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Acinetobacter baumannii is a problematic nosocomial pathogen owing to its increasing
resistance to antibiotics and its great ability to survive in the hospital environment, which
is linked to its capacity to form biofilms. Structural and functional investigations of
post-translational modifications, such as phosphorylations, may lead to identification
of candidates for therapeutic targets against this pathogen. Here, we present the
first S/T/Y phosphosecretome of two A. baumannii strains, the reference strain
ATCC 17978 and the virulent multi-drug resistant strain AB0057, cultured in two
modes of growth (planktonic and biofilm) using TiO2 chromatography followed by
high resolution mass spectrometry. In ATCC 17978, we detected a total of 137 (97
phosphoproteins) and 52 (33 phosphoproteins) phosphosites in biofilm and planktonic
modes of growth, respectively. Similarly, in AB0057, 155 (119 phosphoproteins) and
102 (74 phosphoproteins) phosphosites in biofilm and planktonic modes of growth
were identified, respectively. Both strains in the biofilm mode of growth showed a
higher number of phosphosites and phosphoproteins compared to planktonic growth.
Several phosphorylated sites are localized in key regions of proteins involved in either
drug resistance (β-lactamases), adhesion to host tissues (pilins), or protein secretion
(Hcp). Site-directed mutagenesis of the Hcp protein, essential for type VI secretion
system-mediated interbacterial competition, showed that four of the modified residues
are essential for type VI secretion system activity.

Keywords: phosphorylation, Acinetobacter baumannii, biofilm, extracellular proteins, proteomics, Hcp, T6SS and
pili

INTRODUCTION

Acinetobacter baumannii is a Gram-negative nosocomial pathogen that mostly impacts patients in
intensive care units and causes severe infections including pneumonia, bacteremia, endocarditis,
skin and soft tissue infections, urinary tract infections, and meningitis (Bergogne-Bérézin and
Towner, 1996; Dijkshoorn et al., 2007; Sengstock et al., 2010). This organism has been recently
classified by the WHO as "Critical" (Priority 1, together with P. aeruginosa and Enterobacteriaceae)
in the list of global priority antibiotic-resistant bacteria, for which the research and development of
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new and effective antibiotic treatments are urgently required.
Several factors support this ranking (Shrivastava et al., 2018).
This rapidly emerging pathogen is problematic worldwide owing
to the dramatic increase of infections caused by multidrug-
resistant (MDR), extensively drug resistant and even pan-
drug resistant, isolates (Goic-Barisic et al., 2017; Lim et al.,
2018). A. baumannii also has the capacity to survive for long
periods of time in hospital settings, due to its considerable
ability to form biofilms (Antunes et al., 2014), enabling it to
survive desiccation (Gayoso et al., 2014), oxidative stress (Soares
et al., 2010), or antiseptic treatments (Peleg et al., 2008). Thus,
A. baumannii has an outstanding ability to adapt to detrimental
environmental conditions.

Post-translational modifications (PTMs) are an important and
effective strategy that bacteria use to adapt to environmental
conditions. Phosphorylation of proteins is an important signaling
event in prokaryotes (Mijakovic et al., 2016) and plays important
roles in bacterial virulence, adaptation, and resistance (Stock
et al., 2000; Dworkin, 2015; Standish et al., 2016; Tierney
and Rather, 2019; Xie et al., 2019; Lipa and Janczarek, 2020).
The reversible and dynamic PTMs include the addition or
removal of phosphoryl groups by kinases and phosphatases,
respectively, and can alter protein function by modulation
of protein conformation, subcellular localization and protein-
protein interactions (Watanabe and Osada, 2012).

Proteomics is a strategy that allows the global characterization
of modified proteins in a complex sample and has been used to
identify serine/threonine/tyrosine phosphoproteomes for many
bacterial species (Yagüe et al., 2019). One study that analyzed
the phosphoproteomes of two A. baumannii strains during
growth in intracellular medium showed that there was twice as
many phosphorylated residues in the highly invasive multidrug-
resistant clinical isolate Abh12O-A2 compared to those in the
reference strain ATCC 17978, suggesting that phosphorylation
plays a key role in the regulation of drug resistance mechanisms
(Soares et al., 2014).

Very few global proteomic studies have characterized PTMs of
extracellular proteins (Ouidir et al., 2014a; Gaviard et al., 2019).
However, this analysis is very important as virulence factors are
often secreted and the presence of PTMs, like phosphorylation,
can impact their function. Recently, analysis of extracellular
proteins produced by P. aeruginosa identified multiple PTMs
on a range of secreted virulence factors (Gaviard et al., 2019).
Moreover, the PTM distribution on these virulence factors
appeared to be different between the intra- and extracellular-
sourced proteins. Therefore, it is important to characterize
the PTMs of proteins produced by A. baumannii as these
modifications are likely to contribute to the adaptability,
virulence, and persistence of the organism.

