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Movement screens are frequently used to identify differences in movement patterns such
as pathological abnormalities or skill related differences in sport; however, abnormalities
are often visually detected by a human assessor resulting in poor reliability. Therefore,
our previous research has focused on the development of an objective movement
assessment tool to classify elite and novice athletes’ kinematic data using machine
learning algorithms. Classifying elite and novice athletes can be beneficial to objectively
detect differences in movement patterns between the athletes, which can then be used
to provide higher quality feedback to athletes and their coaches. Currently, the method
requires optical motion capture, which is expensive and time-consuming to use, creating
a barrier for adoption within industry. Therefore, the purpose of this study was to assess
whether machine learning could classify athletes as elite or novice using data that
can be collected easily and inexpensively in the field using inertial measurement units
(IMUs). A secondary purpose of this study was to refine the architecture of the tool to
optimize classification rates. Motion capture data from 542 athletes performing seven
dynamic screening movements were analyzed. A principal component analysis (PCA)-
based pattern recognition technique and machine learning algorithms with the Euclidean
norm of the segment linear accelerations and angular velocities as inputs were used
to classify athletes based on skill level. Depending on the movement, using metrics
achievable with IMUs and a linear discriminant analysis (LDA), 75.1–84.7% of athletes
were accurately classified as elite or novice. We have provided evidence that suggests
our objective, data-driven method can detect meaningful differences during a movement
screening battery when using data that can be collected using IMUs, thus providing a
large methodological advance as these can be collected in the field using sensors.
This method offers an objective, inexpensive tool that can be easily implemented in
the field to potentially enhance screening, assessment, and rehabilitation in sport and
clinical settings.

Keywords: inertial measurement units, machine learning, artificial intelligence, principal component analysis,
pattern recognition, athletics, movement screening
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INTRODUCTION

Movement screens are widely used across many disciplines
including in ergonomic, clinical, and athletic settings to identify
aberrant movement patterns in hopes of decreasing risk of
injury and/or improving performance (Donà et al., 2009; Kritz
et al., 2009; Padua et al., 2009; Cook et al., 2014; McCall
et al., 2014; McCunn et al., 2016). Most commonly, during a
movement screen, an individual’s movement is evaluated based
on visual appraisal (McCunn et al., 2016); however, there is
agreement within the literature that inter-rater and inter-session
(participants tested during two separate sessions) reliability
of these subjective movement screens are poor (Onate et al.,
2012; Smith et al., 2013; Gulgin and Hoogenboom, 2014).
Therefore, our previous research focused on the development and
application of an objective framework as a data-driven alternative
to objectively classify movement strategies and quality during
a movement screen (Ross et al., 2018), known as the Objective
Movement Assessment Tool (OMAT).

The previously published technique with optical motion
capture, herein referred to as OMAT-OPT, uses principal
component analysis (PCA) (Troje, 2002; Federolf et al., 2014;
Young and Reinkensmeyer, 2014) in conjunction with linear
discriminant analysis (LDA) to objectively differentiate and
score whole-body movement patterns between desired binary
classifiers (Ross et al., 2018). For OMAT-OPT, the data input
into the PCA are time-series trajectories of joint centers
and select anatomical markers, representing the whole-body,
captured using an optical motion capture system. During
a non-sport-specific movement screening battery consisting
of seven unique dynamic movements that challenge stability
and mobility across all major joints, between 70.7% and
82.9% of athletes were appropriately classified as either
elite or novice depending on the movement (Ross et al.,
2018). Although OMAT-OPT provides an objective, data-
driven method that can detect meaningful movement pattern
differences during a movement screening battery for binary
classification, it requires optical motion capture technology,
which is expensive and time-consuming to set up, capture and
post-process data, reducing the accessibility and feasibility of
the current technique in clinical, ergonomic, and sport settings
(Hadjidj et al., 2013).

The use of wearable systems are increasing in popularity in
clinical, sport, and ergonomic settings (Patel et al., 2012; Hadjidj
et al., 2013), offering an inexpensive alternative to optical motion
capture systems. The wearable systems are easily transportable,
require minimal post-processing, are able to collect data in
larger capture volumes compared to optical systems, and are
immune to problems associated with optical systems such as
occlusion and line-of-sight problems (Zhou and Hu, 2008).
A common type of sensor used is the inertial measurement
unit (IMU). IMUs contain an accelerometer, gyroscope, and
magnetometer, allowing measurement of linear accelerations and
angular velocities in three axes and the triaxial magnetic fields
of the earth. IMUs are susceptible to drift, especially when close
to metal, although more robust algorithms are continuously
being developed to mitigate these effects (Madgwick et al.,

2011; Wittmann et al., 2019), making them more suitable for
use in the field.

