
ORIGINAL RESEARCH
published: 04 April 2018

doi: 10.3389/fnins.2018.00208

Frontiers in Neuroscience | www.frontiersin.org 1 April 2018 | Volume 12 | Article 208

Edited by:

Christoph Guger,

Guger Technologies, Austria

Reviewed by:

An H. Do,

University of California, Irvine,

United States

David Thomas Bundy,

Kansas University of Medical Center

Research Institute, United States

*Correspondence:

Gaurav Sharma

sharmag@battelle.org

Specialty section:

This article was submitted to

Neural Technology,

a section of the journal

Frontiers in Neuroscience

Received: 25 September 2017

Accepted: 15 March 2018

Published: 04 April 2018

Citation:

Colachis SC IV, Bockbrader MA,

Zhang M, Friedenberg DA,

Annetta NV, Schwemmer MA,

Skomrock ND, Mysiw WJ, Rezai AR,

Bresler HS and Sharma G (2018)

Dexterous Control of Seven Functional

Hand Movements Using

Cortically-Controlled Transcutaneous

Muscle Stimulation in a Person With

Tetraplegia. Front. Neurosci. 12:208.

doi: 10.3389/fnins.2018.00208

Dexterous Control of Seven
Functional Hand Movements Using
Cortically-Controlled Transcutaneous
Muscle Stimulation in a Person With
Tetraplegia

Samuel C. Colachis IV 1,2,3, Marcie A. Bockbrader 2,3,4, Mingming Zhang 1,

David A. Friedenberg 5, Nicholas V. Annetta 1, Michael A. Schwemmer 5,

Nicholas D. Skomrock 5, Walter J. Mysiw 2,4, Ali R. Rezai 2, Herbert S. Bresler 1 and

Gaurav Sharma 1*

1Medical Devices and Neuromodulation Group, Battelle Memorial Institute, Columbus, OH, United States, 2Neurological

Institute, The Ohio State University, Columbus, OH, United States, 3Department of Biomedical Engineering, The Ohio State

University, Columbus, OH, United States, 4Department of Physical Medicine and Rehabilitation, The Ohio State University,

Columbus, OH, United States, 5 Advanced Analytics Group, Battelle Memorial Institute, Columbus, OH, United States

Individuals with tetraplegia identify restoration of hand function as a critical, unmet

need to regain their independence and improve quality of life. Brain-Computer Interface

(BCI)-controlled Functional Electrical Stimulation (FES) technology addresses this need

by reconnecting the brain with paralyzed limbs to restore function. In this study, we

quantified performance of an intuitive, cortically-controlled, transcutaneous FES system

on standardized object manipulation tasks from the Grasp and Release Test (GRT).

We found that a tetraplegic individual could use the system to control up to seven

functional hand movements, each with >95% individual accuracy. He was able to

select one movement from the possible seven movements available to him and use

it to appropriately manipulate all GRT objects in real-time using naturalistic grasps.

With the use of the system, the participant not only improved his GRT performance

over his baseline, demonstrating an increase in number of transfers for all objects

except the Block, but also significantly improved transfer times for the heaviest objects

(videocassette (VHS), Can). Analysis of underlying motor cortex neural representations

associated with the hand grasp states revealed an overlap or non-separability in neural

activation patterns for similarly shaped objects that affected BCI-FES performance.

These results suggest that motor cortex neural representations for functional grips are

likely more related to hand shape and force required to hold objects, rather than to

the objects themselves. These results, demonstrating multiple, naturalistic functional

hand movements with the BCI-FES, constitute a further step toward translating BCI-FES

technologies from research devices to clinical neuroprosthetics.

Keywords: brain-computer interface, functional electrical stimulation, spinal cord injury, neuro-orthotics,
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INTRODUCTION

Approximately 130,000 people suffer a Spinal Cord Injury (SCI)
worldwide every year. Nearly half of these SCI cases are at the
C6 level or above, resulting in significant paralysis, impaired
quality of life, and need for self-care assistance (ICCP, 2017).
Moreover, patients with C6 or higher cervical level of SCI lack
the critical ability to grasp objects that prevents them from
living independently (Nas et al., 2015). Indeed, several studies
on SCI patient priorities have consistently reported that upper
limb strength and dexterity restoration is the most desirable
function to regain (Anderson, 2004; Snoek et al., 2004; Simpson
et al., 2012; Collinger et al., 2013; Blabe et al., 2015). In
a survey of individuals with tetraplegia following SCI, more
than 75% indicated that Functional Electrical Stimulation (FES)
neuroprosthetics for hand grasp would be “very helpful” to
restore function that would positively impact quality of life
(Collinger et al., 2013). However, the FES systems that have
been demonstrated to date are either limited to providing only
a few hand functions or lack the ability to enable dynamic
motor control for performing complex functional tasks that
require synergistic integration of paralyzed and non-paralyzed
muscles.

Advances in Brain Computer Interface (BCI)-controlled FES
technology offers a potential new way to reconnect the brain
directly to the paralyzed hand/arm, restoring functional hand
use. FES devices with control mechanisms other than BCI (e.g.,
myoelectric, sip-and-puff, eye trackers) have been proposed, but
are less desirable due to increased cognitive load and non-
intuitive mapping between thought and action (Ajiboye et al.,
2017). Thus, BCI approaches are preferred for their ability to
provide a more intuitive and “high-fidelity” control signal that
can allow for more complex and clinically-relevant functional
limb movements (Chadwick et al., 2011; Ethier and Miller,
2015). Indeed, in recent surveys a majority of paralyzed patients
showed interest in using a BCI technology that can help restore
lost hand/arm function (Collinger et al., 2013; Blabe et al.,
2015).

