
Germline Variation in Cancer-Susceptibility Genes in a
Healthy, Ancestrally Diverse Cohort: Implications for
Individual Genome Sequencing
Dale L. Bodian, Justine N. McCutcheon¤, Prachi Kothiyal, Kathi C. Huddleston, Ramaswamy K. Iyer,

Joseph G. Vockley*, John E. Niederhuber

Inova Translational Medicine Institute, Inova Health System, Falls Church, Virginia, United States of America

Abstract

Technological advances coupled with decreasing costs are bringing whole genome and whole exome sequencing closer to
routine clinical use. One of the hurdles to clinical implementation is the high number of variants of unknown significance.
For cancer-susceptibility genes, the difficulty in interpreting the clinical relevance of the genomic variants is compounded
by the fact that most of what is known about these variants comes from the study of highly selected populations, such as
cancer patients or individuals with a family history of cancer. The genetic variation in known cancer-susceptibility genes in
the general population has not been well characterized to date. To address this gap, we profiled the nonsynonymous
genomic variation in 158 genes causally implicated in carcinogenesis using high-quality whole genome sequences from an
ancestrally diverse cohort of 681 healthy individuals. We found that all individuals carry multiple variants that may impact
cancer susceptibility, with an average of 68 variants per individual. Of the 2,688 allelic variants identified within the cohort,
most are very rare, with 75% found in only 1 or 2 individuals in our population. Allele frequencies vary between ancestral
groups, and there are 21 variants for which the minor allele in one population is the major allele in another. Detailed analysis
of a selected subset of 5 clinically important cancer genes, BRCA1, BRCA2, KRAS, TP53, and PTEN, highlights differences
between germline variants and reported somatic mutations. The dataset can serve a resource of genetic variation in cancer-
susceptibility genes in 6 ancestry groups, an important foundation for the interpretation of cancer risk from personal
genome sequences.
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Introduction

Advances in sequencing technologies and decreasing costs are

making whole genome sequencing (WGS) and whole exome

sequencing (WES) increasingly accessible and may enable the

transition from research applications and consumer genomics to

routine clinical care. However, wide acceptance in the clinic has

been hampered primarily by limitations in our current knowledge

of the clinical relevance of the detected sequence variations.

In oncology, WGS/WES is currently used primarily to identify

somatic mutations in tumors. Germline variations impacting

cancer predisposition or disease progression are typically identified

by targeted resequencing of genes of interest such as BRCA1 and

BRCA2. As WGS/WES becomes more widely adopted, analysis of

germline variation will move from single-gene approaches to

analyses based on multiple cancer-associated genes, and the tested

population will expand from at-risk individuals to the general

population.

The interpretation of these data requires an understanding of

the variation in cancer risk-associated genes in healthy individuals,

which is largely uncharacterized. Most knowledge of germline

variation in cancer-susceptibility genes has come from individuals

who have a medical reason to be sequenced [1], and so is not

representative of the general population. Other information has

come from cell lines and animal models rather than primary

patient cells [2]. Individuals studied are primarily of European

ancestry [1,3], but both genome sequences and cancer risk vary

between ancestry groups [4]. Furthermore, research studies have

focused on high-penetrance susceptibility alleles, but cancer is

generally the result of the combined effects of low- to moderate-

penetrance risk alleles and environmental factors [5].

The goal of this study is to characterize the variation in cancer-

susceptibility genes in a general population. To accomplish this

goal, we profiled the nonsynonymous variation in 158 cancer

genes using data from high-quality whole genome sequences from

an ancestrally diverse cohort of 681 individuals. We also

characterized in detail the variants in five genes of particular

clinical interest, BRCA1, BRCA2, KRAS, TP53, and PTEN. The

results can serve as a reference for variation in the 158 cancer-
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susceptibility genes in the general population and have important

implications for the interpretation of clinical WGS/WES.

Methods

Ethics statement
Individuals were recruited at Inova Fairfax Hospital during

2011-2012 and enrolled in the Inova Translational Medicine

Institute’s clinical study entitled ‘‘Molecular Study of Pre-term

Birth.’’ All study participants provided written informed consent

for use of their genome sequences for research purposes. The

‘‘Molecular Study of Pre-term Birth’’ was approved by the

Institutional Review Board of Inova Health System and the

Western Institutional Review Board (#1124761). The analyses

reported here were part of an investigation of the role of cancer-

susceptibility genes in the etiology of pre-term birth, an area of

research motivated by the similarities between pregnancy and

malignancy [6,7].

Participants
The cohort for this analysis consists of 681 adults from 352

families, comprising 337 men aged 18–50 (median 34) and 344

women aged 18–44 (median 32). None of the individuals are first

degree relatives, as confirmed by genomic analysis. The country of

birth of the subjects and their parents were self-reported. The

cohort is representative of the population of Northern Virginia

and of the population giving birth at Inova Fairfax Hospital by

race, ethnicity, and socioeconomic status [8]. Approximately one

third of the subjects (34% of the men and 35% of the women) were

enrolled in the study as parents of a pre-term neonate, and two

thirds as full term controls. No significant association between the

cancer gene variants and term status was found.

Self-report questionnaires and hospital medical records were

reviewed for cancer status. Three individuals had a cancer

diagnosis prior to enrollment: one man with renal cancer, one

man with cancer of an unknown type, and one woman with breast

cancer. None of the participants reported a personal and family

history indicative of a highly penetrant cancer-predisposing

germline mutation, namely early age of onset and/or multiple

affected family members.