IMU data have been used to objectively classify movement
based on different classifiers during non-sport specific tasks (Sgro
et al., 2017; Johnston et al., 2016, 2019; Zago et al., 2019). Machine
learning with IMU data as the input has been able to objectively
identify children of different motor development levels during
a standing long jump (Sgro et al., 2017), rugby players at a
higher risk of a sport-related concussion based on a Y-balance
test (Johnston et al., 2019), Australian football players at different
levels of fatigue during a Y-balance test (Johnston et al., 2016),
and to predict change of direction, speed, and mechanical work
during cutting maneuvers (Zago et al., 2019), to name a few.
Although these studies only looked at a single IMU placed on the
low-back of the participant, these findings suggest that IMUs can
be used as an inexpensive alternative to optical motion capture to
characterize and classify motion.

Although research using machine learning to classify elite
and novice athletes is limited, discriminant analysis has been
previously used to classify novice, good, and elite rowers during
ergometer testing (Smith and Spinks, 1995). The ability to
objectively differentiate movement patterns between novice and
elite athletes is useful to highlight emergent differences in
movement performance. Guided by those differences, coaches
can improve quality of feedback to their athletes (Smith and
Spinks, 1995). We chose skill level as the dichotomous factor to
initially assess due to its likelihood to influence movement quality
and performance, with the intention of in the future expanding to
sex, sport played, and injury history or risk.

Feature selection approaches and machine learning algorithms
may also influence the accuracy of classification between elite
and novice athletes using IMU data and are therefore important
secondary considerations. Previously, the OMAT-OPT used the
first 35 principal component (PC) scores as the input data
for the LDA; however, alternative feature selection approaches
could provide an objective method to best decide which PC
scores to use as input data to maximize classification. Ensemble
feature selection, which is based on the same ideology of
ensemble supervised classifiers, is a useful approach to evaluate.
Ensemble feature selection includes the use of multiple feature
selection algorithms to select features and has been found to
have greater stability (i.e., less likelihood of features changing
if data are added or removed) and better generalizability
than using a single feature selection technique (Saeys et al.,
2008). In addition, the OMAT currently uses LDA, which was
selected due to superior performance during testing. However,
it is unknown whether LDA would still garner the highest
classification rates when using PC scores selected by an ensemble
feature selection approach, rather than the first 35 PC scores
and/or when using IMU data. Alternative machine learning
algorithms including binary logistic regression (BLR), decision
trees (DT), K-nearest neighbors (kNN), naïve Bayes (NB),
support vector machine with a linear kernel (SVM), and support
vector machine with a radial basis function kernel (RBF) may
strengthen classification accuracy relative to our existing LDA
approach. As a result, while investigating the utility of IMUs
to classify movements between novice and elite athletes, it
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remains important to concurrently evaluate the underlying
machine learning model architecture required to generate the
best possible classification.

Therefore, the purpose of this study was to assess the ability of
the previously developed framework to differentiate whole-body
movement patterns between novice and elite athletes performing
a non-sport-specfic movement screening battery when using data
extractable from an IMU (i.e., simulated IMU data; OMAT-
sIMU), which can be collected easily and inexpensively in the
field. Although data in the current study are simulated IMU data
based on optical motion capture, this study provides proof-of-
concept that IMU-based data can provide enough information
to successfully classify athletes’ movement patterns based on
skill level. A secondary purpose of this study was to refine the
architecture of the OMAT to optimize classification rates by
incorporating feature selection and multiple machine learning
algorithms (i.e., BLR, DT, KNN, LDA, NB, SVM, and RBF) for
both the OMAT-OPT and OMAT-sIMU.