Several groups have investigated BCI-FES neuroprosthetics
for restoring hand grasp function in paralyzed humans
with varied success. Some groups have coupled an
electroencephalogram (EEG)-BCI with FES systems and
showed that the paralyzed participants were able to use the
systems to enable up to two functional hand movements by
imagining hand/arm movement (Müller-Putz et al., 2005) or
by imagining a non-intuitive motion such as foot (Pfurtscheller
et al., 2003) or cursor movement (Lauer et al., 1999). However,
the low dimensional control signals of the EEG as well as
non-intuitive mapping of thoughts-to-action makes it unlikely
that these BCIs could provide naturalistic continuous control
for complex hand functions. An alternative approach, utilizing
electrocorticography (ECoG)-based signals, can provide better
spatial resolution compared to EEG and thus a potential
neuroprosthetic control mechanism based on high quality
neural signals. Indeed, a paralyzed participant using an ECoG-
BCI controlled transcutaneous FES system was successfully
able to perform three movements (hand open, palmer, and

lateral grasps) (Márquez-Chin et al., 2009). However, this
demonstration was done in an offline mode where ECoG
signals recorded from an able-bodied participant were used to
control FES-evoked movements of the paralyzed participant.
Therefore, the applicability of ECoG-BCI for real-time control
of multiple hand movements via FES orthotics remains to
be demonstrated. To overcome the limitations of EEG/ECoG
control, researchers have implanted intracortical microelectrode
arrays (MEAs) that can allow for higher information transfer rate
(Baranauskas, 2014) and a more precise detection of movements
for decoding and controlling hand/arm FES systems. In a prior
study, we showed proof-of-concept that a person with C5-level
paralysis could use a MEA-BCI to control a transcutaneous
FES system to enable six independent finger, wrist, and hand
movements (Bouton et al., 2016) We also demonstrated that
the system could be used to perform a functional grasp-pour-
and-stir task, providing the user with simultaneous, differential
control of Hand Open, palmar grasp, and lateral key grip.
A similar study showed proof-of-concept that a person with
C4-level paralysis could use a MEA-BCI to control a hybrid
exoskeleton and implanted FES system to evoke upper limb
reaching, Hand Open, and lateral key grip (Ajiboye et al.,
2017). The participant in this study used these movements to
perform functional feeding tasks. However, no prior study has
provided careful quantification and characterization of MEA-
BCI enabled FES upper limb motor control to allow for study
reproducibility and comparison with other neuroprosthetic
devices.

In this study, we show a critical step in the clinic-to-home
translational path of BCI-FES neuroprosthetics by demonstrating
that a patient with tetraplegia can achieve volitional control of
seven hand functions using an easy to train, cortically-controlled,
non-invasive, FES orthotic. We used a MEA, implanted in the
motor cortex of a 26-year old study participant with a C5-
level SCI, to record neural signals. We then used machine
learning algorithms to translate the neural activity to intended
movement commands. These commands were then used to
control the transcutaneous FES orthotic wrapped on the
participant’s forearm which stimulated the appropriate muscles
to evoke the intended movement (Figure 1). With the system,
the participant was able to use a trained decoder to volitionally
select up to seven distinct functional hand states and use them
to manipulate multiple objects of varying size, shape, and weight.
The participant’s functional gains were assessed using the Grasp
and Release Test (GRT; Stroh-Wuolle et al., 1994), a standardized
test developed for evaluating neuroprosthetic performance by
patients with SCI. We found more efficient grasp and transfer
of objects using the BCI-FES compared to the participant’s
baseline. Our results also revealed important insights into
the neural representation of different hand movements. In
particular, we observed that a robust mapping of multiple hand
movements can form under the implanted MEA in a very
small area of the motor cortex. We found overlap between
representations for objects of similar size and weight and we
report a strong correlation between the discriminability in
the neural representations of hand movements and decoder
performance.
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FIGURE 1 | The BCI-FES system and experimental setup. The participant sits on wheelchair in front of the monitor which shows him the cued hand movement.

The participant is required to grasp and transfer the object to the raised platform. (1) Neural activity is recorded from a 96-channel MEA implanted in the motor cortex;

(2) A wavelet decomposition is performed on the raw data to extract neural information related to motor intent; (3) Wavelet scales 3 through 6 are used to generate

Mean Wavelet Power (MWP)-based neural features; (4) Machine-learning algorithms decode the MWP activity for each attempted hand movement; (5) Hand

movement is evoked using targeted transcutaneous FES delivered through cuffs wrapped around the forearm.

MATERIALS AND METHODS

Study Design and Study Participant
The objective of this study was to characterize the level of
upper limb motor control provided by a cortically controlled FES
system in a patient with SCI. A secondary aim was to investigate
the neural representations underlying grasps used for different
objects. The study was approved by the US Food and Drug
Administration (FDA) and The Ohio State University Wexner
Medical Center Institution Review Board (Columbus, Ohio)
and is registered on the ClinicalTrials.gov website (Identifier
NCT01997125). The participant referenced in this work provided
permission for photographs and videos and completed a written
informed consent process prior to commencement of the study.
The participant is a 26-year-old male with stable, non-spastic
tetraparesis from a cervical SCI that he suffered at the age
of 19. His use of the BCI-FES system was first reported in
Bouton et al. (2016). The participant’s International Standards
for Neurological Classification of SCI neurologic level is C5 AIS
A (motor complete) with zone of partial preservation to C6.
He has full active range of motion in bilateral shoulders, full
bilateral elbow flexion, a twitch of wrist extension (insufficient
for tenodesis grip), and no motor function below the level of

C6. His sensory level is C5 on the right (due to altered but
present light touch on his thumb) and C6 on the left. He has
intact proprioception in the right upper limb at the shoulder
for internal rotation through external rotation, at the elbow for
flexion through extension, at the forearm for pronation through
supination, and at the wrist for flexion through extension.
Proprioception for right digit flexion through extension at the
metacarpal-phalangeal joints is impaired for all digits.