Samples and sequencing
Whole blood samples were collected from all subjects in BD

Vacutainer K2-EDTA tubes. Genomic DNA extraction was

performed on the QiaSymphony automated DNA extractor using

the DNA Midi kit (QIAGEN Inc., Valencia, CA). Samples were

sent to Complete Genomics (Mountain View, CA) for whole

genome sequencing, assembly, and variant calling [9,10].

Sequencing was performed with the DNA nanoball array

technology. Genome sequences were assembled with Complete

Genomics’ Assembly Pipeline versions 2.0.0-2.0.3 using the NCBI

build 37 (hg19) human genome reference assembly [11]. Coverage

statistics were calculated using weight-sum sequence coverage

depth. On average, 70% of each genome and 80% of each exome

had .40x coverage. Variants from the masterVar files from all

genomes were merged into a single VCF v4.1 file with mkvcf (beta)

from the CGA tools suite, version 1.6.0.

Gene annotations were computed with a modified version of the

GLU software package, version 1.0b3-prerelease4 [12], using

genome coordinates of exons, transcripts, and coding regions from

the UCSC Genome Browser knownGene table [13]. Predicted

protein sequence changes were calculated by translating the

coding region of each transcript and the reference. Additional

annotations from dbSNP 137 [14], COSMIC version 65 [15],

HGMD Professional 2012.3 (BIOBASE), and PolyPhen-2 [16,17]

were added using the ANNOVAR tool [18]. PolyPhen-2 scores .

0.85, between 0.85 and 0.15, and ,0.15 were coded as ‘‘probably

damaging’’, ‘‘possibly damaging’’, and ‘‘benign’’, respectively [17].

Quality filtering
Genotype calls were filtered for reliability using a predictive

model trained on 341 randomly selected cancer-gene variants

which were validated by Ion Torrent sequencing. Model building

was performed with weka-3–6 [19] using default parameters

except as noted. Attributes were selected by the BestFirst

algorithm from the genotype quality information provided by

Complete Genomics. Filtering parameters were determined using

the J48 decision tree algorithm with 10-fold cross-validation. The

resulting model incorporates two types of filters: a position filter

and a genotype filter. The position filter excludes all variants at

genomic locations with an overall call rate across the cohort of ,

80% or with an average fractional allele depth #0.295. The

genotype filter masks calls with a minimum allele depth #11.

Based on 10-fold cross-validation, the error rates for genotypes

passing these filters were estimated to be ,1.3% for false negatives

and ,2.3% for false positives.

Genes and variants
The Cancer Gene Census, a curated collection of 487 genes

with mutations causally implicated in oncogenesis from primary

patient samples [20], was downloaded from the Sanger Center

website (9/2012). To focus on variants that could impact cancer

susceptibility due to predicted protein-sequence changes, we

excluded genes for which the causal link to cancer was aberrant

expression rather than mutation, keeping only genes listed in the

Census due to missense, frameshift, splicing, or nonsense

mutations. We included both genes with known cancer-predis-

posing germline mutations, as well as genes for which only somatic

oncogenic mutations are currently known, since germline variation

in genes with somatic mutations can also affect cancer suscepti-

bility [20]. Loci omitted from or ambiguously mapped to the

reference assembly were excluded, leaving 158 genes of interest.

Variants are defined as sequence differences from the reference,

as calculated by the WGS pipeline. A variant was categorized as

frameshift, nonsense, or splice-site disrupting if it had that

predicted effect on any of the annotated transcripts associated

with a cancer gene. Allele frequencies were computed from the

called genotypes. Rare variants are defined as variants with minor

allele frequency (MAF) ,1%, and common variants those with

MAF .5%.

The coding length of a gene is defined as the total number of

bases predicted to be translated in any of the associated transcripts.

Rates of per-gene variability, represented as the number of

variants per kilobase (kb), were computed as the slope of the

regression line of the number of variants in each gene on coding

length.

Results from the per-gene analyses are presented for a set of five

key genes as examples of the findings from all 158 genes. These

genes were selected since they are well-known cancer genes that

can carry clinically relevant mutations. The 5-gene set includes

both small proteins with few variants and large proteins with many

variants, and both tumor suppressor genes and oncogenes.

Assignment of pathogenicity and return of results
Variants were classified as pathogenic if there were: (1) multiple

primary reports of pathogenicity, (2) no reports with evidence

against pathogenicity, and (3) molecular data demonstrating a

detrimental effect. Pathogenic variants from study participants
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who consented to return of results were validated by Sanger

sequencing and then reported to the multidisciplinary incidental

findings committee for evaluation and communication to the

individual’s physician of record.

Ancestry labeling and allele frequency analyses
Admixture coefficients were estimated for each subject with

ADMIXTURE [21] using the procedure described by Libiger and

Schork [22]. Allele frequencies for 6 ancestral populations -

African, European, Native American, East Asian, Central Asian,

and Oceanic - were computed with a reference panel comprised of

16,443 single-nucleotide polymorphisms (SNPs) [22]. To assign

the individuals in our cohort to subpopulations, subjects were

clustered based on their calculated admixture coefficients. The

ancestry represented by each cluster was defined as the geographic

region of the self-reported country of birth of the majority of

individuals, excluding the United States. The African and African-

European clusters are distinguished by the degree of admixture,

with the African cluster closer to the African ancestral population.