MATERIALS AND METHODS

Participants
Kinematic data were collected on 542 athletes by Motus Global
(Rockville Centre, NY, United States). The sample included
athletes competing in 11 different sports (i.e., baseball, basketball,
soccer, golf, tennis, track and field, squash, cricket, lacrosse,
football, or volleyball) and ranging in skill level from recreational
to professional (e.g., NBA, MLB, NFL, PGA, FIFA). The athletes
were assigned to either the novice or elite group based on
previous research that found that those athletes accruing over
10,000 h of deliberate practice are experts in their sport (Helsen
et al., 1998; Baker et al., 2003). Therefore, athletes competing
at the inter-collegiate, semi-professional, and professional level
were considered elite athletes and those competing at less
competitive levels (e.g., high-school, youth, recreational, etc.)
were considered novices. Before data collection, each athlete read
and signed an informed consent form permitting Motus Global
to use the data for future research. The Health Sciences Research
Ethics Board at the University of Ottawa approved the secondary
use of the data for research purposes (file no: H-08-18-1085).

Protocol
Upon arrival to the Motus Global laboratory, each athlete read
and signed an informed consent form, provided information on
injury history for the previous 10 years, and had their height (with
shoes on) and weight recorded. The athlete was then outfitted
with 45 passive, reflective markers (B&L Engineering, Santa Ana,
CA) to capture whole-body motion (Mcpherson et al., 2016;
Ross et al., 2018). After being outfitted with the markers, the
athlete completed a static and dynamic calibration trial (Ross
et al., 2018). The static calibration trial was used to develop a
whole-body biomechanical model for each athlete.

After the calibration trials, each athlete completed a
movement battery consisting of 21 unique movements testing
athletes’ range of motion at each joint, stability, power and
balance. However, only seven movements were used in the

analysis due to their dynamic nature and ability to challenge
the athletes’ coordination, stability, and mobility across all
major joints. The seven tasks included: drop jump, bird-dog,
hop-down, lunge, step-down, L-hop, and T-balance (Figure 1).
Each movement was performed bilaterally on the left and
right side except for the drop jump which was performed
symmetrically, resulting in a total of 13 movement trials (Ross
et al., 2018). The athlete performed each task until they believed
they did it to the best of their ability with only the trial
that was deemed the best being retained for each athlete.
Full-body motion data were captured at 120 Hz using an 8-
camera Raptor-E (Motion Analysis Corporation, Santa Rosa, CA)
motion capture system.

Data Analysis
Pre-processing
Motion capture data were collected, labeled, and gap-filled using
Cortex (Motion Analysis Corporation, Santa Rosa, CA). Data
from anatomical landmarks and the tracking markers during the
calibration trial were used to develop a whole-body 3D kinematic
model in Visual3D v6 (C-Motion, Inc., Germantown, MD). The
model was then applied to all motion trials outputting joint
centers bilaterally for the wrist, elbow, shoulder, foot, ankle, knee,
and hip; centers of gravity for the trunk, head, and pelvis; marker
positional data for the left and right heel, T2, T8, sternum, and
the back, front and sides of the head for the OMAT-OPT model
and segment angular velocities and center of gravity (CoG) linear
velocities of the head, trunk, pelvis, upper arms, forearms, thighs,
shanks, and feet for the OMAT-sIMU model. Data were then
exported and analyzed using Python 3.0. All trials were trimmed
to specific start and end-point criteria (Ross et al., 2018), and
filtered using a dual-pass, low-pass Butterworth filter with a
cutoff of 15 Hz. Since elite athletes were significantly taller than
novices (F = 138.25, p < 0.001), all data for each movement were
normalized by each athlete’s individual height by dividing each
raw data point by their own height. Normalization ensured that
differences in PC scores between groups were not strictly due to
variation in size.

OMAT-OPT data
The 3D positional data of the joint centers and markers retained
in the OPT model for each participant were rotated so that the
local coordinate system of the trunk was aligned with the global
coordinate system. The data were then translated so that the
midpoint between the left and right hip of the first frame of data
was aligned with the global origin (i.e., midpoint of left and right
hip equaled 0,0,0 for x, y, and z coordinates, respectively). The
rotated 3D data were then time normalized to 500 frames using
Piecewise Cubic Hermite Interpolating Polynomial (PCHIP)
interpolation to control for differences in absolute movement
time for each participant. An [n × 39,000] matrix for each
movement was then constructed, where n was the number of
subjects and 39,000 was the time-normalized x, y, and z data
for each joint center, center of gravity, and retained markers
mentioned above (26 positions × 3 axes × 500 time points). Due
to marker occlusion and some athletes not performing all tasks, n
was dependent on the movement task (Table 1).