System Architecture
The system is comprised of three main components: (i) A Utah
Microelectrode Array (MEA) implanted in the hand region
(identified using preoperative fMRI activation maps) of the
left-brain hemisphere motor cortex and a Neuroport neural
data acquisition system (Blackrock Microsystem Inc., USA).
Figure 2A shows the implant location in the motor cortex which
was confirmed by co-registration of postoperative computed
tomography (CT) imaging with preoperative fMRI. Full details of
the fMRI and surgical procedures can be found in Bouton et al.
(2016), (ii) a computer running data processing and machine
learning algorithm to decode the user’s intended movement
from the neural activity, and (iii) A custom high-definition
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FIGURE 2 | MEA location and signal quality over time. (A) Red regions are

brain areas active during imagined hand movements. The implanted MEA

location from post-op CT is shown in green. (B) MWP data for all channels

were collected over a 108 s period at the beginning of periodic test sessions

where the participant was instructed to imagine cued hand movements. MWP

features were calculated to approximate the power in the multiunit frequency

bands a plotted as a function of post-implant days. A 33% decline in the signal

quality was observed over time from the MWP data.

non-invasive FES system with 130 electrodes used to stimulate
the hand/arm muscles to evoke desired hand movements.
The stimulator was driven by custom MATLAB (ver 2014b,
MathWorks Inc., USA) based code running on a PC.

Neural Data Acquisition and Signal
Processing
The 96 MEA channels recorded the electrical activity in the
cortex at a sampling rate of 30 kHz. The raw voltages were first
filtered using a 0.3Hz first-order high-pass filter and a 7.5 kHz
third-order low-pass Butterworth analog hardware filter.Wavelet
decomposition using the “db4” wavelet and 11 wavelets scales
was applied to the neural data in 100ms bins (Mallat, 1998).
Wavelet scales 3–6 were used, corresponding to the multiunit
activity (MUA) (234–3,750Hz). The mean coefficients of scales
3–6 were standardized per channel, per scale, by subtracting the
mean and dividing by the standard deviation of those scales and
channels, respectively. The four scales were then combined by
averaging the standardized coefficients for each channel, resulting
in 96 values, one for each channel of the MEA, for every 100ms
of data. The resulting values were subsequently used as features,
termed mean wavelet power (MWP), for input into the real-time
decoders. Stimulation artifact in the data was removed by first

applying a threshold at 500 µV that occurred simultaneously on
at least 4 of 12 randomly selected channels. A 3.5ms window of
data encompassing each detected stimulation artifact was then
removed and adjacent data segments were concatenated. To look
at MWP signal quality over the study period, data for all channels
were collected over a 108 s period at the beginning of periodic
test sessions where the participant was instructed to imagine cued
hand movements. MWP features were calculated to approximate
the power in the multiunit frequency bands. We observed a 33%
decline in the signal quality over time (Figure 2B).

Threshold crossings (TCs) were calculated by filtering the raw
voltage recordings through a 250Hz high pass filter, using the
filtered data to determine the root-mean-square (RMS) value of
the noise (defined by Blackrock Microsystems, Inc.), and then
applying a threshold of −4.5 times the RMS of the noise to the
voltage recording. The data was not spike sorted. Approximately
86 and 27 TC spikes could be detected on post-implant days
87 and 1,144, respectively, during the same 108 s test period as
described above. Correlation between average MWP and TCs
was calculated during the first 55 s of a representative training
block. Average MWP was calculated by averaging MWP across
channels. Global TCs were calculated by binning TCs for all
channels in 100ms bins.

Neural Decoding
A non-linear Support Vector Machine (SVM) decoder (Humber
et al., 2010) was used to translate the MWP activity to intended
hand movements. The decoder was trained in blocks consisting
of multiple repetitions of all desired movements. Output classes
were built for each movement and had scores that ranged from
−1 to 1. Appropriate stimulation became activated when an
output score of a given movement exceeded a threshold of
zero. If multiple movement decoder output scores surpassed the
threshold, the system enabled stimulation for the movement with
the highest score. Individual movement accuracy was calculated
from final training blocks as the percentage of 100ms time
points in which the decoder output for the given movement
correctly matched the associated cue. Response probability for
each cue (represented as a confusion matrix) was calculated
from final training blocks as the percentage of activation for
a single movement decoder class out of all active movement
decoder classes within a cue. Individual movement accuracy
scores and response probabilities were averaged across sessions
of the same type. The final blocks of each training session were
used for training the decoders. This was done to minimize the
potential for muscle fatigue associated with repetitive FES of the
same movements over a short period of time, which would have
been required if we performed extra training blocks to measure
decoder accuracy.

Stimulation
The FES system consists of a multi-channel stimulator and a
flexible cuff with up to 130 electrodes that is wrapped around
the participant’s forearm. During use, hydrogel disks (Axelgaard,
Fallbrook, CA) were placed between the electrodes and skin to act
as a conduction enhancer. The electrodes are 12mm in diameter
and were spaced at 22mm intervals along the longitudinal axis
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of the forearm and 15mm intervals in the transverse direction.
Current-controlled, monophasic rectangular pulses (50Hz pulse
rate and 500 µs pulse width) were used to provide electrical
stimulation. Pulse amplitudes ranged from 0 to 20mA and were
updated every 100ms. Stimulator calibrations were performed
for each movement using an anatomy-based trial-and-error
method to determine appropriate electrode spatial patterns.

Experimental Design
The study sessions with the participant were typically conducted
two or three times per week, lasting 3–4 h. Data used for this
study were collected from eight sessions as follows: baseline
GRT data on post-implant days 702 and 703; BCI-FES data on
post-implant days 855, 857, 869, and 897; and imagined GRT
data on post-implant days 1,042 and 1,043. The participant had
prior experience using the BCI-FES system for other studies
as reported in Bouton et al. (2016), Sharma et al. (2016), and
Friedenberg et al. (2017). Sessions began with stimulation pattern
calibrations for each hand movement. Stimulation patterns and
intensity levels were saved in a database. In subsequent sessions
with the participant, the previous calibrations were recalled and
refined, if necessary. Calibrated movements included: (i) Index
finger and thumb lateral key pinch for gripping a Peg, (ii)
middle finger, index finger, and thumb tripod grip for gripping a
Block, (iii) middle finger and thumb lateral key grip for gripping
a Paperweight, (iv) ring finger and middle finger cylindrical
power grip for gripping a depressible Fork, (v) tip-to-tip grip
for gripping a videocassette (VHS), (vi) palmar power grip for
gripping a Can (customized wooden cylinder), and (vii) finger
and thumb extension (Hand Open) to open the hand. All objects
used in this study conformed to specifications of the Grasp and
Release Test (Stroh-Wuolle et al., 1994).