Ancestry groups were defined only for clusters with at least 20

individuals in order to calculate allele frequencies in increments of

5% or less for all genomic positions including those on the sex

chromosomes. Smaller clusters were aggregated into an ‘‘Other’’

group, which was excluded from allele frequency calculations since

it does not represent an ancestry-based population. For the other 6

subpopulations, statistically significant differences in MAF were

computed by either the chi-squared test or Fisher’s exact test. The

chi-squared test was used for variants for which all expected values

were .1, and the Fisher’s exact test with simulated p-values was

used for all other variants [23]. Variants for which the major allele

in one population is the minor allele in another population are

those for which the minimum frequency in any group is ,0.5, the

maximum frequency is .0.5, and both values are significantly

different from each other and from 0.5 by one-sided Fisher’s exact

tests. For all statistical tests, p-values ,0.05 were deemed

significant.

Additional software and databases
Statistical analyses were performed with R version 2.15.0 [24].

VCFtools 0.1.10 [25] and PLINK version 1.07 [26] were used to

pre-process the variant data for the admixture calculation. Protein

structures were displayed with Jmol [27]. The ClinVar database

version 2013-8 [28], an archive of relationships between variations

found in patient samples and phenotypes, was consulted for

reports of clinical significance. In addition, the Breast Cancer

Information Core (BIC) (version: 2/20/13) was examined for

clinical reports of the BRCA1 and BRCA2 variants.

Data availability
All variants reported in this publication are listed in Table S1 in

File S1 and have been deposited in ClinVar with accession

numbers SCV000083899 - SCV000086586. Researchers interest-

ed in sharing the genomic data are invited to contact the

corresponding author.

Results

Cancer-gene variants are prevalent in a general
population

To study the genetic variation in cancer-susceptibility genes in a

cohort representative of a general, ancestrally diverse population,

we analyzed whole genome sequences from participants in a pre-

term birth research study. The cohort is comprised of 681

generally healthy adults of reproductive age, 49% men and 51%

women, none of whom reported a personal and family history

indicative of highly penetrant cancer-predisposing germline

mutations.

We used this cohort to profile the germline variation of a set of

158 genes for which protein-sequence changes are causally

implicated in oncogenesis. The coding regions of these 158 genes

are well-covered in the genomic data, with an average per-gene

coverage of 58x (range: 21x-84x), and with 99.99% of the positions

sequenced in .10 individuals (Figure S1). This level of coverage is

sufficient for high-quality variant calling but not clinical diagnosis

[29]. We focused on small, nonsynonymous variations – substi-

tutions, insertions, and deletions – since germline variations in the

cancer-susceptibility genes are mostly of this type [20].

Among the 681 subjects we observed 2,688 predicted protein-

affecting variants in the 158 cancer-susceptibility genes (Table S1

in File S1). Most of the variants are very rare – 65% are found in

only a single individual and 75% are in 2 or fewer, with MAF ,

0.22%. Recent studies on variation in whole exomes [30] and in

gene families [31] also found a majority of rare variants. Rare

variants are thought to contribute significantly to the etiology of

common disease [32], and strategies for prioritizing disease

variants from WGS often include a frequency filter to exclude

common variants. Forty-three percent (43%), or 1,166, of the

variants are novel (not in dbSNP), all with MAFs between 0.07%

and 1.4%. These data support the assertion that nearly all of the

common variants in populations related to those in the 1000

Genomes Project have been discovered but that many rare

variants are yet to be identified [33].

Healthy individuals carry multiple cancer-gene variants
Every individual in the cohort carries multiple nonsynonymous

variants in the cancer susceptiblity genes, with an average of 68

variants per person (range: 49–97) (Figure 1A), and 99% of the

individuals carry rare variants (median: 6 rare variants, range: 0–

32). None of the participants have variants in all 158 genes;

instead, the variants are distributed over a subset of 30–59 genes

(median = 40) (Figure 1B) which varies by individual (see below).

For an indication of whether these variants may be clinically

relevant, all variants were assigned to three nonexclusive classes

based on annotations related to potential impact on cancer

susceptibility: (1) variants listed in HGMD as possibly disease-

associated, (2) variants likely to have a deleterious effect on protein

function, namely frameshift, nonsense, and splice-site variants, and

(3) all other nonsynonymous variants. We use the latter class to

represent variants of unknown significance (VUS), with the caveats

that the clinical impact of some variants may be known but not

captured in HGMD, and that variants assigned to the HGMD and

deleterious classes may also have unknown effects on cancer

susceptibility. Overall, 80 variants observed in the cohort were

classified as deleterious (22 nonsense, 42 frameshift, 16 splice-site

disrupting), 326 were annotated as possibly disease-associated in

HGMD, and 2,297 are VUS (Table S1 in File S1). The study

subjects have an average of 14 HGMD variants (range: 4–25), 2

variants in the deleterious class (range: 0–4), and 52 VUS (range:

34–78) (Figure 1A). The numbers of variants in the three

individuals reporting a past cancer diagnosis were not outlier

values for any of the variant classes. Although it is possible that the

deleterious variants result from sequencing or annotation error,

finding apparently detrimental variants in healthy individuals is

not unexpected [34].

Germline Variation in Cancer Genes
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Allele frequencies of cancer-gene variants are ancestry-
dependent

Allele frequencies can differ between populations and these

differences can have important medical implications [35]. In order

to determine whether any of the protein-affecting cancer-gene

variants in our cohort differ in frequency between ancestry groups,

we assigned each individual to a subpopulation using the genomic

data. A panel of 16,443 markers representing 6 ancestral groups

associated with European, African, East Asian, Central Asian,

Native American, and Oceanic populations [22] was used to

calculate admixture proportions for each individual. Approxi-

mately half (49%) of the individuals were assigned nonzero

coefficients for multiple populations, reflecting varying degrees of

admixture or genetic ancestry incompletely captured by the

model. Subpopulations were defined by clustering the subjects on

the calculated admixture proportions. Clusters with fewer than 20

subjects were aggregated into an ‘‘Other’’ group and include

Middle Easterners, admixed Eurasians, and others of unknown

background.