Here, we have investigated, for the first time, the serine,
threonine and tyrosine phosphoproteome in the extracellular
medium sourced from A. baumannii in a biofilm mode of growth.
Two strains were investigated: the reference strain ATCC 17978
and the virulent multi-drug resistant strain AB0057, isolated
from a patient with an A. baumannii bloodstream infection.
Overall, a total of 109 and 146 phosphorylated extracellular
proteins were identified for strains ATCC 17978 and AB0057,

respectively. We also showed that one specific phosphorylation
site was essential for the activity of the A. baumannii type VI
secretion system (T6SS). This study provides the first global
phospho-secretome profiling of A. baumannii and represents
a promising starting point for further investigations on the
biological role of phosphorylation in A. baumannii.

MATERIALS AND METHODS

Strains and Growth Conditions
For this study, two A. baumannii strains were used, ATCC
17978 (lacking the pAB3 plasmid, confirmed using PCR with
previously described pAB3-specific primers) (Weber et al., 2015)
and AB0057 (Hujer et al., 2006). Strains were grown overnight
in Mueller Hinton Broth (MHB, Difco) at 37◦C with shaking.
Bacterial cultures were inoculated with approximately 1 × 107

Colony Forming Units (CFU)/mL from overnight cultures.
Biofilm cultures were grown in 500 mL of MHB containing
18.75 g of sterile glass wool (Merck) (Crouzet et al., 2014, 2017)
and incubated at 37◦C for 24 h with slow shaking (90 rpm). In
parallel, planktonic cultures were grown in the same conditions
(without glass wool) and incubated at 37◦C for 24 h with vigorous
shaking (140 rpm). Bacteria were harvested by centrifugation
(8,000 × g for 15 min at 4◦C), and supernatants containing
extracellular proteins stored for analysis. For each condition,
bacterial cultures were grown in triplicate.

Secreted Protein Extraction
Each supernatant sample (500 mL) was filtered through a
0.22 µm membrane (GSWP 47 mm, Millipore) to remove
residual bacteria. A protease/phosphatase inhibitor cocktail
(50 µL, HaltTM Protease and Phosphatase Inhibitor Single-Use
Cocktail, EDTA-Free (100×), Thermo Scientific), and the histone
deacetylase (HDAC) inhibitors nicotinamide (50 µL at 2 M,
inhibitor of HDAC class III) and Trichostatin A (5 µL at 0.3 mM,
inhibitor of HDAC classes I and II) (Sigma-Aldrich) were added
to each sample. The secreted proteins were then concentrated
to a volume of approximately 1 mL using Centricon plus-70
centrifugal filter units with a 10 kDa cutoff, according to the
manufacturer’s protocol (Millipore). An ultracentrifugation step
was applied to the concentrated samples (200,000 × g, 2 h,
4◦C) to pellet outer membrane vesicles. The protein content of
each supernatant representing extracellular proteins was then
determined using the Bradford assay (Bio-Rad).

Phosphopeptide Identification
Samples were prepared as described previously (Ouidir et al.,
2014a,b). Briefly, extracellular protein samples (50 µg) were
subjected to a short electrophoresis separation in an SDS-
PAGE stacking gel (7%) then protein bands were excised, and
the protein reduced with DTT, alkylated with iodoacetamide,
before overnight digestion with trypsin (2 µg per band).
Phosphopeptide enrichment was performed using metal oxide
affinity chromatography (MOAC) with titanium dioxide beads
(TiO2, Carlo Erba) as previously described (Ouidir et al.,
2014a,b). The enriched phosphopeptides were then analyzed
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using a LTQ-Orbitrap Elite mass spectrometer coupled to an Easy
nLC II system or using Qexactive Plus coupled to an Ultimate
3000 (all from Thermo Scientific). Raw data files were processed
using Proteome Discoverer 1.4 software (Thermo Scientific).
Peak lists were searched using the MASCOT search software
(Matrix Science) against the A. baumannii ATCC 17978 and
A. baumannii AB0057 databases, containing 4097 and 4118
protein sequences, respectively.1 The false discovery rate (FDR)
threshold for identifications was set at 1% (for proteins and
peptides). For each identification, a peptide ion score higher
than 14 for phosphorylation; a peptide rank of 1, a q-value and
an expectation value below 0.05 was considered significant. To
avoid biased automatic annotation, all phosphopeptide spectra
were manually inspected. For the localization of the phosphosites,
the probability results obtained from MASCOT and phosphoRS
(Thermo Scientific) were used. MS proteomics data have been
deposited to the ProteomeXchange Consortium via the PRIDE
partner repository with the data set identifier. Our project
accession in PRIDE is PXD027208.