Neural Decoder Training
Training data for the decoder was obtained by prompting the
participant to imagine performing specific hand movements
using an animated virtual hand displayed on a computer
monitor. During the cue duration, FES feedback allowed the
participant to grasp the cued object in the starting area and
transfer it to an elevated platform using the system. In the case
of the Fork grip, the participant gripped the cylindrical handle of
the Fork and applied downward pressure to displace a calibrated
spring. Additionally, during cued Hand Open, the participant
opened his hand by extending his digits. Each movement cue
had a random duration between 3 and 4 s and was bounded by
rest cues with random durations between 4 and 5 s. The ordering
of the movement cues was randomly shuffled to eliminate
cue anticipation. Each training block included 3 cues for each
movement.

Grasp and Release Test (GRT) With FES
Functional grasps were assessed using the GRT (Stroh-Wuolle
et al., 1994). The participant was presented with random,
auditory cues for the different objects and was required to grasp
the object in the starting area, lift and transfer the object to an
elevated platform, and release the object in the target region as
many times as possible in a 30 s test period. The participant was

given a rest period of around 30 s between each 30 s test period.
Dropping the object (or insufficient cylinder displacement for
the Fork) was counted as a failure. The number of successful
transfers, failed transfers, and incomplete transfers along with
the associated transfer times for each object were recorded. For
the Fork, successful “transfers” were counted if the spring-loaded
piston was sufficiently displaced, indicated by a line on the piston.
Two decoder classes were required for the Can transfer. The
participant had to perform a Hand Open to position his hand in
an optimal location around the Can and then initiate the Can
grasp. During each cue, all movement decoder classes (seven
possible) had equal potential to cross threshold and evoke FES
stimulation. The GRT was performed 3 times per session for
each object, with mean successful, failed and incomplete transfers
reported per object and session. GRT testing was conducted over
4 sessions (for a total of 12 trials) for Peg,Block, Paperweight, Fork,
and VHS. Can data was collected over 3 sessions (for a total of 9
trials). Test sessions were performed on post-implantation days
855, 857, 869, and 897.

GRT Without FES
To visualize the neural representation of hand movements in
the motor cortex, MWP activity was examined during cued
movements without any FES or movement feedback. Both
movement and stimulation can create artifacts that can alter the
MWP despite efforts to filter them. Thus, FES was turned off
during the test blocks to remove the potential confounding effects
of artifacts from the analysis. Three independent blocks of trials
per object were conducted using decoders built as described in
the Neural Decoder Training section in Methods, except that
feedback was provided using only the animated hand and not
FES. The subject was instructed to place his hand on the cued
object and then imagine performing the grasp. This dataset
was collected over 2 consecutive sessions (days 1,042, 1,043
post-implantation). The MWP spatial patterns were compared
using a Principal Component Analysis (PCA) applied to the
MWP on all 96 channels when the correct decoder outputs were
above threshold and within the correct cue durations. Principal
components 1 and 2 were used to determine clustering. Each
cluster was fit with a Gaussian mixture distribution model for
visualization purposes. For each movement, MWP was averaged
across all blocks when the associated decoder was above threshold
and within the correct cue duration. The average MWP at each
channel was spatially mapped to the physical layout of the MEA
and displayed as a heat map. Finally, to quantify the separation
between MWP spatial patterns, Euclidian distances between
each movement’s vectorized spatial pattern were calculated. The
MATLAB Pairwise Distance (pdist) function was used for this
analysis. Euclidian distances for each movement compared to all
others were summed to determine the amount of separation in
neural representation.

Statistical Analysis
Paired comparisons between total number of transfers and object
transfer times for the GRT were performed using a paired t-test.
Correlations between MWP similarity and decoder performance
was assessed using a linear regression model. Correlations
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between TC and MWP were assessed using Pearson’s correlation
method. All statistical analyses were performed using MATLAB
(ver 2014b) and P < 0.05 was considered statistically significant.
Results are presented as Mean± Standard Deviation (SD).

RESULTS

The cortically controlled FES system consisted of three main
components: (1) an implanted 96-channel Utah MEA for
recording neural signals, (2) a computer running data processing
and a machine learning algorithm to decode the user’s intended
movement from the neural activity, and (3) a non-invasive
FES cuff wrapped on the participant’s forearm to stimulate
the appropriate muscles to evoke the desired hand movement
(Figure 1). Wavelet decomposition was used to process the raw
cortical data into MWP neural features (see section Methods).
These features were used as inputs to a SVM decoding
algorithm that translated the neural activity to the user’s intended
movement, which was then used to control the electrical
stimulation of the user’s forearm (Figure 1). No device-related
adverse events occurred during the duration of this study.

Performing Functional Hand Movements
With High Accuracy
Using the BCI-FES system, the subject was trained to perform
seven distinct functional hand movements that were specific
to grasp, transfer, and release of standardized test objects. The
objects conformed to specifications for the GRT (Stroh-Wuolle
et al., 1994) and are described in Figure 3. The FES system was
calibrated to evoke seven discrete, dynamic hand states which
included a specific grasp for each of the six GRT objects and
a Hand Open movement (see Figure 3 for grasp schematics
and Figure S1 for stimulation parameters and targeted forearm
muscles groups for enabling each hand movement).