The seven resulting groups are listed in Table 1 and the

admixture coefficients of the member individuals are plotted in

Figure 2. For convenience, we use the names of the groups

(European, African, etc.) to denote ancestral genetic background

rather than geographic region of birth or ethnicity. The

subpopulations correspond to 78–100% African ancestry for the

African subpopulation, 79–100% East Asian ancestry for the East

Asian subpopulation, 79–100% Central Asian ancestry for the

Central Asian population, and 83–100% European ancestry for

the European subpopulation. The cluster with individuals of 13–

75% African ancestry and 21–87% European ancestry was named

African-European. The admixture proportions distinguishing the

African subpopulation ($78% African) from the African-Europe-

an group result from a breakpoint in the data and are comparable

to the proportions of the dominant ancestry in the East Asian,

Central Asian, and European groups ($79%, $79%, $83%,

respectively). The Hispanic subpopulation includes diverse

admixtures of Native American and European ancestry with 0–

50% African ancestry. These two- and three-way admixtures

reflect the demographic history of Latin America [36].

The ancestry-based subpopulations differ in the number of

cancer-gene variants per person (Figure 3) (p,2.2e-16 by

ANOVA). Europeans tend to have fewer variants (mean = 64.5)

and Africans the most (mean = 84, 30% higher than Europeans),

consistent with genome-wide estimates [37]. The number of

variants in African-European individuals is intermediate between

Africans and Europeans. The African, African-European, and

East Asian subpopulations have about twice as many novel

variants per person as Europeans, and Central Asians have

threefold more (Table 2). The finding that Central Asians have

more novel variants per person than Africans, who have higher

total numbers of cancer-gene variants (Figure 3), may reflect a bias

in the populations that have been sequenced and supports the

efforts aimed at increasing the diversity of the populations sampled

in sequence databases.

The number of deleterious variants per individual is also

significantly different between ancestral groups (p,4e-4 by

ANOVA; Table 2). Averages range from 1.8 in Europeans and

East Asians to 2.2 in Central Asians. For HGMD variants, there is

also a statistically significant difference between the groups (p,9e-

4 by ANOVA), with East Asians having the fewest variants on

average recorded in that database (Table 2). However, the

differences in the numbers of deleterious and HGMD variants

are small and an association with ancestry needs to be examined in

a larger cohort.

Differences between ancestry groups are also reflected in the

allele frequencies of cancer-gene variants. Table S1 in File S1 lists

allele frequencies in each of the population groups for the

complete set of 2,688 variants. Fourteen alleles have frequencies .

Figure 1. Profile of the variability per individual. (A) Boxplot of the total number of variants, the number of variants listed in HGMD, the
number of likely deleterious variants, and the number of variants of unknown significance per individual for cancer-associated genes. (B) Distribution
of the number of cancer genes with at least one nonsynonymous variant per individual.
doi:10.1371/journal.pone.0094554.g001
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50% in all subpopulations (Table S2 in File S1), suggesting that the

reference sequence carries a minor allele at those positions. We

analyzed population differences in allele frequencies for common

variants, since most rare variants are found in a single individual.

Among the 223 variants with frequency .5% in any of the 6

ancestry-based groups, 216 have allele frequencies that differ

between the subpopulations (Table S3 in File S1). Of these, 43%

are found in all six subpopulations and 58 are specific to one of the

four ancestry groups with lower degrees of admixture, 49 in

Africans, 2 in Central Asians, 6 in East Asians, and 1 in

Europeans. There are also 21 variants in which the minor allele in

one population is the major allele in another (Table 3), of which

ancestry-dependent frequencies have been recognized previously

for at least 3, ERBB2 c.3508C.G (p.Pro1170Ala) [38], TP53

c.215C.G (p.Pro72Arg) [39], and BRCA1 c.2612C.T (p.Pro871-

Leu) [40]. Little is known about the clinical significance of these 21

variants. Four, TP53 c.215C.G (p.Pro72Arg) [41], BRCA1

c.2612C.T (p.Pro871Leu) [42], ERBB2 c.3508C.G

(p.Pro1170Ala) [43], and FLT3 c.680C.T (p.Thr227Met)

[44,45] have been linked to the development of cancer or to

treatment response. However, these associations are typically of

small effect or were derived from small samples; hence, more work

is needed to establish a definitive relationship. If these associations

are validated, they illustrate the importance of considering

ancestry when selecting treatment options for patients.

Per-gene variation
Next we analyzed the variants on a per-gene basis to determine

which genes are more or less likely to have variants reported from

WGS of healthy individuals. The variant load for each of the 158

genes is listed in Table S4 in File S1. Four genes - SRSF2, U2AF1,

MAP2K4, and GNAQ - have no nonsynonymous variants in our

cohort, 36 genes have variants in fewer than 10 individuals, and 35

have variants in over half of the individuals (Figure 4A). Limiting

the analysis to only rare variants, 154 (97.5%) of the genes exhibit

variation in at least one individual (Figure 4B). On average, a

cancer gene has rare variants in 4% of our population, with a

range of 0% to 18% (0–125 individuals). Among the genes with

rare variants in the most individuals are BRCA1, BRCA2, APC,

MLL2, and MLL3, genes which are commonly mutated in cancers.