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 3 August 2020 | Volume 8 | Article 814

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00814 July 31, 2020 Time: 15:51 # 4

Ross et al. Discriminating Skill Using Sensor Data

FIGURE 1 | Schematic drawings of the seven unique movements performed by the athletes: drop-jump, hop-down, L-hop, bird-dog, lunge, step-down, and
T-balance.

TABLE 1 | OMAT-OPT: The number of athletes broken down by sex and skill level and the overall classification accuracy, hit rate, miss rate, false alarm (FA) rate, correct
rejection (CR) rate, D’ and C when the optimal number of PCs were retained for each movement task.

Male Female

Movement n Elite Novice Elite Novice # of PCs Accuracy (%) Hit Miss FA CR D’ C

Bird-Dog Left 380 242 83 12 43 10 82.63 0.91 0.09 0.34 0.66 1.75 −0.46

Bird-Dog Right 387 244 88 11 44 18 80.88 0.90 0.10 0.36 0.64 1.62 −0.46

Drop Jump 275 168 64 7 36 12 80.36 0.88 0.12 0.33 0.67 1.61 −0.37

Hop-Down Left 396 242 99 10 45 14 77.27 0.87 0.13 0.40 0.60 1.39 −0.45

Hop-Down Right 396 242 97 11 46 9 74.24 0.84 0.16 0.43 0.57 1.17 −0.40

L-Hop Left 266 159 67 6 34 15 83.83 0.89 0.11 0.25 0.75 1.91 −0.27

L-Hop Right 267 160 67 6 34 14 79.03 0.87 0.13 0.34 0.66 1.54 −0.35

Lunge Left 399 246 97 12 44 11 78.20 0.87 0.13 0.38 0.62 1.43 −0.40

Lunge Right 401 248 97 12 44 17 78.30 0.88 0.12 0.39 0.61 1.44 −0.44

Step-Down Left 399 246 98 12 43 17 75.94 0.84 0.16 0.40 0.60 1.28 −0.38

Step-Down Right 399 247 96 11 45 16 74.19 0.83 0.17 0.42 0.58 1.16 −0.37

T-Balance Left 392 244 92 11 45 13 77.30 0.89 0.11 0.45 0.55 1.37 −0.56

T-Balance Right 395 244 94 12 45 18 73.16 0.83 0.17 0.45 0.55 1.08 −0.41

Average 365.54 225.54 87.62 10.23 42.15 14.15 78.10 0.87 0.13 0.38 0.62 1.44 −0.41

STD 55.17 36.14 13.11 2.31 4.38 3.02 3.26 0.03 0.03 0.06 0.06 0.25 0.07

Bold values represent the average and standard deviation across all movement tasks.
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OMAT-sIMU data
In order to simulate IMU accelerometer data, we extracted the
segment CoG linear velocities of each segment retained in the
model and then differentiated the data once to calculate segment
linear accelerations, and to simulate the IMU gyroscope data, we
extracted the segment angular velocities of the same segments.
Once all data were extracted and calculated, the data were time
normalized to 500 frames as per the OMAT-OPT. In anticipation
of the future implementation of the method in clinic or industry,
the Euclidean norm (i.e., square root of the sum of squares) of the
x, y, and z axes of the linear segment accelerations and segment
angular velocities were taken to minimize the effect of sensor
brand or orientation (Clouthier et al., 2020) and to reduce the
dimensionality of the data (Bergmann et al., 2014).

A matrix for each movement was then constructed with
the Euclidean norm of the linear segment accelerations and
segment angular velocities for each segment and each participant.
Segment linear accelerations and angular velocities were chosen
to mimic outputs collected via IMUs. Each matrix was n (number
of participants; Table 2) × 13000 (Euclidean norm × 2 data
features × 13 body segments × 500 time points). Because
the units were different between the data features (i.e., linear
accelerations in m/s2, angular velocities in rad/s), the scale of
the data between the two data features varied widely, which
would lead to classification being driven primarily by the data
feature with the larger scale. Therefore, the data were feature
scaled to be between 0 and 1 for each movement using scikit-
learn Robust Scaler (Pedregosa et al., 2011), which removes
the median from each feature and scales the data according to
the 1st and 3rd quartile of the data, mitigating the effect of
outliers during scaling.

