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Cyclophilin D (CypD) is a peptide-proline cis-trans isomerase (PPIase) distributed in the
mitochondrial matrix. CypD regulates the opening of the mitochondrial permeability
conversion pore (mPTP) and mitochondrial bioenergetics through PPIase activity or
interaction with multiple binding partners in mitochondria. CypD initially attracted
attention due to its regulation of mPTP overopening-mediated cell death. However,
recent studies on the effects of CypD on tumors have shown conflicting results.
Although CypD has been proven to promote the aerobic glycolysis in tumor cells, its
regulation of malignant characteristics such as the survival, invasion and drug resistance
of tumor cells remains controversial. Here, we elaborate the main biological functions of
CypD and its relationships with tumor progression identified in recent years, focusing on
the dual role of CypD in tumors.

Keywords: cyclophilin D, mitochondrial permeability transition pore, tumor energy metabolism, tumor cell death,
tumor metastasis and invasion, tumor resistance
INTRODUCTION

Cyclophilin D (CypD) is a cyclophilin distributed in the mitochondrial matrix that acts as the
gatekeeper of mitochondria (1, 2). Most previous studies considered that CypD plays a vital role in
regulating cell apoptosis or necrosis by regulating mitochondrial permeability. Early studies on
CypD were mostly limited to ischaemia-reperfusion injury, neurodegeneration, ageing, diabetes, etc
(3–6). With the in-depth research on CypD function, the relationship between CypD and tumors
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has gradually become a research hotspot in recent years. It
remains controversial whether CypD promotes or inhibits
tumor progression. Many studies on the regulation by CypD of
tumor cell survival, invasion and drug resistance have reported
inconsistent conclusions. It has been reported that CypD can
affect the malignant characteristics of tumor progression by
regulating the bioenergetics and mitochondrial permeability of
tumor cells. Here, we review the biological functions of CypD
and its role in tumor progression. In particular, the question of
whether CypD is the guardian of tumor progression or the
executioner of tumor treatment is fully expounded upon
this review.
CHARACTERISTICS OF CYPD

CypD is a peptide-proline cis-trans isomerase (PPIase) widely
expressed in all mammalian tissues. CypD is encoded by the
nuclear gene Ppif (located at 10q22-10q23), and its mRNA is
2,213 bases in length and encodes 207 amino acids (aa). After
shearing, it is translocated to the mitochondrial matrix and
transformed into a 178-aa mature peptide. CypD was
originally named mitochondrial cyclophilin (CYP-M) and is
now sometimes referred to as cyclophilin F or cyclophilin 3
(7). It should be noted, however, that CypD has been used in the
past to refer to a 370-aa cytoplasmic cyclophilin protein encoded
by the Ppid gene. Under electron microscopy, CypD shows a
spindle or rod structure with a diameter of 0.5-1.0 mm. CypD
isomers are rarely reported.

The maintenance of normal mitochondrial permeability is
critical to mitochondrial function and is mainly controlled by the
status of the mitochondrial permeability transition pore (mPTP)
(8, 9). mPTP, also known as the mitochondrial giant channel, is a
calcium-dependent nonselective highly conductive channel. As
early as the 1990s, CypD attracted attention due to its regulatory
role in mPTP. The binding partners of CypD are mostly located
in the mitochondrial inner membrane (MIM), including adenine
nucleotide transporter (ANT), phosphate carrier (PiC), and
oligomycin-sensitive binding protein (OSCP, a subunit of F1FO
ATP synthase) (9). CypD binding with its binding partners can
induce a transient low level of mPTP opening, promoting ROS
excretion out of mitochondria and maintaining mitochondrial
calcium homeostasis. Upregulated expression or activity of CypD
can provoke mPTP overopening and lead to the influx of a large
number of substances with molecular weights less than 1.5 kDa
into the mitochondrial matrix, resulting in mitochondrial
membrane depolarization, oxidative phosphorylation
(OXPHOS) uncoupling, ATP depletion, and the release of
proapoptotic factors, subsequently inducing apoptosis or
necrosis (10). Thus, abnormal activation of the CypD-mPTP
axis is considered to be the executioner in various diseases, such
as ischaemia/reperfusion injury, ageing and neurodegeneration.
However, it has been reported that CypD overexpression inhibits
ANT-mediated apoptosis, enhances cell resistance to harmful
stimuli, and promotes cell survival (11). Therefore, for
mitochondria and cells, the identity of CypD remains a mystery.
Frontiers in Oncology | www.frontiersin.org 2
THE MAJOR BIOLOGICAL FUNCTIONS
OF CYPD

Regulation of Mitochondrial Permeability
mPTP is regarded as a key effector of cell death, where many
signals that regulate cell death converge. The physiological and
pathological roles of mPTP have been well studied, but its
molecular identity and necessary regulatory factors remain
controversial. mPTP was initially thought to be mainly
composed of voltage-dependent anion channels [VDAC, located
in the mitochondrial outer membrane (MOM)], ANT and CypD
and is regulated by hexokinase II (HK II), PiC, mitochondrial
creatine kinase (mtCK) and other proteins (9, 12) (Figure 1).
However, with further research, the credibility of the classical
mPTP model has been questioned in a series of genetic knockout
studies (13, 14). In the absence of ANT or VDAC, increased Ca2+

still activates mPTP, and does not prevent cell death caused by
mPTP overopening. These results suggest that CypD may also
associate with other binding partners to promote mPTP opening
and influence mitochondrial permeability. It is worth to mention
that CypD is the only genetically proven indispensable mPTP
component (15).