BRCA1, BRCA2, and APC are well-studied because of the presence

of frequent, pathogenic mutations. MLL2 and MLL3 have recently

been discovered to be mutated in a wide range of tumor types

[46], and the prevalence of the observed variation suggests they

may warrant more in-depth study.

The prevalence of the variation in each gene correlates with the

number of variants. Sixty percent (60%) of the variability is

accounted for by coding length (Figure 5), a trend previously noted

for all single nucleotide variants exome-wide [30]. The overall rate

of ,6 variant positions per kb of coding sequence is comparable to

Figure 2. Admixture coefficients for the subpopulations. The admixture proportions of the 6 ancestral populations (colors) are displayed for
all individuals in each of the 7 groups defined in the cohort (panels). (A) European (B) Central Asian (C) East Asian (D) African (E) African-European (F)
Hispanic (G) Other. Red: European, Blue: Central Asian, Cyan: East Asian, Yellow: African, Green: Native American, Magenta: Oceania.
doi:10.1371/journal.pone.0094554.g002

Table 1. Ancestry-based subpopulations.

Subpopulation # Individuals

African 43

African-European 46

Central Asian 50

East Asian 62

European 331

Hispanic 118

Other 31

doi:10.1371/journal.pone.0094554.t001
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the predicted variant discovery rate for a population the size of our

cohort [31]. The most variable gene is TNFRSF14, with 39 variant

positions per kb (Table S4 in File S1).

The per-gene variability may also depend on the type of cancer

gene. Three types have been described: oncogenes, tumor

suppressor genes, and predisposition genes [46]. The latter are

genes for which germline mutations may predispose to cancer but

which have few somatic mutations. Tumor suppressor genes and

oncogenes have ,5 variants per kb of coding sequence, whereas

predisposition genes have ,8 variants/kb, similar to the rate for

all genes. The difference is statistically significant, with p,0.012

by ANCOVA. The lower rate of variability for oncogenes and

tumor suppressor genes may indicate greater evolutionary

constraint.

Characterization of variation within key genes
In addition to population allele frequencies and literature

reports of disease association, analysis of the effect each variant

might have on the structure and function of the encoded protein

can provide information pertinent to cancer risk prediction. We

illustrate the gene-specific findings with a set of 5 well-known

cancer genes of clinical relevance, BRCA1, BRCA2, TP53, KRAS,

and PTEN. The variants and allele frequencies are listed in Table

S1 in File S1.

BRCA1 and BRCA2
BRCA1 and BRCA2 are the two major breast cancer suscepti-

bility genes. Germline mutations in either of these tumor

suppressor genes are associated with hereditary breast and ovarian

cancer syndrome, which accounts for an estimated 2–8% of breast

cancer cases worldwide [47]. In our cohort, 92% of the subjects

carry nonreference alleles in one or both of these genes (excluding

homozygous variant genotypes at chromosome 13 position

32929387 in BRCA2 at which the reference sequence has a rare

minor allele): 498 individuals with variants in BRCA1 and 482 with

BRCA2 variants. Rare variants are also prevalent, with 27% of the

population carrying rare variants in at least one of these two genes.

Most of the variants in these two genes are rare, with 83% of the

46 variants in BRCA1 and 91% of the 86 variants in BRCA2 having

MAF ,1%. The 4 common variants in BRCA1—c.2612C.T

(p.Pro871Leu), c.3113A.G (p.Glu1038Gly), c.3548A.G (p.Ly-

s1183Arg), and c.4837A.G (p.Ser1613Gly)—all show ancestry-

dependent allele frequencies. Consistent with published data, the

871Leu-form is the predominant isoform in Africans whereas the

Pro-form is more frequent in Europeans. Central Asians have the

highest frequency of the other 3 common BRCA1 variants. The 3

common BRCA2 variants c.865A.C (p.Asn289His), c.1114A.C

(p.Asn372His), and c.2971A.G (p.Asn991Asp), also exhibit

significant differences between groups, with the highest frequency

observed in Central Asians.

Almost all of the BRCA1 and BRCA2 variants observed in our

cohort are unlikely to have strong effects on cancer susceptibility.

For BRCA1, none of the variants were classified as pathogenic.

One interesting variant is rs80356920, which introduces an

isoform-specific stop codon into transcript 5 (NM_007299.3) and

a missense change (valine to alanine) into transcripts 1–4 that is

reported to reduce the protein’s transcriptional activation function

in vitro [48]. This variant, found in a single individual in our

cohort, is of unknown clinical import according to BIC, and the

possible deleterious effects at the molecular level make it a good

candidate for future studies.

Missense mutations in BRCA1 and BRCA2 are the most difficult

to classify clinically [49]. In our cohort, the missense variants in

BRCA1 are spread throughout much of the protein, whereas the

cancer-associated mutations tend to cluster in the N-terminal

RING domain and the C-terminal BRCT domain [50]. BIC

reports 4 pathogenic mutations in the BRCT domain, of which 1

is in the phosphopeptide binding site and 2 are in the hydrophobic

interface between the BRCT repeats [51]. In our cohort, we

observed 4 missense mutations in the BRCT domain, c.4956G.A

(p.Met1652Ile), c.5306A.G (p.Tyr1769Cys), c.5411T.A (p.Va-

Figure 3. Number of cancer-gene variants per individual by
ancestry. The distribution of the number of nonsynonymous genes
per subject for each of the 6 ancestry-based subpopulations.
doi:10.1371/journal.pone.0094554.g003

Table 2. Average numbers of cancer-gene variants per individual by ancestry.