During training, the participant received visual cues to
initiate and terminate each hand movement interleaved with
rest periods. Figures 4A,B shows a snapshot of the neural
activity showing the MWP modulation and the corresponding
threshold crossing (TC) neural activity raster plot. We observed
a strong correlation between TC and MWP neural activity
(correlation coefficient = 0.65, p < 0.001). The full set of
MWP data was used as input for training and generating the
neural decoder. Figure 4C shows representative decoder outputs
during training as the participant attempted hand movements
to manipulate the objects. When the decoder output for a
particular movement crossed the zero threshold, the system
initiated the FES to evoke the corresponding hand movement.
The decoder was trained in 3-min blocks and it took 4–5 blocks
of training (12–15min of total training time) to generate a
robust decoder set that could successfully classify seven hand
movements for grasp, transfer, and release of different objects.
Movie S1 shows the participant manipulating the randomly cued
objects during training. Figure 4D depicts the confusion matrix
showing the probability of the decoder classifying each hand
movement. The results indicate that, in general, the predicted
hand movement was correctly classified as the cued hand

movement. The grips for Hand Open, Fork, and Can were always
predicted correctly with response probabilities of 1. However,
the decoder had more difficulty discriminating between the Peg,
Paperweight, and Block grips (response probabilities= 0.94, 0.91,
and 0.90, respectively). Overall, across all trials, the individual
accuracy for decoding each movement ranged from 96.3 ± 0.7%
(Paperweight) to 99.0 ± 0.5% (Hand Open) demonstrating the
system’s ability to correctly classify the imagined movement from
the eight possible hand states (seven hand movements and a rest)
(Table 1).

Quantifying the Gains in Functional
Performance Using the BCI-FES System
A board-certified physiatrist administered the GRT (see section
Methods) to investigate the participant’s ability to use the BCI-
FES system to manipulate objects across a range of sizes, shapes,
and weights. In addition to providing standardized test objects,
the GRT also allowed us to compare the performance of our
system with others’ who have used this test to investigate their
BCI-FES systems. Figure 5A shows representative snapshots of
the participant transferring the Can object as part of the GRT. To
complete one transfer, the participant used voluntary shoulder
movements to align his hand above the Can, initiated a Hand
Open movement to extend his fingers and position the Can
in his palm, then initiated and maintained a palmar grasp
while he transferred the Can laterally to a raised platform, and
finally, terminated the grasp to release the object from his hand.
Movie S2 shows the participant manipulating the objects during
one GRT block.

Figure 5B summarizes the participant’s ability to manipulate
GRT objects with and without use of the BCI-FES system. At
baseline (Day 702–703 post-implant) and without the BCI-FES
system, the participant could not efficiently manipulate (average
number of successful transfers <1) the Paperweight, Can, VHS,
and Fork. However, he was able to grasp and manipulate the
Block, and Peg using adaptive grip strategies. With the BCI-
FES system (days 855–897 post-implant), the participant was not
only able to evoke the correct hand movement from the possible
eight states available to him, but was also able to successfully
grasp, transfer and release all objects and successfully depress
the Fork multiple times in the 30 s test period. In general,
with the use of the system, the number of successful (failed)
transfers increased (decreased) over baseline (See Figure S2

showing total number of failed transfer attempts with and
without the use of the system). The Block was an exception,
where the participant had fewer successes with the BCI-FES
system than without, as the participant was able to use an
adaptive grasp to transfer the Block on his own. In addition
to being able to rapidly transfer the Paperweight (transfer time
= 4.7 ± 1.2 s) and displace the Fork (displacement time =

5.1 ± 1.1 s) with the BCI-FES system, which he was otherwise
not able to do on his own without the system, the participant
also showed significant improvement in transfer times with the
system for the other two heavier objects, i.e. the VHS, and Can
(Figure 5C). However, it took the participant significantly longer
to complete the Block transfer with the BCI-FES system (6.4 ±
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FIGURE 3 | Standardized GRT objects and functional grasps. Schematic showing the different GRT objects with associated dimensions and weights. Hand

schematics illustrate the grasp/movement enabled by FES for the object. Fingers that were activated and used to perform the grasps/movements are highlighted in

blue. *For the Fork object, a 4.4N force is required to depress the cylinder.

3.0 s per Block) than without (2.8 ± 1.0 s per Block), while there
was no significant change in the completion time for the Peg
transfer.

Investigating the Correlation Between
Neural Discriminability and Decoder
Performance
As the participant performed the GRT, we observed a
few instances of decoder misclassification. In particular, the
decoder would sometimes trigger the Paperweight grip when
the participant tried to release the Block. Similarly, the
VHS grip was sometimes evoked during the Can release.
Figure 6 shows a representative decoder output plot from
an entire GRT test block that provides examples of decoder
misclassification. The participant was cued to transfer the
Block beginning at 170 s. While the Block grip was correctly
triggered for each of the transfers, the Paperweight grip was
also incorrectly evoked 4 out of 5 times after the Block grip
(see Movie S2 which shows the Block transfers during this test
period).

To further investigate these decoder misclassifications, we
analyzed the neural modulation as the participant was asked
to imagine the seven cued hand movements without FES (see
section Methods). By not using the FES system, the neural
modulation data we captured was free from stimulation and/or

any movement induced artifacts. We applied a PCA to the
MWP neural data to qualitatively illustrate clustering among
different imagined hand movements (Figure 7A). We observed
overlaps between the MWP clusters for the Paperweight and
Block as well as the VHS and Can. Figure 7B shows the heat
map of the average MWP for each imagined hand movement
overlaid on the physical layout of the 96-channel cortical
array showing the spatial distribution of MWP activity between
different hand movements. To measure the discriminability
of neural representations of different hand movements we
computed the Euclidean distances between the MWP spatial
distributions for all hand movements (Figure 7C). We found
that the neural representation for the imagined Paperweight and
Block grips as well as the VHS and Can grips were the most
similar and might be one of the factors causing the decoder
misclassifications observed during the GRT functional task.
When compared to the results of the neural decoder training

for the GRT task, we also observed a strong correlation (R2

= 0.74, p < 0.05) between the individual decoder accuracy
scores and the discriminability of neural representation of

hand movements (Figure 7D). Hand Open movement had the
most distinct neural representation and the highest individual

movement accuracy while the Paperweight grasp had the least
separated neural representation and the corresponding lowest
movement accuracy.
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FIGURE 4 | Neural decoder training. Representative plots showing (A) threshold crossing raster plot, (B) the corresponding MWP activity across all channels of the

MEA, and (C) neural decoder output as the participant attempts the seven cued hand movements. Solid lines indicate neural decoder output and dotted lines indicate

the cue start and stop times. Of the seven possible hand movement states that can be predicted by the decoder, the output score from the one with the highest

amplitude greater than zero was used to turn on/off the stimulation; (D) Confusion matrix showing the decoder response probability for each movement cue.