Bioinformatic Analysis of Modified
Proteins
Proteins were manually classified on the basis of predicted
biological function using information gained from the
annotated function, Uniprot2 and/or other available
information (Resistome, VFDB experimentally demonstrated,
Virulence Finder, E. coli main virulence genes, Integron and
Macromolecular Systems) in the Genoscope databases (see text
footnote 1; Vallenet et al., 2020). For hypothetical proteins,
we used BLAST2Go 5.2.5 software, an automated functional
annotation tool, for identification of (i) similar or potentially
homologous sequences from NCBI database (NCBI-nr), (ii)
protein domains and families from Interpro databases (EMBL-
EBI), and (iii) Gene Ontology (biological process, molecular
function). The Kyoto Encyclopedia of Genes and Genomes
(KEGG) was used to map the pathways. STRING database
(version 11.0) was used to investigate protein-protein network
interactions with a high confidence score (0.7). WebLogo 2.8.23

and Icelogo4 were used with default parameters to visualize
conserved patterns in sequence motifs (15 amino acids upstream
and downstream of the phosphorylation site). Subcellular
localization of the phosphoproteins, corresponding to the
phosphopeptides identified, was predicted by PSORTb version
3.0.2 (Yu et al., 2010). To further characterize proteins, multiple
bioinformatics tools were employed including SignalP 5.05 and
TatP 1.0,6 to determine signal peptides of proteins predicted to be
secreted by Sec and Tat translocons (Bendtsen et al., 2004, 2005b),
LipoP7 to predict putative lipoproteins in the outer membrane
by searching for lipoboxes (Juncker et al., 2003), and Secretome

1http://www.genoscope.cns.fr
2http://www.uniprot.org/
3https://weblogo.berkeley.edu/
4https://iomics.ugent.be/icelogoserver/
5http://www.cbs.dtu.dk/services/SignalP/
6http://www.cbs.dtu.dk/services/TatP/
7http://www.cbs.dtu.dk/services/LipoP/

2.08 and MatureP,9 to predict secreted proteins (Bendtsen et al.,
2005a; Orfanoudaki et al., 2017). MoonProt10 was used to find
putative moonlighting proteins, defined as secreted proteins that
have other known functions (Chen et al., 2018). BlastP11 was
used to interrogate the Protein Data Bank (PDB) and structures
to identify those with high sequence identity to the identified
proteins. All figures representing three-dimensional structures
were drawn with Pymol (Delano, 2002).

Generation of an AB307-0294 hcp Mutant
and Complementation Strain
The AB307-0294 hcp mutant was generated using splice overlap
extension (SOE) PCR and allelic exchange (Adams et al., 2008;
Aranda et al., 2010; Tucker et al., 2014; see “Supplementary
Materials and Methods” for full details). Briefly, a SOE PCR
product consisting of a kanamycin cassette (containing neo),
flanked by Flp recombinase Recognition Target (FRT) sites and
regions representing upstream and downstream of hcp, was
introduced into A. baumannii AB307-0294 via electroporation
(Choi et al., 2006). Selected kanamycin resistant hcp mutants
were provided with the plasmid pAT03 and grown in the
presence of isopropyl-β-d-1-thiogalactopyranoside (IPTG) to
induce Flp recombinase expression and excise the kanamycin
cassette from the genome. The integrity of the markerless 1hcp
mutant was confirmed by PCR and DNA sequencing. For
complementation, an intact copy of hcp, including the native
ribosome binding site, was PCR-amplified and cloned into the
pBASE expression plasmid (Supplementary Table 2). The hcp
complementation plasmid and empty pBASE were then used
to separately transform the AB307-0294 hcp mutant, generating
strains AL3844 (1hcp[pBASE]) and AL3942 (1hcp[hcp]).

Mutation of Individual Hcp Phosphosites
in A. baumannii Strain AB307-0294
To assess the role of specific amino acids in Hcp function, the
1hcp mutant was separately provided with a range of plasmids,
each expressing hcp with specific mutations to produce a single
amino change in the protein (S18A, S18D, S31A, S41A, T43A, or
S44A changes) compared to the wild-type Hcp. Each change to
hcp was generated using PCR or SOE-PCR with the appropriately
designed primers. PCR fragments were then cloned into pBASE
(see “Supplementary Materials and Methods” for full details).

Detection of the T6SS Protein Hcp Using
Western Immunoblotting
Production and secretion of the Hcp protein in A. baumannii
was assessed by subjecting whole-cell lysates (WCL) and
culture supernatants to western immunoblotting using anti-
Hcp polyclonal sera, as described previously (Fitzsimons et al.,
2018) but with minor modifications (see “Supplementary
Materials and Methods” for full details). The intensity of each

8http://www.cbs.dtu.dk/services/SecretomeP/
9http://www.stepdb.eu/MatureP.php
10http://www.moonlightingproteins.org/
11https://blast.ncbi.nlm.nih.gov/
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immunoreactive band was quantified from the peak area of
histograms generated using ImageJ software (Schneider et al.,
2012). Significance of differences in Hcp production were
assessed using one-way analysis of variance (ANOVA; GraphPad
Prism, version 9) with Tukey’s multiple-comparison post-test; a
P value of <0.05 was accepted as statistically significant.

RESULTS AND DISCUSSION

The ability of A. baumannii to form biofilms significantly
threatens human health as it enhances the ability of this pathogen
to persist and survive in response to desiccation and various
stresses and for prolonged periods in hospital environments.
In order to identify phosphorylation events that occur during
biofilm growth and determine those which may play important
roles in bacterial virulence or resistance, we investigated the
phospho-secretome of AB0057 in planktonic and biofilm modes
of growth. We also assessed the @ @ phospho-secretome of
ATCC 17978 pAB3− strain, known to have an active T6SS and
to produce biofilms (Weber et al., 2015; Moon et al., 2017).