Total Deleterious HGMD Novel

African 84.0 2.1 13.8 2.26

African-European 75.6 2.0 13.8 2.24

Central Asian 71.6 2.2 14.4 3.64

East Asian 68.6 1.8 12.0 2.73

European 64.5 1.8 13.9 1.19

Hispanic 68.3 1.9 13.2 1.70

doi:10.1371/journal.pone.0094554.t002
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l1804Asp), and c.5504G.A (p.Arg1835Gln), all apparently in less

critical locations of the encoded protein. Three of these are

predicted to have benign effects by PolyPhen, and one,

p.Arg1835Gln, is predicted to be probably damaging. No

mutations in the central RING domain structure were observed

in the cohort.

For BRCA2, 2 variants observed in our cohort are splice-site or

nonsense variants. The nonsense mutation rs11571833 (p.Ly-

s3326Ter) introduces a stop codon toward the 39 end of the

transcript. Although truncating mutations are often deleterious,

this variant is not likely to be strongly pathogenic since the

mutation is near the C-terminal end of the protein, consistent with

the 301 reports in BIC listing this variant as not clinically

important. Results from a recent meta-analysis of GWAS studies

suggest that this variant is associated either with slightly higher risk

of breast cancer or is in linkage disequilibrium with higher risk

variant(s) [52]. In contrast, c.8487+1G.A (rs81002798) was

classified as pathogenic. This variant, found in a single individual

in our cohort, is a splice-site-disrupting mutation shown to affect

RNA splicing in vitro [53] and has 7 reports of pathogenicity in

BIC.

The BRCA2 missense variants in the cohort are located

throughout the protein, but are notably absent from the 8

RAD51-binding BRC repeats except for one instance of a

conservative change in repeat 8, c.6215C.G (p.Ser2072Cys),

predicted to be possibly damaging by PolyPhen. There are 19

missense variants within the C-terminal DNA-binding domain.

Based on the crystal structure of murine BRCA2 [54], the variants

occur in all five domains that comprise the DNA-binding domain,

and six variants are in the disordered N- and C-terminal regions.

Only one variant is at a position that aligns with a murine residue

implicated in binding one of this domain’s ligands, single-stranded

DNA, double-stranded DNA, or the DSS1 protein. This variant,

c.8187G.T (p.Lys2729Asn), is predicted to be probably damag-

ing by PolyPhen and has somewhat reduced homology-directed

repair activity in vitro, but the degree of activity is significantly

greater than that of BRCA2 constructs with known pathogenic

mutations [55].

TP53
TP53 is the most frequently mutated cancer gene in tumor

samples. Somatic mutations in this tumor suppressor are found in

a wide range of tumors, and germline mutations can cause Li-

Fraumeni syndrome, a condition leading to a high, early-onset risk

of multiple types of cancer. In our cohort, we observed 15 missense

variants and no nonsense or frameshift variants. Among the

missense variants are the two most-studied polymorphisms,

c.215C.G (p.Pro72Arg) and c.139C.T (p.Pro47Ser). Allele

frequencies for both these variants are ancestry-dependent. In

our cohort, the frequency of the arginine-encoding form of codon

72 is 74.1% in Europeans and 37.2% in the African subpopula-

tion, in agreement with published frequencies of up to 72-83% and

37%, respectively [39]. The second polymorphism, c.139C.T

(p.Pro47Ser), is a rare, African-specific variant [56] that is present

in 2 individuals in our cohort, both with African ancestry. Both the

c.215C.G (p.Pro72Arg) and c.139C.T (p.Pro47Ser) SNPs have

functional effects at the molecular level, but their clinical

association with cancer susceptibility is unclear [57].

Six of the other TP53 variants observed in our cohort lie in the

DNA-binding domain, the protein domain containing the majority

of cancer-associated missense mutations. The most prevalent

Figure 4. Variation prevalence per gene. Distribution of the number of individuals with a variant per gene for (A) all variants (B) rare variants.
doi:10.1371/journal.pone.0094554.g004

Figure 5. Correlation between the number of variants and
coding length. The number of nonsynonymous variants vs. total
number of coding bases for each of the 158 cancer-susceptibility genes.
doi:10.1371/journal.pone.0094554.g005
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tumorigenic mutations occur at residues that directly contact DNA

or stabilize the structure. One variant in our cohort, c.847C.T

(p.Arg283Cys), occurs at a DNA-contacting residue and was

previously reported as cancer-associated [58]. Although not

satisfying the criteria for pathogenicity, this variant is an excellent

candidate for further studies as to its clinical impact. The other 5

variants, at codons 110, 191, 202, 213, and 235, fall on the portion

of the protein distal to the DNA-binding site, and are likely to have

weaker effects on protein function and hence cancer risk (Figure 6).

PolyPhen predicts c.329G.A (p.Arg110His) and c.605G.A

(p.Arg202His) to be benign, and c.572C.G (p.Pro191Arg),

c.638G.A (p.Arg213Gln), and c.704A.G (p.Asn235Ser) to be

probably damaging.

The remaining 7 variants, all rare, lie in the transactivation and

C-terminal regulatory domains or in putative alternative exons

and are of unknown significance. Variants in the regulatory

positions, such as phosphorylation sites and protein interaction

sites in the N- and C-terminal regions [56], are lacking and only a

single variant is seen in dbSNP. This suggests that in addition to

mutations at these sites being insufficient for carcinogenesis,

residues at these positions may be critical for normal function of

the protein.