Feature Selection
For both OMAT-sIMU and OMAT-OPT, PCA was applied to
each matrix, resulting in a unique model per task per data type
(i.e., OMAT-sIMU, OMAT-OPT). Using the PC scores as features,
ensemble feature selection, consisting of six common feature
selection techniques (Pearson correlation, chi-squared, recursive
feature elimination, lasso, random forest, and LightGBM), was
used to rank the PCs based on contribution to the model
for each movement task and data type. Ensemble feature
selection has been found to improve the robustness of feature
ranking and feature subset selection as well as increase the
generalizability of the features selected (Saeys et al., 2008).
The scikit-learn library was used for the chi-squared, recursive
feature elimination, lasso, and random forest (Pedregosa et al.,
2011). The top 25 features per data type were retained for
each technique. The features were then sorted based on the
number of techniques where they ranked in the top 25 features.
PC scores that ranked in the top 25 for at least 50% of the
techniques (i.e., 3) were retained for the classifier (Table 1;
OMAT-OPT and 2; OMAT-sIMU). To minimize overfitting
of the models, the maximum number of features retained
was the square root of the number of samples for each
movement task (Hua et al., 2005) (e.g., lunge right had 401
samples, therefore a maximum of 20 PC scores could be
retained for that task).

Classification
To refine the architecture of the OMAT, seven different kinds of
classifiers were used: BLR, DT, kNN, LDA, NB, SVM, and RBF to
classify athletes based on skill level (elite vs. novice). All classifiers
were employed using the scikit-learn library (Pedregosa et al.,
2011). For all classifiers, PC scores retained from feature selection
were used as predictors and leave-one-out cross-validation was
used for validation. Each model was rerun to use between 1
and the total number of PCs retained to determine the optimal
number of PCs to retain for each classifier for each movement
task. The model with the highest classification rate was deemed
the optimal model. Due to a lack of a testing dataset, leave-one-
out validation was used where one of the athletes’ data were taken
out (test athlete) and the PCA, feature selection, and classifier
models were computed on the remaining athletes (training
athletes). After computing the new PCA, feature selection, and
classifier models, the test athlete was projected into the PCA,
feature selection, and classifier model spaces computed on the
training athletes. The procedure was repeated until all athletes
had been left out and projected back into the PCA, feature
selection, and classifier models (Troje, 2002; Ross et al., 2018).

Signal Detection Theory
For the best classifier for each data type, to test the separation
between the signal and the noise and to determine the strategy
used by the frameworks, a signal detection theory (SDT) model
was used for each optimal model retained. In SDT, there are four
types of classification: (1) Hit, (2) Miss, (3) False alarm (FA),
and (4) Correct rejection (CR) (Abdi, 2007). For this study, a
hit was when an elite athlete was correctly classified as an elite
(equivalent to sensitivity), a miss was when an elite athlete was
misclassified as a novice, a FA was when a novice athlete was
misclassified as an elite, and a CR was when a novice athlete
was correctly classified as a novice (equivalent to specificity).
Parameter D’ is calculated subtracting the probability (z-score)
of a false alarm from the probability (z-score) of a hit and tells
the distance between the two peaks (e.g., elite and novice) in
standard deviations; the higher the score the more separable the
two groups are with a score of 0 representing chance (Abdi, 2007).
Parameter C is calculated by taking the average probability (z-
score) of a hit and false alarm and represents the strategy used by
the framework. A positive value represents the framework being
conservative (e.g., more likely to classify an athlete as novice),
where as a negative value represents the framework being liberal
(e.g., more likely to classify an athlete as elite) (Abdi, 2007). The
closer the value is to 0, the closer the framework is to being the
ideal observer (e.g., not more likely to classify as either elite or
novice) (Abdi, 2007).

RESULTS

OMAT-OPT
For all tasks the linear classifiers (i.e., BLR, LDA, and SVM)
outperformed DT, kNN, and RBF, except RBF performed as well
as the linear classifiers for the lunge left and step-down left
(Figure 2). For the drop-jump, hop-down left, L-hop left, and
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TABLE 2 | OMAT-sIMU: The number of athletes broken down by sex and skill level and overall classification accuracy, hit rate, miss rate, false alarm rate, correct
rejection rate, D’ and C when the optimal number of PCs were retained for each movement task.

