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Abstract: Tauopathy is a collective term for neurodegenerative diseases associated with
pathological modifications of tau protein. Tau modifications are mediated by many factors.
Recently, reactive oxygen species (ROS) have attracted attention due to their upstream and downstream
effects on tauopathy. In physiological conditions, healthy cells generate a moderate level of ROS
for self-defense against foreign invaders. Imbalances between ROS and the anti-oxidation pathway
cause an accumulation of excessive ROS. There is clear evidence that ROS directly promotes tau
modifications in tauopathy. ROS is also highly upregulated in the patients’ brain of tauopathies,
and anti-oxidants are currently prescribed as potential therapeutic agents for tauopathy. Thus, there is
a clear connection between oxidative stress (OS) and tauopathies that needs to be studied in more
detail. In this review, we will describe the chemical nature of ROS and their roles in tauopathy.
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1. Tau Protein and its Pathogenicity

Tau protein is expressed abundantly in neurons as well as sparsely in non-neuronal cells like
astrocytes and oligodendrocytes [1]. It is a microtubule-binding protein that gives microtubules’
integrity, which is critical for neuronal outgrowth [2–4]. It helps microtubules to anchor with other
cytoskeletal filaments and organelles for structural support [5,6]. Microtubules are continuously
assembled and disassembled in cells in a dynamic fashion, and this is maintained by the interaction
between tau and the microtubule, which is tightly controlled by several factors. Modification of tau
affects microtubule stabilization and other processes related to this protein [7]. Tau modification is
promoted by post-translational modifications, conformational changes and the misfolding structure of
tau. These modifications lead to the abnormal aggregation of tau into neurofibrillary tangle (NFT)
structures. These NFTs accumulate in neurons, causing neuronal degeneration. Therefore, the formation
of NFTs represents the significant pathological signatures in many neurodegenerative diseases classified
as tauopathies [8]. The level of NFTs and tau modifications are correlated to the severity of the
tauopathies, including Alzheimer’s disease (AD), Parkinson’s disease (PD), frontotemporal dementia
(FTD), FTD with parkinsonism linked to chromosome-17 (FTDP-17), frontotemporal lobar degeneration
(FTLD), Pick’s disease (PiD), progressive supranuclear palsy (PSP), corticobasal neurodegeneration
(CBD), dementia pugilistica, etc. [9–12].

2. Causes of Tauopathies

Consequently, researchers have been studying the mechanism of tau pathogenesis. Tau is
naturally a highly soluble protein, and it undergoes several modifications to become an
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aggregate [13,14]. The mechanisms for NFT formation from tau are still in debate today. Among them,
aberrant posttranslational modifications (PTM) are the leading cause of this failure. In this regard,
hyperphosphorylation, oxidation, proteolytic cleavage (truncation), acetylation, glycation, nitration,
and conformational changes have been suggested to cause the neuro-pathogenicity of tau [13,15–18].
Apart from these hypotheses, imbalances in oxido-redox homeostasis, which produce reactive oxygen
species (ROS), play significant roles in tauopathies.

3. Oxidative Stress and Its Relation to Tauopathies

ROS are oxygen-containing reactive molecules that are generated by oxidative stress (OS).
A moderate level of ROS is critical in cellular defense mechanisms to fight against foreign subjects,
and it triggers mitogen-activated protein kinase (MAPK) pathways to modulate cellular signaling
(cell cycle, gene expression, cell survival and apoptosis) [19,20]. In normal physiological conditions, cells
produce small amounts of ROS, and the levels of ROS are balanced by several antioxidant systems [21].
The imbalance between ROS generation and antioxidant defense causes the excessive accumulation
of ROS, giving OS to the cells [21,22]. Thus, OS poses a significant threat to the brain, one of the
most metabolically active organs, which is vulnerable to OS due to its high oxygen demand [23],
abundance of the redox-active metals (iron or copper) [23], polyunsaturated fatty acids (substrates
for lipid peroxidation) [24], and deficiency of the glutathione (GSH, an antioxidant to eliminate ROS)
levels [25].