DISCUSSION

The ability to successfully manipulate multiple real-world objects
encountered during activities of daily living remains a key
challenge limiting the practical applicability of BCI-controlled
FES devices for people living with tetraplegia. In our previous
studies, we demonstrated proof-of-concept that implanted BCI-
transcutaneous FES technology can achieve motor control of
a paralyzed upper limb after SCI (Bouton et al., 2016). We
focused on demonstrating that differential control of individual
wrist, finger, and hand movements could be achieved, but
did not attempt to quantify or characterize the behavioral or

neural features of motor control. In this study, we advance
prior knowledge by applying standardized tasks developed
for neuroprosthetic studies (GRT object manipulation) to the
evaluation of system performance. In this way, we not only
allow for comparison between our BCI-FES technology and other
neuroprosthetics but also develop a new understanding of the
strengths and limitations of the BCI-FES system.We showed that
the participant in our study could train to use the BCI-controlled
FES system to perform functional tasks that required dynamic
integration of FES-enabled paralyzed hand/arm muscles with
non-paralyzed shoulder/elbow muscles. The system enabled the
participant to select the desired hand movement, out of the seven
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TABLE 1 | Individual decoder accuracy.

Hand movement Individual decoder accuracy (%)

Hand open 99.0 ± 0.5

Can 96.9 ± 0.9

Block 97.4 ± 1.2

Peg 96.9 ± 0.6

Fork 98.4 ± 0.8

Paperweight 96.3 ± 0.7

VHS 98.1 ± 0.2

Individual decoder accuracies were calculated by determining the percentage of time

points that the decoder output for a given movement correctly matched the associated

cue during decoder training. Values presented as mean ± S.D.

possible trainedmovements as well as a rest state available to him,
using motor intent. The BCI-FES also enabled the participant to
manipulate objects of different sizes, shapes, and weights with
skilled, forceful grasps. In addition, our study revealed insights
into the neural representation of hand movements in the motor
cortex. We showed that stable representations of different hand
movements can form in a very small area of the motor cortex
under the implanted MEA. Furthermore, we demonstrated that
discriminability between these neural representations can affect
decoder performance.

Because the test objects varied widely in size and shape, the
FES system was calibrated for each object to evoke a unique hand
shape/movement pattern that provided grip force and dexterity
to enable palmar, lateral, and tip-to-tip type grasps. The FES
system calibration for each grasp involved precise targeting of
separate muscle groups in the forearm to evoke specific finger
movements (see Figure 3 and Figure S1 showing the target
muscle groups for each grasp). The use of MWP as neural
features for decoding provided a high-fidelity spatiotemporal
neural modulation signal that was strongly correlated with
neuronal spiking activity, and could be used to discriminate
between different hand movements in real-time without the
need for thresholding or explicit spike sorting (Figure 4). During
decoder training, the participant attempted to evoke the correct
grasp for a particular object from seven movement states (plus
rest) available to him. The results from decoder training show
that the participant was able to use the decoder to control
the system with high accuracy—the individual accuracy scores
for each movement were all >96% (Table 1) during different
neural decoder training sessions across 4 days. Several groups
have observed that neuronal states associated with different
imagined hand movements may be represented discriminably in
the human brain (Klaes et al., 2015; Bleichner et al., 2016; Leo
et al., 2016). Our finding that multiple hand movements can
be decoded reliably from the motor cortex is further validation
of these observations. The consistently high accuracy of the
decoders in classifying individual hand grasps not only indicates
the robustness of the neural representations in the motor cortex,
but also suggests that this modulation can be reliably leveraged
for precision control of a FES neuro-orthotic device that can
restore multiple hand-grasp functions. The results also highlight
that for our trained participant the decoder training time for

the multiple object manipulation task was limited to 12–15min.
These results have implications as high accuracy and minimal
training time are features that are desirable for potential users of
neuroprosthetic devices (Collinger et al., 2013).

We used the standardized GRT to demonstrate the
participant’s ability to successfully use the trained decoder
to manipulate multiple objects. The use of a standardized
measure of functional outcomes not only helped us better assess
the performance of our system but also provided standardized
reportable scores that can facilitate objective comparison with
other similar technologies, help identify areas of improvements,
enhance reproducibility of research, and aid in decision making
for clinicians and potential end-users. The results show that
using the BCI-FES system, the participant was able to evoke
the correct movement to manipulate each of the six test objects
using naturalistic grips (Figure 5 and Movie S2). It should be
noted that the participant is able to transfer some of the objects
on his own without using the BCI-FES system (see Movie S2,
right panel showing the participant manipulating the objects
on his own without FES). For example, the participant used
adaptive strategies (such as biceps-mediated forearm supination
with shoulder abduction/adduction) to easily grasp and release
the Peg and Block. However, heavier objects that required a
more forceful grip were difficult to transfer without the system
(Figure 5B). Using the BCI-FES system, the participant was
able to transfer the heavier objects (VHS, Paperweight, Can,
Fork) and also showed significant improvement in transfer times
(Figure 5C).