Male Female

Movement n Elite Novice Elite Novice # of PCs Accuracy (%) Hit Miss FA CR D’ C

Bird-Dog Left 380 242 83 12 43 6 81.22 0.92 0.08 0.45 0.55 1.56 −0.66

Bird-Dog Right 387 244 88 11 44 7 81.98 0.90 0.10 0.49 0.51 1.34 −0.64

Drop Jump 275 168 64 7 36 14 84.67 0.89 0.11 0.27 0.73 1.81 −0.29

Hop-Down Left 396 242 99 10 45 10 81.75 0.88 0.13 0.36 0.64 1.51 −0.40

Hop-Down Right 396 242 97 11 46 13 79.70 0.89 0.11 0.40 0.60 1.49 −0.50

L-Hop Left 266 159 67 6 34 12 83.15 0.87 0.13 0.29 0.71 1.70 −0.29

L-Hop Right 267 160 67 6 34 15 82.71 0.90 0.10 0.33 0.67 1.71 −0.41

Lunge Left 399 246 97 12 44 18 80.70 0.93 0.07 0.50 0.50 1.47 −0.74

Lunge Right 401 248 97 12 44 18 81.25 0.91 0.09 0.38 0.62 1.62 −0.51

Step-Down Left 399 246 98 12 43 12 75.19 0.87 0.13 0.52 0.48 1.07 −0.60

Step-Down Right 399 247 96 11 45 6 76.37 0.88 0.12 0.50 0.50 1.17 −0.60

T-Balance Left 392 244 92 11 45 14 76.47 0.90 0.10 0.55 0.45 1.15 −0.71

T-Balance Right 395 244 94 12 45 10 75.13 0.87 0.13 0.50 0.50 1.14 −0.58

Average 365.54 225.54 87.62 10.23 42.15 11.92 80.02 0.89 0.11 0.43 0.57 1.44 −0.53

STD 55.17 36.14 13.11 2.31 4.38 4.03 3.19 0.02 0.02 0.10 0.10 0.25 0.15

Bold values represent the average and standard deviation across all movement tasks.

FIGURE 2 | OPT: The percent of correctly classified athletes as either elite or novice for when 1 to the total number of PCs retained were retained for binary logistic
regression (BLR), decision tree (DT), linear discriminant analysis (LDA), k-nearest neighbors (kNN), naïve Bayes (NB), support vector machine with a linear kernel
(SVM), and support vector machine with a radial basis function kernel (RBF) with leave-one-out validation for OPT. See number of PCs retained in Table 1.

lunge left, NB performed as well as the linear classifiers, however,
for all other tasks, they performed in between the linear classifiers
and DT, kNN, and RBF. Since there were minimal differences
(<0.5%) on the average classification rates for all tasks between
BLR, LDA, and SVM, and to be able to compare the current
results to previous results (Ross et al., 2018), LDA was selected for
further analysis. When using LDA, the optimal number of PCs

retained ranged from 9 (hop-down right) to 18 (bird-dog left,
T-balance right) with an average of 14.15 ± 3.02 PCs retained
(Table 1). The OMAT-OPT accurately classified between 73.1%
(T-balance right) to 83.8% (L-hop left) of athletes as either elite
or novice (Table 1). The average classification rate across all tasks
was 78.1% ± 3.26%. For SDT, on average, OMAT-OPT had a hit,
miss, FA, and CR rate of 0.87 ± 0.03, 0.13 ± 0.03, 0.38 ± 0.06, and
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FIGURE 3 | sIMU: The percent of correctly classified athletes as either elite or novice for when 1 to the total number of PCs retained were retained for binary logistic
regression (BLR), decision tree (DT), linear discriminant analysis (LDA), k-nearest neighbors (kNN), naïve Bayes (NB), support vector machine with a linear kernel
(SVM), and support vector machine with a radial basis function kernel (RBF) with leave-one-out validation for sIMU. See number of PCs retained in Table 2.

0.62 ± 0.06, respectively (Table 1). The average D’ was 1.44 ± 0.25
and the average C was −0.41 ± 0.07 (Table 1).