Phospho-Secretome Analysis of
A. baumannii Strains ATCC 17978 and
AB0057
Using a large-scale proteomic approach, we first assessed the
phosphorylation of serine, threonine and tyrosine residues on
extracellular proteins (S/T/Y phosphoproteomes) derived from
biofilm and planktonic growth of A. baumannii reference strain
ATCC 17978 and the virulent isolate AB0057. After bacterial
culture, extracellular proteins were digested and phosphorylated
peptides were enriched using titanium dioxide (TiO2), as
described previously (Ouidir et al., 2014a). Phosphopeptides
were then analyzed by nanoLC-MS/MS. Following peptide
identification, all data were manually checked to confirm the
best mass spectrum interpretation and peptide sequence and
localization of the PTM. If localization of the phosphorylation
site was not possible then the putative modified residues were
annotated in brackets.

For both strains, the overall number of phosphorylated sites
was higher in peptides derived from the biofilm mode of growth
than from the planktonic mode of growth. Indeed, 137 modified
sites (corresponding to 124 unique peptides and 97 unique
proteins) in ATCC 17978 and 155 modified sites (corresponding
to 144 unique peptides and 119 unique proteins) in AB0057 were
identified in biofilm, while 52 phosphosites (44 unique peptides
and 33 unique proteins) in ATCC 17978 and 102 phosphosites
(92 unique peptides and 74 unique proteins) in AB0057 were
identified in planktonic mode (Figures 1A,B and Supplementary
Tables 3–10). More phosphorylated sites were identified in
the peptides derived from the virulent strain AB0057 than in
peptides from the reference strain ATCC 17978, especially in the
planktonic growth samples. Interestingly, less than half of the
phosphosites identified in the peptides derived from planktonic
grown cells were also present in peptides derived from biofilm
grown cells (Figures 1C,D).

No significant difference was observed in the phosphorylation
distribution onto S/T/Y (Supplementary Table 9). To identify
conserved motifs, sequences within 15 amino acids upstream
and downstream of the phosphorylated sites were examined for
similarity. However, no consensus motif surrounding each of the
phosphorylated sites was found.

The majority of proteins were phosphorylated at only one
site (Figure 1E). In strain AB0057, elongation factor Tu
(AB57_0362) had the highest number of phosphorylations [six
phosphorylations on T17, (T26/T27), Y77, Y88, T94, and T109].
In strain ATCC 17978, five phosphorylated sites were identified
in the T6SS tube protein Hcp (S18, S31, S41, T43, and S44) but
these additions were only present on extracellular Hcp isolated
from biofilm cultures (Supplementary Table 8).

Initial bioinformatic analyses indicated that the majority of
the modified proteins were predicted to be cytoplasmic, with
only 3% predicted to be secreted (Supplementary Tables 7, 8).
However, it is well known that many predicted cytoplasmic
proteins can also be secreted, e.g., DnaK (Karched et al., 2019),
EF-Tu (Chiu et al., 2017), and GroEL (Jeffery C.J., 2018).
Such multifunctional proteins are also known as moonlighting
proteins and may be involved in adhesion to the host or
in microbial pathogenesis (Hagemann et al., 2017; Harvey
et al., 2019; Jeffery C.J., 2019; N’Diaye et al., 2019). Nine
phosphoproteins in ATCC 17978 and 10 phosphoproteins in
AB0057 were identified as putative moonlighting proteins with
adhesion or binding activities (Supplementary Tables 7, 8).
The sequences of all phosphorylated proteins were analyzed
using a number of bioinformatic tools. In total, 23 and 29
proteins with signal peptides were identified in ATCC 17978 and
AB0057, respectively, and are therefore predicted to be secreted
by the Sec pathway. Using SecretomeP, 36 proteins in ATCC
17978 and 35 proteins in AB0057 were predicted to be secreted
via a non-classical secretion pathway (Kang and Zhang, 2020).
MatureP identified 29 proteins in ATCC 17978 and 46 proteins
in AB0057 secreted by the Sec secretory system. Furthermore,
12 lipoproteins were identified (five in ATCC 17978 and seven
in AB0057). Taking into consideration the data from all of
these analyses, the final number of predicted secreted proteins
(estimated to be 3% using initial bioinformatic analysis) was
determined to be 38%.