It has been reported that mPTP is more likely to be located in the
F1FO ATP synthase (complex V of OXPHOS). At present, there are
three hypotheses about the formation of mPTP by F1FO ATP
synthase, namely, the c-ring hypothesis, “death finger” hypothesis
and dimer/tetramer hypothesis (16) (Figure 1). The initiation signal
of these three hypotheses is the mechanical combination of CypD
and OSCP located in the crown of F1, but its downstream effect
events are quite different (1): The c-ring hypothesis suggests that
CypD-OSCP association induces the conformational changes in the
F1 b subunit, decouples F1 and FO, and exposes the central hole of
the c-ring to form mPTP (17) (2). The “death finger” hypothesis
suggests that the mechanical force generated by CypD-OSCP
association can be transmitted along the lateral stalk to the base
of FO and remove the sealing effect of the 6.8PL subunit on the c-
ring (18, 19) (3). The dimer/tetramer hypothesis also derives from
CypD-mediated lateral stalk conformational changes, which allow
adjacent e and g subunits on the dimer/tetramer to form mPTP
together (20). It has been reported that the inhibition of the b
subunit on the c-ring can be relieved even without Ca2+ overload.
Therefore, the pore formed in the c-ring hypothesis is not true
mPTP, given that the formation of mPTP strictly requires Ca2+ for
activation (21). In contrast, the status of mPTP in the other two
hypotheses can be affected by Ca2+ concentration (22). The CypD-
OSCP association not only induces conformational changes in F1FO
ATP synthase to form mPTP, but also enhances the affinity of Ca2+

to the binding site on the b subunit, and significantly downregulates
the Ca2+ threshold that makes mPTP open (23). If either hypothesis
is true, it means that mPTP is located only in the MIM. This is also
recognized by most researchers, and they believe that mPTP is
actually a large nonselective channel formed in MIM, which is
apparently different from the traditional definition of mPTP (8, 10).
However, the results of Carroll et al. cast doubt on the credibility of
these three hypotheses (24). This is because the pore survives and
can be induced to open by Ca2+ overload in mitochondria even after
July 2022 | Volume 12 | Article 939588
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the removal of different subunits of the c-ring or lateral stalk. Thus,
they concluded that any form or component of F1FO ATP synthase
was unlikely to formmPTP. The reason for this discrepancy may be
that the purity, stability and functionality of F1FO ATP synthase
may differ to varying degrees from those in vivo when isolated from
mitochondria and reconstructed into extracorporeal membrane
systems for independent study (19). Regardless of the specific
location of mPTP, the excessive activation of the CypD-mPTP
axis always triggers the permeability of MIM and MOM
sequentially and ultimately initiates the cascade of cell death signals.
Frontiers in Oncology | www.frontiersin.org 3
Additionally, the cell fate regulation by CypD is controversial. It
has been suggested that CypD is a signallingmolecule that promotes
cell survival. This is because the overexpression of CypD delays the
occurrence of mitochondrial membrane potential (MMP) collapse
in HEK293 and B50 cells induced by oxidative stress and
astrosporin, preserves the integrity of the mitochondrial
membrane and promotes cell survival. This difference may be
caused by the fact that PPIase activity is required for the
protective effect of CypD, while the CypD-mediated mPTP
opening is independent of PPIase activity. Thus, CypD may
FIGURE 1 | Schematic representation of the four mPTP models. When CypD is free in the mitochondrial matrix, mPTP is not activated and remains completely
closed. The classical mPTP model holds that when CypD translocates from the matrix to the MIM and interacts with ANT, which can further induce the binding of
ANT and VDAC to open the mPTP. The c-ring hypothesis suggests that conformational changes of F1 caused by CypD-OSCP association abolish the sealing effect
of F1 on the c-ring, thereby promoting the central hole of the c-ring to form mPTP. Both the “dead finger” hypothesis and the dimer/tetramer hypothesis are caused
by the conformation of the lateral stalk induced by the CypD-OSCP association, but the mPTP formation sites of the two are different. The former considers
disassociating 6.8PL from c-ring to form mPTP. mPTP is formed by the lateral stalks of all F1FO ATP synthases that make up the dimer/tetramers. The former
suggests that mPTP is activated by the removal of 6.8PL from the c-ring, while the latter suggests that mPTP is formed by the surrounding lateral stalks of all F1FO
ATP synthases in the dimers/tetramers.
July 2022 | Volume 12 | Article 939588
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maintain physiological mitochondrial permeability and reverse the
fate of apoptosis by binding to its binding partners other than ANT
or F1FO ATP synthase. The specific identity and regulatory
mechanisms of the binding partners involved in CypD-mediated
protection need to be further explored.