OMAT-sIMU
Similar to OMAT-OPT, for all tasks the linear classifiers (i.e., BLR,
LDA, and SVM) outperformed all the other classifiers (i.e., DT,
kNN, NB, and RBF), except KNN performed as well as the linear
classifiers in the bird-dog left and right, hop-down left, and step-
down left (Figure 3). Since there were again minimal differences
between the average classification rates for all movement tasks
between BLR, LDA, and SVM, LDA was selected for further
analysis. When using segment linear accelerations and angular
velocities, data available from an IMU system, the optimal
number of PCs retained ranged from 6 (bird-dog left, step-down
right) to 18 (lunge left and right) with an average of 11.92 ± 4.03
PCs retained (Table 2). The OMAT-sIMU accurately classified
between 75.1% (T-balance right) to 84.7% (drop-jump) of athletes
as either elite or novice (Table 2). The average classification rate
across all tasks was 80.0% ± 3.19%. For SDT, on average, OMAT-
sIMU had a hit, miss, FA, and CR rate of 0.89 ± 0.02, 0.11 ± 0.02,
0.43 ± 0.1, and 0.57 ± 0.1, respectively (Table 2). The average D’
was 1.44 ± 0.25 and the average C was −0.53 ± 0.15 (Table 2).

When comparing the OMAT-OPT and OMAT-sIMU
classification rates on average, OMAT-sIMU had higher
classification rates than OMAT-OPT by 1.92%. OMAT-sIMU
outperformed OMAT-OPT in the bird-dog right (1.1%), drop-
jump (4.31%), hop-down left (4.48%) and right (5.46%), L-hop
right (3.68%), lunge left (2.50%) and right (2.95%), step-down
right (2.18%), and T-balance right (1.97%), whereas OMAT-OPT

had a higher classification rate than OMAT-sIMU for bird-dog
left (1.41%) (Figure 4). The two models performed relatively the
same (< 1% difference) for the L-hop left, step-down left, and
T-balance left.

DISCUSSION

The primary purpose of this study was to assess the ability
of the OMAT to differentiate whole-body movement patterns
between novice and elite athletes performing a non-sport-specific
movement screening battery using data able to be collected via
an IMU. The secondary purpose of this study was to refine the
architecture of the OMAT by incorporating feature selection and
testing multiple classifiers. For both the OMAT-OPT and OMAT-
sIMU, BLR, LDA, and SVM, on average, outperformed all other
classifiers tested. These findings suggest that the data can be
separated using a linear plane; and therefore, the use of more
complicated, computationally expensive non-linear classifiers is
not only not required, but can be detrimental. There were
minimal differences between BLR, LDA, and SVM, so therefore
in order to easily compare the current results with previous work,
LDA was chosen as the classifier to report the results.

OMAT-OPT with feature selection outperformed the
previously published results on 7 of the 13 tasks (i.e., bird-dog
left and right, hop-down left, L-hop left, lunge left and right,
and T-balance left) and OMAT-sIMU was able to outperform
the previously published results of the OMAT-OPT in all tasks
except the step-down left (Ross et al., 2018). This in part is due
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FIGURE 4 | The percent of correctly classified athletes as either elite or novice for when 1 to the total number of PCs retained were retained for the linear
discriminant analysis with leave-one-out validation when using OPT and sIMU data.

to the introduction of feature selection into the methodology,
reinforcing the value of this approach for future work aiming
to objectively classify movement patterns. Compared to the
previous study, where PCs 1–35 were retained (Ross et al.,
2018), using feature selection, we are now able to have greater
classification rates using fewer PCs, which requires fewer
computational resources and decreases the risk of overfitting
for 7 of the 13 tasks. OMAT-sIMU outperformed or performed
equally to OMAT-OPT in all movements except the bird-dog left.
These findings suggest that the OMAT-sIMU approach better
captures movement pattern differences between novice and elite
athletes compared to OMAT-OPT data. This is thought to be
due to the different types of data analyzed for OMAT-OPT and
OMAT-sIMU. OMAT-OPT uses joint center trajectories, which
due to the constrained nature of the tasks, may be capturing
more gross motor patterns that are unrelated to skill. In contrast,
the OMAT-sIMU uses linear acceleration and angular velocity
that are more likely to capture the smoothness of the movement,
which may be a better indicator of skill level than gross motor
patterns. However, for both the OMAT-OPT and OMAT-sIMU,
when looking at trends in individual athlete data across tasks, if
there were differences in how the athlete was classified between
tasks, athletes tended to be classified the same on all tasks that
were targeting the same skill set (e.g., trunk stability, jumping,
balance) and if there were discrepancies on how the left/right
tasks were classified, the dominant side was usually classified as
elite. This suggests that relevant differences between elite and
novice-like movement patterns can be detected using both data
types. A combined approach of using both sIMU and OPT data
may provide even better classification rates than using sIMU or
OPT alone due to the two types of data potentially capturing
different movement features.