The phosphorylated proteins identified were classified
according to the classical functional categories (Figures 1F,G).
The majority of planktonic and biofilm derived extracellular
proteins were classified into the amino acid metabolism group
and the unknown function group, some of which in the latter
group may potentially contribute to virulence by currently
unidentified mechanisms. Interestingly, compared to ATCC
17978 planktonic growth, there were more ATCC 17978 biofilm-
derived extracellular proteins classified into bacterial secretion
system, iron metabolism, oxidative phosphorylation and folding
and maturation functional groups (Figure 1F). For the clinical
isolate AB0057, compared to planktonic growth, there were
more biofilm-derived extracellular proteins classified into the
adaptation protein functional group (Figure 1G). Furthermore,
differences in the distribution of the identified proteins into
functional groups were clearly noted between the two strains
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FIGURE 1 | Numbers of phosphosites (A) and phosphoproteins (B) identified in A. baumannii ATCC 17978 and AB0057 strains in planktonic and biofilm modes of
growth. (C,D) Phosphosite distribution between planktonic and biofilm modes of growth for ATCC 17978 and AB0057, respectively. (E) Number of phosphosites per
protein in planktonic and biofilm modes of growth for ATCC 17978 and AB0057. (F,G) Functional categories of the phosphorylated proteins in planktonic and biofilm
modes of growth for ATCC 17978 and AB0057, respectively. Hatched red: ATCC 17978 in planktonic. Hatched blue: ATCC 17978 in biofilm. Red: AB0057 in
planktonic. Blue: AB0057 in biofilm.

for the secreted proteins in the following categories: DNA/RNA
metabolism, transcriptional regulation, and drug resistance.

Functions of Selected Phosphorylated
Proteins
Type VI Secretion System: Phosphorylation of Hcp
The T6SS is a multiprotein apparatus that delivers protein
effectors into both prokaryotic and eukaryotic cells (Pukatzki
et al., 2009; Ho et al., 2017). In various Gram-negative species
it plays a critical role in biofilm formation (Aschtgen et al., 2008)
and as a defensive weapon in inter-bacterial competition and/or
attack of host cells (Schwarz et al., 2010; Russell et al., 2011; Basler
et al., 2013; Carruthers et al., 2013). In the A. baumannii strains
AB0057 and ATCC 17978, the genes encoding the main structural

components of the T6SS apparatus are encoded within one, well
conserved, locus composed of 18 and 22 genes, respectively.
Furthermore, three distinct VgrG loci are located elsewhere on
the genome. Each VgrG locus encodes the VgrG tip protein, and
a cognate effector protein and a cognate immunity protein. Hcp
proteins form the needle of the T6SS via the stacked formation
of multiple donut-shaped Hcp hexamers. In some bacterial
species Hcp can act as a specialized effector or as a transporter
and/or chaperone of T6SS cargo effectors (Ruiz et al., 2015). The
presence of Hcp in the cell culture supernatant is a molecular
marker of a functional T6SS (Mougous et al., 2006; Pukatzki
et al., 2009; Weber et al., 2013; Corcionivoschi et al., 2015). Hcp
proteins (AB0057_1481 and ABYAL1534) were detected in both
planktonic and biofilm modes of growth, suggesting a functional
T6SS is produced by both strains under both growth conditions
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FIGURE 2 | Hcp phosphorylation sites: (A) Crystal structure of the A. baumannii Hcp (PDB 4W64) with specific phosphosites colored (S18, light green; S31, red;
S41, yellow; T43, blue; S44, purple) and the Hcp hexameric donut structure viewed from the side (left) and bottom (right). (B) Alignment of Hcp protein from
A. baumannii ATCC 17978 (A.b_ABYAL1534) and P. aeruginosa (P.a_PA0085). Completely invariant residues are indicated with an asterisk (*), highly conserved
regions are marked with a colon (:) and semi-conserved residues are dotted (.). Identified peptides and phosphosites in our study are colored and designated by
arrows.

(Supplementary Table 10). In agreement with the literature
(Weber et al., 2015), Hcp is secreted by ATCC 17978 lacking the
plasmid pAB3 (encoding a TetR repressor) at greater amounts
when compared to secretion by strain AB0057. Interestingly,
the five phosphosites (S18, S31, S41, T43, and S44) on Hcp
were only detected in biofilm mode of growth for ATCC 17978
(Supplementary Tables 6, 8). Examination of the predicted 3D
model of the A. baumannii Hcp hexamer indicates that these
phosphosites are positioned at the top and the bottom of the
donut-shaped structure (Figure 2).

To test the importance of the Hcp phosphosites for T6SS
function, we mutated selected sites in a recombinant version of
Hcp derived from A. baumannii strain AB307-0294 (l00% amino
acid identity with ATCC 17978 and AB0057 Hcp). Individual
amino acid substitutions of the identified Hcp phosphosites
were performed with alanine, a non-phosphorylable amino
acid. Each modified hcp gene was cloned into the expression
plasmid pBASE and introduced into an A. baumannii AB307-
0294 hcp mutant, and T6SS function in each strain assessed via
the immunodetection of Hcp secretion. An S18A amino acid
substitution in Hcp abolished Hcp secretion via T6SS activity as
no Hcp was detected in the supernatant (Figure 3). Similarly,
an S18D phosphomimetic substitution in Hcp also resulted in
no Hcp secretion. In contrast, Hcp proteins with S31A, S41A,
T43A, or a S44A substitution were functional as T6SS-secreted
Hcp was detected in the supernatant, though levels of secreted
Hcp were significantly reduced for Hcp proteins with S31A, S41A,

and T43A substitutions, compared to mutant provided with wild-
type Hcp or Hcp S44A. In all strains provided functional copy
of wild-type or mutated hcp, Hcp protein was detected in the
whole cell lysate, indicating that each substitution had no effect
on the production of Hcp (Figure 3). The TssM protein is an
essential component of the T6SS membrane-stabilizing structure.
The 1tssM strain was used as an additional negative control in
the immunoblot as this mutant cannot secrete Hcp due to lack of
a functional T6SS (Fitzsimons et al., 2018).