The transfer speed using the BCI-FES system during the GRT
compares favorably to those reported for other BCI-FES systems.
For example, our participant transferred the Paperweight at a
rate of 4.7 ± 1.2 s per transfer compared to ∼36 s it took a
participant to transfer the Paperweight using the EEG-Freehand
system (Müller-Putz et al., 2005). It should be noted that the
neurologic level of the participant in Muller-Putz et al. (C5 ASI
A with residual shoulder and elbow movements) is functionally
similar to the neurologic level of the participant in our study (C5
ASI A with residual shoulder and elbow movements). While the
participant in our study had a twitch of wrist extension (yielding
a zone of partial preservation to C6), he was not able to elicit
the tenodesis grip of a person with a C6 neurologic level. The
improved performance on the GRT with our BCI-FES system
carries further significance as compared to the EEG-Freehand
system where the participant only has a single grasp available,
our participant had seven hand functions available to him and he
can voluntarily choose the one which provides him the optimal
grip for the target object. The transfer speed with our system
also compares favorably with a BCI-controlled robotic arm used
by paralyzed individuals—for example, a transfer rate of 6–10
transfers per minute for the Block vs. 0.1–1 transfers per minute
reported for the BCI-robotic arm used to transfer similar sized
blocks during the Box and Block (BBT) test (Wodlinger et al.,
2015).

Analysis of the participant’s neural modulation, as he
imagined different hand movements, revealed interesting
insights into the neural representations of hand grasps in the
motor cortex. The PCA revealed overlaps in the MWP clusters of

Frontiers in Neuroscience | www.frontiersin.org 9 April 2018 | Volume 12 | Article 208

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Colachis et al. A Hand-Grasp Neuro-Orthotic for Tetraplegics

FIGURE 5 | Functional performance evaluation using the Grasp and Release Test (GRT). (A) Sequential snapshots of the participant manipulating the Can object as

part of the GRT. The participant starts from a rest state, opens his hand and place it around the Can, grasps the Can, transfers it to the raised platform, and then

releases the Can. A new object is then placed in front of the participant to attempt the next transfer. (B) GRT scores showing the mean number of successful transfers

with and without the BCI-FES system. With the use of the system, the participant not only improved his GRT scores over his baseline, demonstrating an increase in

number of transfers for all objects except the Block, but was also able to grip and transfer two objects (Paperweight, Fork) that he could not manipulate at baseline.

(C) Mean transfer times for each object with and without the BCI-FES system. With the use of the system the participant’s transfer speed increased for all objects

except for the Peg and Block which he was able to transfer faster on his own using adaptive grips. #The participant was never able to transfer these objects without

the system. *The Can transfer required two hand movements—Hand Open and Can grasp. **p < 0.05 (paired t-test).

the grips for Paperweight–Block and the Can–VHS (Figure 7A).
The similarities in neural representation for hand grasps were
consistent with the spatial distribution of MWP on the cortical
array where we observed a group of channels that appear to
modulate similarly between these grasps (Figure 7B). The
analysis of the differences in MWP modulation confirmed that
the neural representation of the imagined Block and Paperweight
as well as the Can and VHS grasps were, indeed, the most
similar of all grasps (Figure 7C). This was consistent with
hand morphology observed during performance of the grips,
with Block and Paperweight grasp patterns being a synergy of
lateral key and tip-to-tip precision grips and Can and VHS
grasp patterns representing versions of a palmar power grip.
This similarity in the neural representations for certain hand
grasps may be one of the factors underlying the misclassification
in decoding that we observed during the GRT test blocks.
Other groups have made similar observations. For example,

Leo et al. observed a clustering of neuronal representations
based on postural differences in hand shapes (i.e., precision
grasps and power grasps) which in turn affected the ability
to correctly classify these hand shapes during decoding (Leo
et al., 2016). Similarly, Bleichner et al. used an ECoG-based
BCI to classify four different hand gestures and noted that the
gestures that correlated strongest in neural representation were
misclassified most often (Bleichner et al., 2016). The results
not only expand on the total number of hand movements for
which a stable representation could be observed in the motor
cortex, but also show that it is possible to study and decode
neural representations in a very small area under the implanted
MEA. Regardless, our findings that there are overlaps between
the MWP spatial patterns for some hand movements highlights
that additional neural features (such as signal propagation
or phase) and/or other decoding algorithms (such as deep
learning algorithms) might need to be explored to expand the
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FIGURE 6 | Neural decoder outputs during the GRT. Representative decoder outputs during a GRT test block showing instances of decoder misclassification (black

triangles). All seven hand movements are available to the participant as part of the decoder and he has to evoke the correct movement (solid lines) during the 30 s trial

period (dotted lines) given to him to complete the GRT for that object. Only decoder outputs above the activation threshold of zero are shown for visual clarity.

Successful transfer of Can required the participant to evoke two hand movements—Hand Open and Can grasp (70–100 s). During the Can transfer, the decoder had

two misclassifications (one of each for the PEG and VHS grasps). However, the participant was able to evoke the correct hand movements to successfully complete

two Can transfers during the trial period. Similarly, during the Block transfer (170–200 s), the participant incorrectly evoked the decoder for Paperweight on four

occasions. This did not affect the GRT scores for the Block, however, as the decoder for Paperweight kicked in after the participant had completed the Block transfer.

repertoire of hand functions that can be reliably decoded using a
single MEA.

Interestingly, the neural representation for Hand Open in
our experiments was the most distinct from the six other
hand grasps (Figure 7C). We hypothesize that this is due to
the Hand Open posture being morphologically distinct from
all other grasps. In addition, the FES pattern for Hand Open
was primarily over wrist and hand extensors, while the FES
pattern for grasps often included both flexor and extensor
muscle compartments. Therefore, somatosensory and muscle
stretch receptor feedback from stimulation of sensate areas
could have propagated to the motor cortex and differentially
influenced neural activation patterns in Hand Open vs. grasp
states. Not surprisingly therefore, during neural decoder training
we observed the highest accuracy when the participant attempted
a Hand Open movement (Table 1). Overall, there was a strong
correlation between the discriminability in neural representation
of different hand states and the corresponding decoding accuracy
(Figure 7D). It should be noted that, compared to GRT
test blocks, we rarely observed this misclassification among
hand movements during the decoder training. This may be
due to the differences in how the training and GRT test
blocks are performed. First, in contrast to training blocks, the
participant does not receive visual cues to initiate, sustain,
and terminate the grasp during the GRT test blocks. Second,
the decoder training is more structured and motor imagery is
more consistent and deliberate as the participant must grasp
and transfer the cued object once during the cue period.
The GRT test block, however, may be more challenging
for the participant because he must quickly and repeatedly
activate and deactivate decoders to transfer objects as many
times as he can in a 30-s test window. We believe that it
is the combination of the lack of reinforcing visual cues,
and the rapid task switching during the “beat the clock”

condition of the GRT that increases the misclassification
probability of the decoder for grasps with most similar neural
representations.