Previously, in order to assess how well the framework was
classifying elite and novice athletes on a group basis, the percent
of correctly classified elites and novices were calculated (Ross
et al., 2018). SDT was chosen for this current study because it
provides classification rates for each group (e.g., hit and correct
rejection) as well as the additional information of response
bias. For all tasks, both OMAT-OPT and OMAT-sIMU had
higher rates of correctly classifying elite athletes (depicted by
the increased hit and decreased miss rates) compared to novice
athletes (depicted by the decreased CR and increased FA rates).
For all tasks, D’ was greater than 1.08 and 1.07 for OMAT-OPT
and OMAT-sIMU, respectively, suggesting that elite and novice
athletes are separable when using both OMAT-OPT and OMAT-
sIMU. However, on average, the data are more robustly classified
when using OMAT-sIMU data compared to OMAT-OPT data.
Lastly, for all tasks, for both OMAT-OPT and OMAT-sIMU, the
framework was more likely to classify the athlete as elite than
the ideal observer. A potential reason for this could be that
some of the novice athletes were attending an elite youth sports
academy, which boasts a high percentage of students continuing
to compete at the collegiate and professional levels. Therefore,
some of the novice athletes were on track to become elite athletes
at the time of testing. On average, OMAT-OPT acted more
closely to the ideal observer than OMAT-sIMU, based on our
definition of a hit and correct rejection; this is represented by the
smaller C value.

Although on average the models using the OMAT-sIMU data
as the inputs, had higher classification rates than OMAT-OPT,
a limitation of the OMAT-sIMU data is that it is more difficult
to interpret differences between elites and novices compared to
OMAT-OPT, making it harder to train individuals to improve
their movement patterns. With only linear accelerations and
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angular velocities, and no video data, it is hard to discern exactly
how the athlete is moving within space to obtain a score more
representative of an elite or novice athlete. IMUs may offer an
inexpensive measurement device to objectively screen movement
abilities, where those individuals identified with weaknesses can
then be tested more in depth with optical motion capture to
inform targeted corrective exercise approaches.

A limitation of this study is the use of camera-based motion
capture to calculate the linear accelerations and angular velocities
for each segment and not raw data collected from IMUs. This
technique has been used in previous research when the desired
database does not contain IMU data (Young, 2010). Although
linear accelerations and angular velocities would change when
using IMUs, due to the inability to place IMUs at the CoG of
segments, previous research has found strong agreement between
IMU outputs and optical motion capture outputs (Mcginnis
et al., 2014; Bolink et al., 2018). Even though the data were
not raw data from an IMU, we purposefully took the Euclidean
norm of the data to increase ecological validity and to remove
the effect of different local coordinate system orientations of
the linear acceleration and angular velocities within the global
coordinate system. In addition, we differentiated positional data,
which introduces noise to the data that would not be present
when collecting data via IMU and were still able to get high
classification rates. We are confident that these classification
results are representative and may be lower than that of what
would be achieved using sensors themselves, which we are in
the process of testing. A second limitation of the study is
the assumption athletes at the collegiate and professional level
completed 10,000 h of deliberate practice. However, athletes
competing at the professional and inter-collegiate levels would
be in the higher echelon of athletes in their sport even if not
completing 10,000 h. Nonetheless, this paper provides proof-of-
concept that the OMAT is able to accurately classify athletes as
novice or elite with consistent or improved accuracy when using
data available from IMUs, relative to whole-body marker data.
Future research should investigate the ability to classify athletes
using OMAT using segment linear acceleration and angular
velocity data collected using IMUs, fine-tuning algorithms to
increase classification rates, and exploring other classifiers such
as sport played, injury risk, and sex.

CONCLUSION

In conclusion, the introduction of feature selection increased
the classification rates compared to using the first 35 PC scores
and BLR, LDA, and SVM produced the highest classification

rates although there were minimal differences (<0.5%) between
the three. Segment linear acceleration and angular velocity
data readily available from an IMU could differentiate athletes’
movement performance based on skill level when using a novel
machine learning approach (Ross et al., 2018) with a level
of accuracy consistent with the use of whole-body motion
capture data. These data suggest that IMUs, in conjunction
with OMAT, may provide an inexpensive and timely way to
objectively characterize and classify movement performance in
the field, providing a feasible method for coaches and clinicians
to objectively measure performance.
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