In P. aeruginosa PAO1, Hcp protein not only forms the
T6SS tube but also associates with effectors, protects them from
proteolysis, and likely traffics with effectors during transport
(Silverman et al., 2013). Specific amino acids in Hcp, such as
S31 or L28, can inhibit or affect the ability of the protein
to secret the associated effector. Thus, T6SS effectors form
a unique network of interactions with Hcp. In Francisella
tularensis, the importance of the phosphorylation of the T6SS
sheath protein IglB was recently highlighted (Ziveri et al.,
2019). A Y139 mutation in IglB was able to abrogate the
T6SS assembly regardless of the substituted residue (Y139A,
Y139D, or Y139E). The phosphorylation status of Y139 therefore
modulates the dynamics of T6SS assembly. Our results indicate
that the phosphorylation of Hcp amino acid S18 seems to play
a pivotal role in A. baumannii Hcp secretion via an active
T6SS. These results highlight the importance of the characterized
phosphorylated residues, especially S18, on T6SS activity in
A. baumannii.
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FIGURE 3 | Role of different phosphosites in Hcp secretion. Analysis of Hcp
secretion by various A. baumannii AB307-0294 strains using western
immunoblotting with Hcp-specific antiserum. (A) Whole-cell lysates (WCL) and
secreted samples (SUP) from the wild-type AB307-0294 (WT), the 1tssm
mutant, 1hcp mutant, 1hcp mutant transformed with empty vector
1hcp[EV], 1hcp mutant complemented with an intact copy of hcp
(1hcp[hcp]) and the 1hcp mutant transformed with the expression constructs
S18A, S18D, S31A, S41A, T43A, and S44A. The arrows at the right indicate
the position of the 22 kDa MW Myoglobin Red protein (SeeBlueTM Plus2
pre-stained protein standard) and the predicted position of the Hcp protein.
Images are representative of three biological replicates. Quantitative analysis
of the amount of secreted Hcp protein present for each strain was determined
by densitometry of triplicate biological replicate western blots (B). Symbols
represent the mean of the quantified peak area of obtained band intensity
histograms for each strain ± standard deviation of the means. ∗∗, P < 0.01, ∗,
P < 0.05.

Adhesion Process: Phosphorylation of Fimbrial
Subunits
In A. baumannii, type I pili represent a major class of surface
appendage mediating bacterial attachment to host cells or abiotic
surfaces and are required for biofilm formation (Tomaras et al.,
2003; Álvarez-Fraga et al., 2016; Wood et al., 2018; Di Venanzio
et al., 2019). Each pilus consists of self-polymerizing pilin
subunits and in some instances a distal specialized subunit called
the tip pilin. Pilin is also the main protein recovered from
the A. baumannii biofilm matrix (Nait Chabane et al., 2014).
Pili are assembled via a chaperone-usher pathway (CUP) that
involves a periplasmic chaperone and an outer membrane usher
for secretion to the cell surface (Tomaras et al., 2003; Zavyalov
et al., 2010; Busch and Waksman, 2012; Garnett et al., 2012;

Bao et al., 2013; Berry et al., 2014; Werneburg and Thanassi,
2018). One of the most well-studied type 1 pili is the Csu
system (Tomaras et al., 2003; Pakharukova et al., 2018). The
Csu pilus is made of four subunits, CsuA/B (the major pilin
subunit), CsuA, CsuB, and the tip subunit CsuE, which uses three
distal hydrophobic loops to interact with hydrophobic substrates
(Pakharukova et al., 2018). The CsuC and CsuD proteins
are the chaperone and the usher components of this system,
respectively (Pakharukova et al., 2018). Analysis of A. baumannii
strains ATCC 17978 and AB0057 detected phosphorylations on
the major subunit CsuA/B (Supplementary Tables 7, 8 and
Supplementary Figure 1) within the N-terminus region known
to be involved in the interaction with the chaperone and in
subunit polymerization. Indeed, assembly of each pilus starts in
the periplasm with stabilization of a subunit by the chaperone.
This occurs via a donor strand complementation process, where
the β-strand G1 of the chaperone induces an immunoglobulin-
like fold of the subunit (Choudhury et al., 1999; Sauer et al.,
1999). Following folding, a donor β-strand exchange mechanism
occurs where the G1 β-strand is displaced by the N-terminal
extension (donor strand Gd) of an incoming subunit (Remaut
et al., 2006; Allen et al., 2012). The phosphorylation of S36 (in
AB0057) and S38 (in ATCC 17978) was detected in the CsuA/B
subunit proteins produced by both strains. These residues are
located in the region immediately following the end of the Gd
β-strand (Supplementary Figure 1). It was previously shown
that mutation of the P5 residue (I37A mutant) leads to a
drastic decrease of CsuA/B polymerization (Remaut et al., 2006;
Pakharukova et al., 2015). Our finding in A. baumannii suggests
phosphorylations could decrease the accommodation of the Gd
β-strand into the groove of a neighboring subunit and thus
impact polymerization. Other phosphorylations were identified
in the subunit A strand (T39, T42, and S46), that can be hydrogen
bonded to the A1 β-strand of the CsuC chaperone during the
formation of a high-energy folding intermediate and before pilus
polymerization and translocation (Pakharukova et al., 2015).
Overall, these modifications could regulate CsuA/B interactions
with the CsuC chaperone and contribute to the stabilization of
its soluble form.