Regulation of Mitochondrial
Energy Metabolism
It should be noted that F1FO ATP synthase is also a key site for
catalysing ATP production from ADP and inorganic phosphate
(Pi). The conformation of the catalytic site on the b subunit can
be altered when the protons generated by electron transport
flows through the c-ring to drive ATP synthesis. The CypD-
OSCP association not only induces the formation of mPTP, but
also blocks the driving effect of the c-ring on F1 and interferes
with ATPmetabolism (8, 25, 26). To improve energy metabolism
efficiency, F1FO ATP synthase also combines with ANT and PiC
to assemble a bioactive unit with a molecular weight of at least
700,000, called the ATP synthasome (27, 28). Compared with
wild-type mice, the formation of the ATP synthasome was
enhanced in the heart mitochondria of CypD-/- mice, as well as
in the brain and liver. In tissues with higher energy requirements
(such as the heart and brain), F1FO ATP synthase is more
oligomerized, and CypD expression is lower (8). This is
because CypD promotes the disassembly of the ATP
synthasome and reduction to monomer or dimer forms, which
is beneficial for mPTP opening. Therefore, no matter what the
specific molecular nature of mPTP is, the regulatory role of
CypD on mPTP opening cannot be overcome. The influences of
the CypD-mPTP axis on mitochondrial permeability and energy
Frontiers in Oncology | www.frontiersin.org 4
metabolism modulate and promote each other, jointly
determining cells fate.

CypD activity is regulated by posttranslational modifications
(PTMs) on multiple specific residues (29–36). The same PTM at
different residues or different PTMs at the same residue may have
different effects on CypD activity, translocation and its ability to
regulate mPTP opening (Figure 2). Additionally, CypD can bind
to multiple direct or indirect binding partners in the
mitochondrial matrix to activate or inhibit the CypD-mPTP
axis, as described in the review by Porter et al. (7) (Figure 3).
POSITIVE EFFECT OF CYPD ON
TUMOR PROGRESSION

Promoting Tumorigenesis
The oncogene Ras was reported to enhance CypD expression
through the Raf-1/MEK/ERK pathway (37). Upregulated
expression of CypD could antagonize the inhibitory effect of
the p53-p21 pathway on tumor cell growth and induce Ras-
mediated tumorigenesis. The study also found that the oncogenic
activity of CypD is p53 dependent. Inhibition or knockout of
CypD can effectively prevent Ras-dependent lung cancer and
Erbb2-mediated breast cancer formation.