KRAS
KRAS is an oncogene activated in a wide array of tumors, and

mutations in this gene are predictive of response to epidermal

growth factor receptor drugs. Mutation of a single residue, most

often Gly12, is sufficient for oncogenic activation. In our cohort,

we observed 3 KRAS variants, c.565A.C (p.Met189Leu) in two

individuals, and c.535G.A (p.Gly179Ser) and c.531_533del in

one individual each. All 3 variants lie in the coding region of one

of two recognized isoforms of KRAS, c.565A.C (p.Met189Leu)

and c.535G.A (p.Gly179Ser) in isoform a, and c.531_533del in

isoform b. The three variants are in the C-terminal hypervariable

regions of their respective proteins, which include two motifs

required for membrane localization: a CAAX farnesylation motif

and a palmitoylation site in isoform a, and a CAAX farnesylation

motif and a lysine-rich polybasic domain in isoform b [59].

Met189 is at the variable ‘‘X’’ position of the farnesylation motif

and is proteolytically removed during protein maturation.

p.Gly179Ser is a residue of unknown function adjacent to the

palmitoylated cysteine. The c.531_533del variant deletes one

lysine from the hexalysine stretch of the polybasic domain, which

remains capable of plasma membrane binding with mutation of up

to 4 lysines [59]. Despite their location in a region of critical

function, the variants are at positions apparently tolerant of

variation and are unlikely to be pathogenic. Both SNPs are

predicted to be benign by PolyPhen, and all 3 variants are

annotated as either probably not pathogenic (c.535G.A;

p.Gly179Ser) or of unknown clinical import in ClinVar. However,

their effect on cancer susceptibility is unknown.

PTEN
The tumor suppressor PTEN is one of the most frequently

mutated genes in human malignances, and germline mutations are

associated with the PTEN hamartoma tumor syndrome (which

includes conditions such as Bannayan-Riley-Ruvalcaba syndrome

and Cowden syndrome). In our cohort we observed a single

variant, c.882T.G (p.Ser294Arg), in one individual. Residue 294

is located in an unstructured loop within the C-terminal domain of

the protein [60]. This site has no mutations reported in COSMIC,

HGMD, or ClinVar, is predicted to be benign by PolyPhen, and is

of unknown function. The rarity of germline variants in this gene

in a healthy cohort contrasts with the high frequency of somatic

mutations in cancer patients and is consistent with both the small

size of the encoded protein and its essential functions in critical

signaling pathways [61].

Discussion

Whole genome sequencing is becoming increasingly available in

clinical practice, particularly with application to the diagnosis and

prognosis of cancer patients. However, the use of WGS for

assessment of cancer risk in the general population could strongly

benefit from a better understanding of the clinical significance of

many of the genetic variants in cancer genes. We began to address

this need by characterizing the genetic variation in cancer-

susceptibility genes present in healthy individuals, information that

is critical for interpreting cancer-susceptibility risk from personal

genome sequences [62].

We found that variation in cancer genes is prevalent. Based on

our cohort, WGS of a healthy individual has a 100% chance of

documenting multiple, protein-affecting variants in cancer genes.

The extent to which the observed alleles contribute to cancer

susceptibility is almost completely unknown. Since the study

participants do not have clinical features consistent with carrying

high-risk cancer-predisposing germline variants, most of the alleles

identified are unlikely to represent highly penetrant, pathogenic

mutations. Yet given the prevalence of cancer in the United States

[63], about 40% (272) of these 681 individuals will eventually

develop cancer. This is consistent with the polygenic model which

proposes that an individual’s cancer risk is the combined effect of

multiple variants, each with relatively small effect on risk or

protection and with different degrees of penetrance, and

environmental factors [64].

Cancer risk prediction methods model the likelihood of an

individual developing cancer based on demographic factors, family

history, environmental risk factors, and/or biomedical test data

[65,66]. With the availability of genotype data, cancer risk

prediction methods incorporating genetic marker information

are being developed, for which ancestry-aware allele frequencies

can be an essential component [67-69]. Modeling the variants in

the context of protein structure and function can also contribute to

risk prediction since the variants in our generally healthy cohort

Figure 6. p53 DNA-binding domain variants. The DNA-binding
domain of the p53 protein (black) bound to DNA (purple) [84]. Common
somatic mutations (yellow) contact the DNA or stabilize the structure.
Variants in our cohort (red) occur at residues distal to the DNA binding
site except for Arg 283 (green).
doi:10.1371/journal.pone.0094554.g006
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tend to occur at positions tolerant of substitution. Such data are

already being used to evaluate in silico function predictions of

VUS [70]. As our knowledge improves, these data can also be

applied to predicting disease development, progression, and

treatment response, all of which can be influenced by germline

variation [71].

In addition to providing a foundation for the interpretation of

cancer risk, the allele frequencies can also contribute to the

identification of disease-causing alleles by incorporation into

meaningful prior probabilities of association between variants

and disease [72]. Furthermore, variants in genes for which

variation is infrequently observed may be flagged as an unusual

finding that bears further scrutiny.

The allele frequencies are estimates that depend on the sampled

individuals and the assigned ancestry labels and may differ from

estimates derived from other individuals or ancestral groupings. A

sampling of the allele frequencies in this cohort agrees well with

genotyping results from the Human Genome Diversity Project

[73], supporting the relevance of our estimates. Some of the

variants with frequencies differing between subpopulations, such

as TP53 c.215C.G (p.Pro72Arg), were previously described as

ancestry-dependent in gene-specific studies, further supporting the

generalizability of the findings. The ancestry-based groupings are

strengthened by using genomic data for clustering rather than

relying on self-reported data. Methods under development for

estimating local ancestry for each region of an admixed

individual’s genome will further improve allele frequency analyses

[74].