Enabling grasp and manipulation abilities using BCI-FES
technology is challenging compared to, for example, a 3-D
reaching task or individual finger/joint movement as it not only
requires high fidelity control signals and strategies (Schaffelhofer
et al., 2015), but may also require additional sensorimotor
information related to the shape of the target object that may
be needed to preshape the hand correctly (Leo et al., 2016).
In addition, a reaching task in space involves coordinating
only three degrees of freedom (DOF) whereas control of an
anthropomorphic hand requires control of 23 DOF (Vargas-
Irwin et al., 2010) thereby increasing the complexity of the
problem. Not surprisingly therefore, there are only a few reports
of successful demonstration of BCI-enabled hand grasp, most of
which were limited by the number of functional handmovements
that could be enabled (Bouton et al., 2016; Sharma et al., 2016;
Ajiboye et al., 2017; Friedenberg et al., 2017). Not only are the
number of hand functions regained by our tetraplegic participant
to manipulate objects substantially more than achieved by any
previous study of FES devices, but we also show that this
improvement did not come at the cost of accuracy, speed,
or training time. Our results also have implications beyond
reanimation in tetraplegia. The enhanced understanding of the
neural representation of hand gestures in the human brain and
the ability to accurately decode these movements can provide
a novel control signal for the development of other BCI tools;
for instance, communication based on sign language (Bleichner
et al., 2016). Another advantage of using an intuitive BCI
paired with real-time FES is the potential to promote synaptic
neuroplasticity in the cortico-spinal tract (McGie et al., 2015)
or to promote neuroprosthetic “learning” in the motor cortex
(Ganguly et al., 2011).
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FIGURE 7 | Neural representation of functional hand movements in the motor cortex. The participant was asked to attempt the cued hand movement. No FES was

provided during this task so that neural data can be captured without any stimulation artifact. (A) Principal component analysis (PCA) of MWP activity shows clustering

of neural activity for each hand movement during decoder activation for each functional movement. Dotted lines indicate a Gaussian mixture distribution model fit.

(B) Heat maps of averaged MWP activity during neural decoder activation overlaid on the physical layout of the electrode array for each attempted hand movement.

Corner reference (non-active) electrodes in the electrode array are labeled with white squares. (C) Heat map showing the pairwise Euclidean distances between

vectorized MWP spatial patterns and highlights the separability in neural representation between different hand movements. Darker colors indicate that the neural

representations are similar while lighter colors indicate that the representations are dissimilar. (D) Correlation between individual decoder accuracy and separation in

neural representation (aggregate Euclidean distance for each movement) shows that higher neural discriminability leads to higher decoder accuracy. The trend line

indicates a linear fit.

It is important to note that this study is limited to one
participant who had over two years of experience using the
BCI to evoke hand and forearm states prior to performing GRT
testing. Novice BCI users may take longer to achieve the same
level of hand dexterity for object manipulation as described
here. In addition, the transcutaneous FES cuff used in this
study is designed to stimulate the paralyzed forearm muscles to
control hand and wrist movements. It is therefore best suited
to persons with C5 or lower levels of tetraparesis and who have
some residual shoulder and biceps movements. Testing to assess
whether the FES cuff can be used along with shoulder and triceps
stimulation or a gravity assisting device in SCI patients with
higher level of injury remains to be investigated. Our device
was also limited by the lack of thenar (base of thumb) muscle
stimulation, limiting the quality of hand grasps for small objects
requiring precision grips (no objects of this type are represented

in the GRT). The need for daily retraining of the decoders is
another limitation of the current system that will need to be
overcome in order to reduce setup time and facilitate translation
of the device for daily use.

In summary, our BCI-FES neuro-orthotic device significantly
improves upon the state-of-the-art for assistive devices capable
of meeting tetraplegic individual’s desired priorities of restoring
multiple, voluntary, and naturalistic hand functions. We also
demonstrate that our BCI-FES system can enable functional,
skilled hand grasps that can generate adequate force to
manipulate everyday objects with high-precision and practical
speed. The fact that the participant could use the system
to perform functional tasks ∼900 days post-implantation
further highlights the translational potential of our system.
Future directions include addressing system limitations to
make the next generation BCI-FES robust to daily neural
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signal variability, portable, wearable, with more electrodes
and sensors, and less obtrusive to further facilitate clinical
translation.
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Figure S1 | FES parameters and target muscle groups for each hand movement.

(A) Representative image showing spatial mapping of active electrodes on the

lower and upper FES cuffs used to enable the Can grasp. Red and black

electrodes indicate high-side and low-side electrodes, respectively. (B) Active

electrodes, stimulation amplitude, and targeted muscle groups for each hand

movement. L, Lower cuff; U, Upper cuff.

Figure S2 | Mean number of failed attempts on the GRT with and without the

BCI-FES system. The participant had fewer failures with the use of the BCI-FES

system. ∗The Can transfer required activation of two hand movements—Hand

Open and Can grasp.

Movie S1 | Representative video of the participant manipulating the GRT objects

during decoder training. Test objects were placed in front of the participant and he

was cued to start and stop by the small virtual hand on the monitor in front of him.

Movie S2 | Representative video of the participant performing the GRT for all

objects with and without the BCI-FES system. The participant was verbally cued

to start and stop the 30 s GRT trial.
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