Maintaining Aerobic Glycolysis
Different from normal cells, tumor cells still have strong
glycolysis activity and high acid metabolites even under the
condition of adequate oxygen, which is known as the Warburg
effect (38). The metabolic transition from OXPHOS to aerobic
FIGURE 2 | Posttranslational modifications of CypD. Overall, phosphorylation (S42 and S191), S-acetylation, oxidation, and S-glutathionylation (several sites) can
upregulate CypD activity and sensitize mPTP to induce cell death. In contrast, phosphorylation (S31), ubiquitination, S-nitrosylation, S-palmitoylation, and S-
glutathionylation (other sites) may downregulate CypD activity and provide cellular protection by desensitizing mPTP. S190/1, K166/7, and C202/3 represent
homologous serine, lysine, and cysteine residues in the mouse/human form of CypD, respectively. GSK-3b, glycogen synthase kinase-3b; SIRT3, sirtuin3; ROS,
reactive oxygen species; Ang II, angiotensin II; PI3K, phosphatidylinositol 3-hydroxy kinase; Akt2, Ser/Thr kinase; mGPDH, mitochondrial glycerol 3-phosphate
dehydrogenase; HAX-1, haematopoietic-substrate-1 associated protein X-1; eNOS, endothelial nitric oxide synthase; AIF, apoptosis inducing factor; Endo G,
endonuclease G; ↑, upregulation; ↓, downregulation.
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glycolysis reduces the dependence of tumor cells on oxygen
availability and is beneficial to the survival and invasion of
tumor cells in the hypoxic microenvironment. The
enhancement of glycolytic activity in tumor cells is closely
related to irreversible damage to OXPHOS. The interaction
between CypD and different components of the ATP
synthasome can interfere with the progression of OXPHOS in
tumor cells to a certain extent but does not cause ATP depletion.
The initiation of aerobic glycolysis in tumor cells requires ATP
produced by OXPHOS as the substrate, which is different from
traditional anaerobic glycolysis (39). Hexokinase (HK), as the
first rate-limiting enzyme of glycolysis, consists of four subtypes.
It is worth noting that HK II is widely expressed in embryonic
tissues and invasive tumors but is rarely expressed in normal
tissues and only sparingly expressed in insulin-sensitive tissues
(fat, muscle, heart) (40, 41). HK II can translocate from the
cytoplasm to the MOM and bind with VDAC, which is called
mitochondrial HK II (mtHK II) (42). mtHK II limits the
movement of the N-terminal spiral of VDAC and keeps
VDAC open. This ensures that ATP produced within the
mitochondrial matrix is preferentially and continuously
transported to mtHK II for aerobic glycolysis (43).
Frontiers in Oncology | www.frontiersin.org 5
It has been reported that CypD overexpression can promote
the formation of mtHK II, while inhibition or knockdown of
CypD inhibits the level of HK II binding to the MOM (42, 44).
Upregulated sirtuin 3 (SIRT3) was confirmed to inhibit the
acetylation degree and PPIase activity of CypD and lead to the
separation of CypD from ANT in breast cancer cells treated with
oroxylin A (45). Simultaneously, the deacetylation of CypD
triggered the dissociation of mtHK II from the MOM and
inhibited the aerobic glycolysis activity of breast cancer cells.
Similarly, ganoderic acid D (GAD) inhibited mtHK II formation
and energy reprogramming in colon cancer cells by inducing
SIRT3-mediated CypD deacetylation (46). Inhibition of SIRT3
activity effectively reversed mitochondrial cytotoxicity and
reduced aerobic glycolysis induced by the abovementioned
antitumor drugs. Intriguingly, overexpression of mutant CypD
did not significantly change the level of mtHK II impaired by
oroxylin A. Moreover, glioma cells expressing PPIase-deficient
CypD were not effective against Bax-induced apoptosis
compared to cells overexpressing wild-type CypD (47).
Therefore, it is reasonable to assume that CypD relies on its
PPIase activity to stabilize the association of ANT-VDAC-
mtHK II.
FIGURE 3 | The binding partners of CypD. Red areas are the binding partners that sensitize mPTP, and blue areas are the binding partners that desensitize mPTP.
July 2022 | Volume 12 | Article 939588
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An important question is why CypD-ANT binding is
inconsistent in its dependence on PPIase activity in tumor and
nontumor cells, which has been attributed to different ANT
subtypes. There are four different subtypes of human ANT,
including ANT1, ANT2, ANT3, and ANT4. Compared with the
other three, ANT2 is widely expressed in rapidly growing cells, and
only ANT2 can be highly induced in tumor cells (48, 49). The
ANT2-VDAC-mtHK II association in tumor cells has been
reported to play an important role in the maintenance of aerobic
glycolysis and other carcinogenic effects (50, 51). Since ATP is
continuously exported to the cytoplasm, it is not conducive to the
maintenance of the essential intramitochondrial enzymatic
pathways in tumor cells. Thus, mtHK II can reversely catalyse
ATP production from G6P when the cytoplasmic ATP
concentration reaches a certain threshold. Only ANT2 precisely
allows ATP to be transported inwards into the mitochondrial
matrix to maintain tumor cell survival and apoptotic resistance
(52) (Figure 4). However, other ANTs, mainly located in nontumor
cells, can continuously export mitochondrial ATP to the cytoplasm,
Frontiers in Oncology | www.frontiersin.org 6
which is detrimental to tumor cells with mitochondrial dysfunction.
Given that the major ANT subtypes are different in tumor cells and
nontumor cells, there may be discrepancies in the mechanisms that
med ia t e CypD-ANT bind ing and the subsequent
downstream effects.

