially matching the ends of the RdRp segment. The outgroup taxon (not

shown) is Rift Valley fever phlebovirus (Phenuiviridae).
(TIF)

S33 Fig. Phylogenetic co-segregation between RdRp and glycoprotein, and RdRp and

nucleoprotein of the viruses pertaining to Arenaviridae, Mypoviridae, Nairoviridae, and

Wupedeviridae. Topologically congruent clades are highlighted in color. Branches in black

indicate taxa that do not share a common topological pattern in the respective tree pairs.

In the phylogenies of RdRp and nucleoprotein, 31 of 38 taxa are distributed in the monophy-

letic genera Orthonairovirus, Reptarenavirus, andMammarenavirus. Reptarenavirus is the only
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genus that consistently has a congruent topology among all trees. There are very few viruses

that are not formally accepted by ICTV in this tree, and the ones that are new fit well in

between the established genera, resulting in a stable backbone of the phylogeny. In the phylog-

enies of RdRp and glycoprotein, 30 of 39 taxa are distributed in Orthonairovirus, Reptarena-
virus, andMammarenavirus. The glycoprotein phylogeny shows similar topology to the

nucleoprotein one, but only Reptarenavirusmaintains its topological position. The biggest dis-

agreement is the positioning of Reptarenavirus within the Nairoviridae clade. The backbones

of the trees are not in agreement, therefore the positions of the single-species genera Shaspi-
virus,Wumivirus, and Hubevirus cannot be confirmed. However, in both phylogenies, the

positions of Striwavirus, Blattodean nairo-related virus OKIAV321, and Xinzhou spider virus
are stable.

(TIF)

S34 Fig. Read mapping on the genome of Odonatan chu-related virus OKIAV137. The

sequence is joined head-to-tail, genome start and end are colored and indicated by arrows.

The end-to-start gap is solely bridged by two flanking nucleotides of four reads (marked in

red). The ORFs encoding for glycoprotein (G), nucleoprotein (N), and RdRp, as well as the

read coverage are shown.

(TIF)
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