In addition, phosphorylations were also detected on the
main subunits (FimA-like) of two other CUP pili in strain
AB0057. The genes for these CU systems are located in two
loci, each encoding four proteins (Supplementary Table 7) as
follows: the FimA-like main pilin (AB57_1747 and AB57_2007
have 30 and 28% identity, respectively, with the E. coli FimA),
the PapD chaperone (AB57_1746 and AB57_2006), the PapC
outer membrane usher (AB57_1745 and AB57_2005) and the
tip adhesion pilin (AB57_1744 and AB57_2004). These CUP
pili were shown to be involved in biofilm formation on
solid supports and in bacterial attachment to A549 epithelial
cells (Rumbo-Feal et al., 2013; Álvarez-Fraga et al., 2016). As
shown by the sequence alignment of these subunits with FimA
proteins from different species (Supplementary Figure 2), one
phosphorylation is commonly localized on the B” β-strand of
both subunits, before the second cysteine necessary for the
formation of a disulfide bond, and this residue is conserved in
all the aligned pili subunits (Puorger et al., 2011; Zyła et al.,
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2019). Interestingly, the B” β-strand (T45-C58) corresponds
to a sequence required for targeting FimA monomers to
mitochondria (Sukumaran et al., 2010; Zyła et al., 2019). Indeed,
previous studies demonstrated that soluble FimA monomers
from invasive bacterial pathogens (E. coli K1, Salmonella
or Shigella) may target the VDAC-hexokinase complex at
mitochondria to delay host cell apoptosis during the early phase
of infection (Sukumaran et al., 2010). As A. baumannii is

able to invade epithelial cells via a zipper-like mechanism and
persist in these cells (Choi et al., 2005, 2008; Parra-Millán et al.,
2018), FimA-like subunits may possess a similar function and
phosphorylation could be an important event to modulate pili
subunit-mitochondria interactions.

The tip pilins of both CUP systems, AB57_2004 and
AB57_1744, shared 36 and 35% identity, respectively, with
the adhesin MrkD1P of Klebsiella pneumoniae (PDB code

FIGURE 4 | β-lactamase phosphorylations. (A) Alignment of ADCs from A. baumannii AB0057 (AB57_0009 and AB57_2796) with β -lactamase 5W12-A in the PDB.
Completely invariant residues are indicated with an asterisk (*), highly conserved regions are indicated with a colon (:) and semi-conserved residues are indicated with
a dot (.). Identified peptides and phospho-sites in our study are underlined and in red. (B) Structural representation of a β-lactamase from A. baumannii solved in
complex with an inhibitor (PDB code 5W12). The phosphoY residues are colored in cyan and the phosphoS residues in green. The residues interacting with the
modified Y or S are represented in gray sticks, and the interaction interface is indicated by brown dotted lines. The additional five amino acids present in the
AB57_0009 protein are located in the blue zone in the H6" helix. Structural regions flanking the binding site, carrying mutations involved in increased resistance, are
colored in magenta. The binding site is shown with a gray shaded area. The structural regions lining the binding site, bearing the mutations implicated in an increase
of resistance, are colored in magenta. The binding site is materialized as a gray shaded area.
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3U4KA). MrkD1P mediates adherence to type V collagen through
different sites identified by site-directed mutational analysis
(Schurtz Sebghati et al., 1998; Rêgo et al., 2012). Interestingly,
the phosphorylated residues T59, T61 and T176 are well
conserved and located close to sites directly involved in type V
collagen binding (Supplementary Figure 3). These data suggest
that phosphorylation of these residues may play a role in
interactions with host tissues. Taken together, these identified
phosphorylations may play important roles in CU pili biogenesis
or directly in link with eukaryotic cells interactions.

Drug Resistance: Phosphorylation of
β-Lactamases
The AB0057 A. baumannii strain is a multidrug resistant
clinical isolate; it is particularly resistant to β-lactams including
carbapenems due to the presence of several β-lactamases (Hujer
et al., 2006). We detected several phosphorylations on different
β-lactamases produced by AB0057 (Supplementary Table 7).
We observed four phosphosites [(Y63/Y66/Y67), S88, S90 and
(Y223/Y227)] on ADC (Acinetobacter-derived cephalosporinase)
proteins, AB57_0009 and AB57_2796. As these two proteins
share 97.68% identity, it is not possible to precisely assign
all of the phosphorylation sites to one or the other protein.
However, phosphosites S88 and S90 were unambiguously
assigned to the AB57_0009 protein. Residue S88 corresponds
to the catalytic serine of the enzyme, making a covalent bond
with the antibiotic before hydrolysis of the β-lactam, and
S90 is oriented toward the small helix H6" that follows the
� loop, shown to be extended of five amino acids in the
AB57_0009 protein compared to other members of the class C
β-lactamases. The phosphoY sites were located in the � loop
[(Y223/Y227)] and the β-strand [(Y63/Y66/Y67)] (Figure 4),
those in the latter being involved in the structural stability
(Caselli et al., 2018). The � loop, localized at the entrance
of the enzyme active site, is involved in the catalytic cycle
of the β-lactam hydrolysis and most of identified mutations
in this loop alter the susceptibility of the bacterium to β-
lactam antibiotics.