Inhibiting Tumor Cell Apoptosis
Inhibition of tumor cell apoptosis is an important prerequisite
and marker of tumorigenesis. CypD overexpression has been
reported to attenuate apoptosis. As early as 2004, Schubert A
et al. found that CypD was significantly upregulated in various
tumors of reproductive tissues (breast, uterus and ovary) and
inhibited apoptosis of tumor cells (11). This study found that
CypD may attenuate the activation of mPTP triggered by other
proapoptotic stimuli and the release of pro-apoptotic factors in a
manner independent of PPIase activity, thus promoting tumor
cell survival. Unfortunately, the protective mechanism of CypD
on tumor cells was not specifically elucidated in this study. The
formation of mtHK II is known to activate metabolic pathways
FIGURE 4 | Schematic diagram of the mechanism of the CypD-ANT-VDAC-mtHK II association in the maintenance of aerobic glycolysis and mitochondrial function
in tumor cells. Left: CypD-ANT1/3 association helps stabilize the binding of mtHKII to VDAC and thereby moderately activates mPTP, which ensures that ATP
generated by OXPHOS can be preferentially and continuously transported to mtHK II for aerobic glycolysis. Right: conversely, mtHK II can reverse catalyse ATP
production from G6P to maintain the essential intramitochondrial enzymatic pathways in tumor cells when the ATP concentration in the cytoplasm drops to a certain
threshold. The maintenance of the latter process requires the CypD-ANT2-VDAC-mtHKII association.
July 2022 | Volume 12 | Article 939588
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such as aerobic glycolysis and pentose phosphate pathways to
produce sufficient ATP and metabolic intermediates (such as
NADPH) to rapidly provide energy and biosynthetic substrates
for tumor cell growth and invasion. Furthermore, mtHK II can
competitively bind VDAC with the proapoptotic factor Bax to
inhibit the translocation of Bax to mitochondria, thus
antagonizing Bax-mediated apoptosis (53, 54). Intriguingly,
Machida et al. found that mtHK II formation is necessary for
CypD to inhibit apoptosis of HeLa cells (human cervical cancer
cell line) and C6 cells (rat glioma cell line), while PPIase activity
is essential for CypD to stabilize mtHK II (47). This is
inconsistent with the results of Schubert et al., which may be
attributed to different tissue sources of tumor cells or diverse
upstream signalling pathways that regulate CypD. In addition,
the binding of CypD and Bcl-2 enhances the limiting effect of
Bcl-2 on cytochrome C (Cyto C) release and improves the
antiapoptotic effect of various tumor cell lines (human
osteosarcoma cell line Saos2 and human acute leukemia cell
line HL60) (55). Overexpression or knockdown of CypD can
upregulate or downregulate the resistance of tumor cells to
apoptotic stimulation, respectively (56). Coincidentally,
downregulated miRNA-27b-3p in oral mucosal basal cells of
patients with oral lichen planus (a typical precancerous lesion)
also enhances the interaction of CypD-Bcl2, inhibits the release
of proapoptotic factors and accelerates deterioration (57).

As previously mentioned, the association of CypD-ANT2-
VDAC1-mtHK II contributes to mPTP opening to ensure either
continuous ATP output for mtHK II utilization or ATP input for
the maintenance of intramitochondrial enzymatic pathways.
How do tumor cells avoid mPTP-mediated cell apoptosis or
necrosis while maintaining the essential aerobic glycolysis
through the CypD-mPTP axis? We hypothesize that the degree
of mPTP opening for maintaining ATP flow is confined, and that
cytochrome C and apoptosis-inducing factor accompanying
ATP output are not sufficient to initiate the caspase cascade-
mediated mitochondrial apoptosis pathway. Indeed, although
some degree of mitochondrial swelling and decreased MMP has
been reported in LM7 and 143B osteosarcoma cells, cytochrome
C levels in the cytoplasm do not exceed those in noncancerous
hFOB cells (44). In addition, although mPTP opening can
interfere with OXPHOS, tumor cells mainly rely on aerobic
glycolysis to produce ATP. Aerobic glycolysis can fully improve
the utilization rate of glucose, rapidly supply energy to tumor
cells, and improve mitochondrial dysfunction by reversing the
delivery of ATP to mitochondria. Thus, tumor cells maintain the
essential MMP and ATP levels in a virtuous cycle to avoid cell
necrosis induced by ATP depletion (Figure 4).

Inducing Tumor Metastasis and Invasion
p53 is a typical tumor suppressor gene. Different forms of p53
mutations can affect the tumor suppressor or transcriptional
activity of p53 and may even promote tumor progression. TP53
truncating mutations are common in human tumors, especially
TP53 exon-6 truncating mutations. p53 exon-6 truncating
mutants are similar to the naturally occurring selective p53
splice variant (p53-psi), which lacks transcriptional activity and
responds to DNA damage. However, they can translocate into
Frontiers in Oncology | www.frontiersin.org 7
mitochondria, bind to CypD and activate mPTP opening (58).
Traditionally, mPTP opening suppresses mitochondrial function
and triggers apoptosis. Interestingly, however, the CypD-mPTP
axis activated by p53 exon-6 truncating mutants or p53-psi could
promote tumorigenesis and present malignant features such as
downregulation of E-cadherin expression. Likewise, p53y
derived from the use of alternative 3’ splice site in p53 intron 6
could also enhance the motility and invasive capacity of multiple
lung cancer and breast cancer cell lines by activating the CypD-
mPTP axis (59). Elevated ROS levels provoked by mPTP
overopening played a pivotal role in p53y-induced epithelial-
mesenchymal transformation (EMT).