One of the concerns about wide availability of WGS is the

potential for incidental findings. How such findings should be

handled by the medical community is currently under debate

[75,76]. Our results provide information pertinent to the

discussion by demonstrating that sequencing the genome of a

healthy individual has a .0.1% (1 in 681) chance of discovering a

cancer-predisposing nonsynonymous mutation of known clinical

importance. Although lower than the frequency of 5 of 573

individuals with high-penetrance cancer-susceptibility mutations

observed in a recent study [3], the estimates are broadly consistent

given the small number of pathogenic mutations and the

differences in sample population composition. The non-negligible

rate of discovery of variants with clinical consequences supports

the need for the community to address the ethical, legal, and social

implications of the technology.

A second concern about routine clinical application of WGS is

the high likelihood of uninterpretable findings, since uncertain

results can impact medical decision-making and increase costs

[77]. Our data confirm that WGS of a healthy individual identifies

multiple VUS in medically important genes. We observed an

average of 68 nonsynonymous variants per individual, almost all of

which are of unknown clinical significance. The number of VUS

will decrease as more is learned about the relationship between

sequence variation and phenotype, and as models for prediction of

clinical impact improve. This is of particular import for rare

variants, since they represent the majority of variants and are

thought to contribute significantly to complex disease, yet their

rarity makes association with phenotype difficult to determine

[78]. Some of the genes most commonly mutated in cancer are

also the most variable in this cohort, further confounding

interpretation.

Interpretation of the results for cancer risk can strongly benefit

from a more complete and accurate database of annotated

variants. Problems with current databases include inconsistencies

in annotation of disease-relevance between data sources, absence

of known variants from public databases, and the predominance of

variants without available clinical correlation. Several efforts are

underway to address these needs, including ClinVar and the

recently announced ‘‘global alliance,’’ created to facilitate sharing

genetic and clinical data among medical researchers [79]. The

1,166 novel variants we identified here and made publicly

available contribute to the efforts cataloging human genomic

variation worldwide.

When WGS is performed, the variants are called by comparison

to a reference sequence. However, if a variant is instead defined as

the minor allele, use of the current reference sequence leads to

both overcalling and undercalling of variants at positions at which

the reference sequence carries a minor allele. The impact on

variant calling also depends on the ancestry of the individual

sequenced, since major alleles in the reference may be minor

alleles in the population of interest. Table 3 and Table S2 in File

S1 list the positions affected in the cancer-gene set, which can be

used as a resource for adjusting the variant calls in a personal

genome. Variant calling as well as genome assembly could be

improved by the use of a reference sequence appropriate to the

ancestry of the individual under study.

Our list of cancer-susceptibility gene variants is extensive but

incomplete for four main reasons. First, the list of genes

influencing cancer predisposition is limited by current knowledge

and inclusion in source databases. Second, we intentionally

examined only small, nonsynonymous variants but other variant

types, including large deletions, amplifications, translocations, and

synonymous changes, can also impact cancer susceptibility. Third,

some variants are not captured for technical reasons, including

limitations of the WGS technology [80] and issues with the

reference genome assembly [81]. Fourth, although this cohort is

large for a single WGS study, the number of individuals is too

small to capture the full range of variation in these genes,

particularly for underrepresented populations and rare variants.

The variants themselves represent the genomes of adult individuals

at the time of sample collection. We refer to these as germline

variants; however, since somatic mutations occur over time [82]

some of the variants may have been acquired rather than

inherited.

Similar analyses to those reported here could have been

performed with sequence data from other sources. We chose to

study the pre-term birth cohort for three reasons: (1) the cohort

includes individuals of European, African, Hispanic, East Asian,

and Central Asian ancestry, (2) the genomes were sequenced at

high quality (mean coverage 60x), and (3) the data were generated

uniformly with a single technology and bioinformatics pipeline, a

factor that is critical for avoiding the variability introduced when

combining multiple datasets generated with different protocols

[83]. Use of the pre-term cohort, with 34% of the genomes from

parents of a pre-term baby, could introduce bias if variation in the

cancer-predisposition genes influences prematurity. This possibil-

ity is under investigation but to date no relationship between pre-

term birth and the cancer-gene variants has been elucidated. The

consistency of our results with what is already known suggests that

any such bias is limited.

The data reported here represent the first profile of germline

variation in multiple cancer-susceptibility genes from WGS of a

healthy, ancestrally diverse cohort. To our knowledge, this is the

largest set of uniformly processed whole genome sequences from a

single cohort. The results comprise a resource capturing cancer-

gene variation in 6 ancestry-based populations, and define

quantitative and qualitative expectations for the results of personal

genome sequencing, whether whole genome, exome, or targeted

sequencing.
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Supporting Information

Figure S1 Sequence coverage. Plot of the coverage for all

coding bases in each gene for each individual. There are between

327,000 and 11,300,000 points plotted per gene, depending on

total coding length. Genes are arranged by chromosome.

(DOCX)

File S1 Supporting tables. Table S1, Variants in cancer-

susceptibility genes observed in the cohort. Table S2, Positions

with a minor allele in the reference sequence. Table S3, Common

variants with ancestry-dependent allele frequencies. Table S4, Per-

gene statistics.

(XLSX)
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