For the β-lactamase AB57_0551, we identified one
phosphosite [S79/T80] corresponding to the catalytic serine
residue S79. This protein shares 99% amino acid identity with
the class-D β-lactamase OXA-23 whose structure has been solved
in complex with a molecule of meropenem linked covalently to
the catalytic serine (PDB code 4JF4) (Harper et al., 2018).

In agreement with these results, a link between
phosphorylation and the modulation of β-lactamase activity
was recently reported. Lai et al. (2016) showed the importance
of the S90 phosphosite in the catalytic motif S88VS90K of
AmpC (ADC) from A. baumannii SK17, corresponding to the
phosphoS90 found in AB57_0009. The phosphoablative S90A
mutant had higher β-lactamase activity and increased resistance
to imipenem, in contrast to the phosphomimetic S90D and
S88D mutants which were more sensitive to imipenem. Thus,
phosphorylation in the catalytic site region could repress enzyme
activity. It should be also noted that phosphorylation of S90
(AB57_0009) and [S79/T80] (AB57_0551) were exclusively

detected in extracellular proteins derived from planktonic
growth. Taken together, these data suggest that during planktonic
lifestyle, A. baumannii AB0057 would be more sensitive to
antibiotics such as carbapenems.

Secondary Functions: Phosphorylation
of Moonlighting Proteins
Moonlighting proteins are proteins that can have two or
more distinct biochemical functions (Jeffery C., 2019).
They increase the complexity of bacterial regulation and
the specific function of each depends on cellular localization,
cellular ligands, and/or substrates. In this current study, 39
moonlighting phosphoproteins were identified, including
DnaK, EF-Tu, GroEL, and peroxiredoxin (Supplementary
Tables 7, 8). Thirteen of these proteins had been assigned
a second role in adhesion (to plasminogen, eukaryotic cells,
fibronectin), virulence or modulation of host immune response
(Supplementary Table 11; Das et al., 2010; Henderson and
Martin, 2013; Jeffery C., 2018). EF-Tu functions at the ribosomal
level, but in P. aeruginosa it is also exported and binds to
plasminogen (Kunert et al., 2007) and in M. pneumonia it
has been shown to bind to fibronectin (Dallo et al., 2002).
In Bacillus cereus, EF-Tu can be recruited onto the bacterial
surface and act as an environmental sensor to detect the
principal skin neuropeptide, substance P (N’Diaye et al.,
2019). A. baumannii EF-Tu from both ATCC 17978 and
AB0057 contained many phosphorylated sites. As all of
the moonlighting proteins were phosphorylated on serine,
threonine or tyrosine, it can be envisaged that phosphorylation
can act as a switch to modulate protein function or protein
secretion by either the addition of negative charge or via
steric hindrance.

CONCLUSION

Due to the crucial role of phosphorylation in bacterial
virulence, resistance or adaptation, phosphorylation mapping is
an important prerequisite for the discovery of novel regulatory
mechanisms. Investigation of protein phosphorylation is essential
to understand its role in bacterial physiology and to identify new
control strategies for combatting the spread of MDR bacteria.
In this study, we used the reference strain ATCC 17978 and
the clinical isolate AB0057 to investigate for the first time the
phospho-secretome of A. baumannii when in the biofilm mode
of growth, which promotes bacterial environmental persistence
and antibiotic tolerance. The comparative study of planktonic
with biofilm modes of growth showed an enhanced number
of phosphorylated proteins in cells grown within a biofilm.
In addition, a higher number of phosphorylation events was
observed in proteins derived from the virulent and antibiotic
resistant strain AB0057, compared to those identified in the
reference strain ATCC 17978.

Our data show a pivotal role of phosphorylation in many
biological processes, including antibiotic resistance, biofilm
formation and virulence. Indeed, phosphorylation of residues
located within the catalytic site of several β-lactamases indicates
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this activity modulates their enzymatic activity. Phosphorylation
of pili proteins could modulate polymerization, contribute to
the stabilization of their soluble form, and could play a role in
pili-facilitated adhesion to eukaryotic cells. Many phosphosites
were detected on the T6SS tube protein Hcp and we showed that
phosphorylation at amino acid S18 is required for Hcp secretion
and therefore T6SS activity. Phosphorylation at three other sites
on Hcp also contributes significantly to T6SS activity. This work
is a promising starting point for further investigations into the
biological role of phosphorylation on secreted proteins during
growth in biofilms.
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