Considering that the vast majority of p53 mutations that
occur in human cancers are missense, the role of p53 missense
mutants in regulating CypD is of interest to us. So far, only one
article has mentioned both p53 missense mutants and CypD
(60). It was found that mitochondrial wild-type p53 protein
severely damaged the integrity of MOM and MIM by inducing
the oligomerization of Bax, Bak and VDAC and the endogenous
complex formation with CypD, respectively, thereby promoting
the release of apoptotic factors. However, tumor-derived p53
missense mutants lost the ability to activate the Bax/Bak lipid
pore. Unfortunately, the association between p53 missense
mutants and CypD has not been further studied. Therefore, do
missense mutations of p53 affect the association with CypD? If
so, what are the downstream effects of this association? Are all or
only some forms of p53 missense mutations associated with
CypD? These seem to be very promising questions.

Facilitating Tumor Resistance
The phosphatidylinositol-3 kinase (PI3K) pathway is a convergence
point that regulates cell proliferation, survival and bioenergetics and
is often used in tumor therapy. It has been reported that Akt2
abnormally activated by PI3K small molecule inhibitors (PI3Ki) in
glioblastoma cells can translocate to mitochondria and subsequently
phosphorylate CypD at S31 (61). Phosphorylated CypD supported
mitochondrial bioenergetics, inhibited tumor cell apoptosis, and
thereby mediated resistance to PI3K therapy. When combined with
gamitrinib (a mitochondrial homeostasis inhibitor), PI3Ki
effectively eliminated PI3K/Akt2/CypD pathway-mediated tumor
resistance and significantly induced glioblastoma cell apoptosis.
NEGATIVE EFFECT OF CYPD ON
TUMOR PROGRESSION

As shown in Figure 5, the role of CypD in tumor development is
dual. Even for the same dimension of tumor development, CypD
provoked by disparate upstream signals will exhibit bidirectional
influence on tumors.

Promotion of Tumor Cell Death
As shown in Figure 6, most antitumor drugs can induce tumor
cell necrosis by activating the CypD-mPTP axis (62–70). For
example, icaritin could induce necrosis of colon tumor cells, but
not apoptosis, which is dependent on activation of the JNK
July 2022 | Volume 12 | Article 939588
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pathway (71). It was found that CypD-ANT1 association
enhanced mPTP opening, resulting in increased mitochondrial
depolarization and the release of lactate dehydrogenase into the
cytoplasm. Indeed, CypD-ANT1 association was also involved in
the therapeutic mechanisms of several other antitumor drugs
(72–74). Furthermore, both bishonokiol A and 1, 2-
Diarachidonoyl-Sn-glycero-3-phosphoethanolamine (DAPE)
upregulated CypD expression by activating the RIP1/RIP3/
MLKL necrosis cascade, thus promoting mPTP-mediated
necrosis of breast cancer and malignant pleural mesothelioma
cells (75, 76). Similarly, bromocriptine could also promote the
phosphorylation of CypD through the RIP3/MLKL pathway,
thus inducing necrosis of prolactinoma cells (77). Moreover,
CypD-p53 association has also been reported to be involved in
the process of tumor cell necrosis induced by various antitumor
drugs (78–83).

Moreover, CypD can also mediate the apoptosis process of
tumor cells induced by antitumor drugs (84–93). For example,
phosphorylated GSK3b is known to competitively bind ANT1
with CypD, thereby inhibiting mPTP opening. However,
hirsutine dephosphorylated GSK3b in lung cancer cells
through the ROCK1/PTEN/PISK/AKT pathway and activated
the CypD-mPTP axis, thereby resulting in MMP decline, ATP
dissipation, and caspase cascade-triggered apoptosis (94).
Consistently, esculetin could activate the CypD-mPTP axis and
induce apoptosis of gastric cancer cells by upregulating
intracellular oxidative stress levels (69). In addition, tumor
necrosis factor receptor-associated protein (TRAP1), a major
member of the mitochondrial heat shock protein 90 (HSP90)
family, can trap CypD in the TRAP1/HSP9/HSP60
multichaperone complex, thus limiting the translocation of
Frontiers in Oncology | www.frontiersin.org 8
CypD to the MIM. Treatment with HSP60 siRNA could
promote the escape of CypD from the above complex, restore
its activity and activate the excessive opening of mPTP, resulting
in multiple tumor cell apoptosis (95). It should be noted that
antitumor drugs do not induce just one type of cell death when
treating a given tumor. For example, the enhanced association of
p53-CypD-ANT1 led to both apoptosis and necrosis in non-
small-cell lung cancer cells after treatment with ASP4132 (96).
Inhibition or knockdown of CypD reversed cell necrosis induced
by ASP4132 without affecting cell apoptosis. As mentioned
above, the endogenous complex formed by wild-type p53 and
CypD can participate in the destruction of MIM’s integrity. P53
is not only a typical tumor suppressor gene, but also regarded as
a stress sensor that can sense multiple insults. For example, in
response to oxidative stress during ischemia-reperfusion injury,
p53 translocated into the mitochondrial matrix and triggered
brain tissue necrosis by forming a robust complex with
CypD (97).

In addition to the above two common forms of tumor cell
death, CypD-induced autophagic cell death has been observed in
liver cancer cells treated with andrographolide (98). This is
because the activation of the CypD-mPTP axis by
andrographolide leads to an increase in LC3 II and
autophagosome in hepatoma carcinoma cells. Activation of
CypD-mPTP axis is a common mechanism of tumor cell death
induced by most antitumor drugs which is primarily achieved by
upregulating the CypD-ANT1/3 association. As previously
described, ANT1/3 can continuously export ATP into the
cytoplasm, causing bioenergetic collapse of dysfunctional
mitochondria in tumor cells and subsequently triggering cell
death (99).
FIGURE 5 | Dual effect of CypD on tumor progression. Red areas represent promotional mechanisms, and blue areas represent inhibitory mechanisms.
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Attenuating Tumor Metastasis
and Invasion
In contrast, Tavecchio et al. found that CypD expression was
reduced or even lost in a variety of tumor cell lines (human
glioma cell line LN229, human breast cancer cell line MCF-7 and
human pancreatic cancer cell line MiaPACA), which could
obviously activate interorganelle signalling and the pleiotropic
inflammatory mediator STAT3 (100). On the one hand, activated
STAT3 enhanced tumor cell proliferation by accelerating entry into
S-phase.On the other hand, theCxcl12-Cxcr4 associationmediated
chemokine-dependent autocrine/paracrine cellmotility after CypD
ablation, which was manifested as enhanced tumor cell migration
and invasion. This finding indicates that CypD can inhibit tumor
metastasis to some extent.

Suppressing Tumor Resistance
Wu et al. found that mortalin reduced mitochondrial permeability
by blocking CypD-ANT3 binding and promoted the proliferation of
Frontiers in Oncology | www.frontiersin.org 9
human B-RafV600E melanoma cells and their resistance to
vemurafenib (101, 102). Moreover, CypD expression and its
association with mammalian sterile 20-like kinase 1 (MST1) were
significantly downregulated, mediating gemcitabine resistance in
pancreatic tumor cell lines (103). These data suggest that the
association of CypD with its binding partners may be involved in
the chemoresistance of some tumors.
CONCLUSIONS AND PERSPECTIVES

CypD is recognized as a gate that regulates cell fate and energy
metabolism by many mechanisms. It has been demonstrated that
CypD can affect tumor progression in multiple ways and seems to
play a dual role in tumor cell fate (Table 1 and 2). CypD-mediated
transient opening ofmPTPhelps regulate calciumhomeostasis and
attenuate ROS accumulation in mitochondria to maintain
mitochondrial activity. Moderate levels of mPTP opening
FIGURE 6 | The white area (left) shows the modulations of CypD that promote tumor progression, mainly including inhibition of p53/p21 pathway mediated by
upregulated CypD expression, CypD phosphorylation (S31), CypD acetylation, increased CypD PPIase activity, CypD-Bcl2 association and CypD-Ant-VDAC-mtHK II
association. The black area (right) shows the modulations of CypD that suppress tumor progression, mainly including inhibition of Cxcl12-Cxr4 association mediated
by upregulation of CypD expression, CypD phosphorylation (S42), association of CypD with several binding partners (p53, ASK1, MST1, ANT1/3), and dissociation
of CypD from TRAP1/HSP90/HSP60 complex. Although increased CypD expression may occur in both tumor promotion and suppression, its downstream
pathways are different, subsequently leading to two distinct cellular events. Elevated CypD expression actuates tumorigenesis by inhibiting p53/p21 pathway on the
one hand, and hampers tumor metastasis and invasion by interfering Cxcl12-Cxr4 association on the other hand.
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TABLE 1 | Positive effect of CypD on tumor progression.

Dimension Upstream
signal

Modulation of CypD Outcome Tumor type Reference

Tumorigenesis Ras/Raf-1/
MEK/ERK
pathway

CypD expression↑ Promotion of tumorigenesis and cell growth Lung cancer, Breast
cancer

(37)

Metabolic
reprogramming

SIRT3↓ CypD acetylation, PPIase
activity↑, CypD-ANT2-VDAC-
mtHK II
association

Promotion of aerobic glycolysis and maintenance of the
essential intramitochondrial enzymatic pathways

Breast cancer, Colon
cancer

(45, 46)

Tumor cell death Unmentioned CypD expression↑ Inhibition of pro-apoptotic factors release Tumors of reproductive
tissues, Meningioma

(11, 56)

SIRT3↓ CypD acetylation, PPIase
activity↑, CypD-ANT2-VDAC-
mtHK II
association

Inhibition of apoptosis Colon cancer (46)

Unmentioned PPIase activity↑ Inhibition of Bax-induced apoptosis Breast cancer, Glioma (47)
Unmentioned CypD-Bcl2 association Inhibition of cytochrome C release Osteosarcoma,

Leukemia
(55)

PI3Ki/Akt2 CypD phosphorylation (S31) Inhibition of tumor cell apoptosis Glioblastoma (61)
Tumor
metastasis and
invasion

p53 mutations CypD-p53 mutations association Promotion of motility and invasive capacity of tumor
cells

Lung cancer, Breast
cancer, Melanoma

(58, 59)

Tumor
resistance

PI3Ki/Akt2 CypD phosphorylation (S31) Promotion of resistance to PI3K therapy Glioblastoma (61)

TABLE 2 | Negative effect of CypD on tumor progression.

Dimension Antitumor drug Upstream
signal

Modulation of CypD Outcome Tumor type Reference

Tumor cell
death

Hirsutine ROCK1/
PTEN
/PI3K/
GSK3b

CypD-ANT1 association Induction of apoptosis Lung cancer (94)

GSK1059615 PI3K/Akt/
mTOR↓

CypD-ANT1 association Induction of necrosis Head and neck squamous cell
carcinoma

(72)

ASP4132, AICAR AMPK CypD-ANT1 association Induction of necrosis Non-small cell lung cancer, Prostate
cancer

(73, 96)

Icaritin JNK CypD-ANT1 association Induction of necrosis Colorectal cancer (71)
Mortalin deleption MEK/ERK CypD-ANT1 association Induction of cell death B-RafV600E melanoma, KRAS tumor (74, 101)
Resminostat mTOR↓ CypD-ANT1 association Induction of apoptosis Hepatocellular carcinoma (84, 85)
NPC-26, ABT-737,
Curcumin

Unmentioned CypD-ANT1 association Induction of apoptosis Pancreatic cancer, Melanoma (86–88)

DN3 Unmentioned CypD expression↑ Induction of apoptosis
and cell cycle arrest

Gastric cancer (89)

Sorafenib p-ERK↓ CypD expression↑ Induction of apoptosis Clear cell-renal cell carcinoma (90)
Bishonokiol A RIP1/RIP3/

MLKL
CypD expression↑ Induction of necrosis Breast cancer (75)

Bromocriptine RIP1/RIP3/
MLKL

CypD phosphorylation Induction of cell death Prolactinoma (77)

DAPE RIP1 Unmentioned Induction of necrosis Malignant pleural mesothelioma (76)
Emodin ERK CypD-emodin

association
Induction of apoptosis Hepatocellular carcinoma (91)

C6+Docetaxel AMPK, JNK,
HER/ERK/
Akt

Unmentioned Inhibition of cell growth
and induction of
apoptosis

Breast cancer (92)

Berberine, Doxorubicin,
Salinomycin, Cisplatin,
PF-543

p53 CypD-p53
association

Induction of necrosis Prostate cancer, Lung cancer,
Glioma, Pancreatic cancer,
Colorectal cancer

(78–83)

Gemcitabine MST1 CypD-MST1
association

Induction of necrosis Pancreatic cancer (103)

(Continued)
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TABLE 2 | Continued

Dimension Antitumor drug Upstream
signal

Modulation of CypD Outcome Tumor type Reference

4SC-202 ASK1 CypD-ASK1
association

Induction of apoptosis Hepatocellular carcinoma (93)

Hsp60 RNAi Unmentioned Dissociation of CypD from
TRAP1-HSP90-HSP60
complex

Inhibition of cell growth
and induction of
apoptosis

Breast cancer, Colorectal cancer,
Glioblastoma

(95)

Tumor
metastasis
and invasion

none Unmentioned CypD expression Inhibition of cell
proliferation and
invasion

Glioblastoma, Breast cancer (100)

Tumor
resistance

Mortalin deleption MEK/ERK CypD-ANT1
association

Antagonism of
resistance to
vemurafenib

B-RafV600E melanoma (101, 102)

Gemcitabine MST1 CypD-MST1
association

Antagonism of
resistance to
gemcitabine

Pancreatic cancer (103)

Zhang et al. CypD’s Dual Role in Cancer
continuously provide substrates for aerobic glycolysis and essential
intramitochondrial enzymatic pathways in tumor cells. The
modestly activated CypD-mPTP axis can also promote the
survival, metastasis and invasion of tumor cells. However,
excessive mPTP opening inhibits the bioenergetics and malignant
characteristics of tumor cells and triggers various forms of tumor
cell death. This regulatory feature of the CypD-mPTP axis has been
used to develop a variety of antitumor drugs. Therefore, the
complex regulatory mechanisms of CypD make it a promoter of
tumor progression, but also a weapon by which antitumour drugs
may kill tumor cells (Figure 6). Rational utilization of the biological
functions ofCypDmaymakeCypDahot target for the treatment of
various diseases, including tumors, in the future.
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