In age-related neurodegenerative diseases, balances between OS and antioxidant enzymes are
distorted, resulting in various brain damages and neuronal death. There is increasing evidence that OS
is one of the leading pathophysiological markers of tauopathies, and all of these findings suggests
that there is a clear relationship between OS and the pathophysiology of tauopathies (Figure 1).
Moreover, a series of studies have been focused on the elucidation of the mechanisms underlying ROS
linked to tauopathies. However, it has not yet been fully understood whether OS is an early causal
factor or a result of the cell injuries induced by tau modifications. Therefore, OS creates a scope for
the development of therapeutic strategies for tauopathies. Here, we will discuss the cellular origin,
reaction mechanism, and relation of ROS in tauopathies.
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There is clear evidence that OS contributes to neurological deterioration, as well as the oxidative
destruction of nucleic acids, proteins, or lipids in the central nervous system (CNS) in tauopathies.
OS mediated ROS production is involved in protein oxidation (glycoxidation) or lipid oxidation
(lipoxidation) and forms stable advanced end products. These protein products are evident in NFTs
in AD, whereas lipid products are present in neurofibrillary pathologies [26]. OS damages nucleic
acid (DNA or RNA), and the guanine base is the most susceptible base for oxidative modifications
(8-hydroxy-2’-deoxyguanosine, 8-OHdG or 8-hydroxy-2’-guanosine, 8-OHG). These damages by OS
are another phenomenon that is associated with tauopathies [27].

AD is the best-known tauopathy, among others, with increasing prevalence. Accumulation of OS
is directly linked to aging, and intimately related to AD [28]. In fact, OS is one of the first observable
markers in AD progression, even before the appearance of amyloid beta (Aβ) accumulation [29].
Tau overexpressed cells show increased vulnerability to OS [30,31]. Furthermore, mice (P301S and
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P301L) with AD showed mitochondrial dysfunction, which is associated with increased ROS [32,33].
Several studies indicate that Aβ induces OS, where Aβ serves as a source of ROS to initiate lipid
peroxidation [34]. Inversely, Aβ level is increased upon the stimulus of OS but diminishes with
time [35]. These phenomena indicate that not only ROS modulates Aβ production, but also Aβ

generates excessive ROS in cases of AD. Another report states that free radicals affected the nature and
function of neural cells, both in AD and PD [28]. PD is another well-known tauopathy of which OS is
the leading contributor. OS is believed to be the main etiology that leads to idiopathic and genetic
causes of PD [28]. Alterations in the antioxidant molecules were evident in the early stages of PD [36].

4. Oxidative Stress and Reactive Oxygen Species

ROS are generated upon the reduction of O2, and they consist of free radicals and non-radical
species. In particular, ROS that play critical roles in the biological system include superoxide anion
radical (O2

− or O2•
−), hydroperoxyl radical (HO2), hydrogen peroxide (H2O2), hydroxyl radical

(•OH), ozone (O3), and singlet oxygen (1O2). Further, ROS also includes peroxyl (ROO•),
alkoxyl (RO•), semiquinone (SQ•−), and carbonate (CO3•−) radicals, along with hypochlorous (HOCl),
hypobromous (HOBr), and hypoiodous acids (HOI). Some of the reactive nitrogen species (RNS),
which contain an oxygen atom, are also considered as one of these kinds, like the nitric oxide radical
(NO or NO•), nitrogen dioxide radical (NO2•), nitrite (NO2−), and peroxynitrite (ONOO−) [37,38].

5. Major Sources of Oxidative Stress (OS)

The endogenous sources of OS are: (i) Hypoxia, NO and ONOO, which endorse the generation of
ROS in mitochondrial electron transport chain (ETC) [37,39,40]; (ii) an increased level of misfolded
proteins [41]; and (iii) intracellular enzymes that produce ROS as metabolic products of their
enzymatic processes. These enzymes include NADPH oxidases, flavoenzyme ERO1, cytochrome p450,
lipoxygenases, xanthine oxidase, nitric oxide synthases, etc. [37,38,40] Lastly, (iv) free metal cations
(such as copper and iron ions) can convert superoxide or hydrogen peroxide into hydroxyl radicals
through the Fenton reaction or the Haber–Weiss reaction [42]. A high level of intracellular Ca2+

is also one of the endogenous sources of OS [43,44]. The exogenous sources are ultraviolet light
(1O2 generation), γ-irradiation (•OH generation) [45], chemical pollutants, including quinones,
nitroaromatics, etc. These sources generate superoxides. It is also reported that smoke and air
pollutants also contain ROS which potentially uptake into the body during the respiration process and
induce OS [37,46].

6. Reactive Oxygen Species (ROS) Production in the Body

6.1. Mitochondria

Mitochondria are the major sub-cellular organelles for ROS production. ROS are produced as
a byproduct of the electron transport chain reaction for adenosine triphosphate (ATP) generation.
Loss of some mitochondrial proteins (cytochrome oxidase, COX; pyruvate dehydrogenase complex,
PDHC; and α-ketoglutarate dehydrogenase complex, KGDHC) elevate the formation of ROS [47].
OS induces mitochondrial dysfunction by accumulating excessive ROS [30,48]. Increased oxidative
damage may lead to mitochondrial DNA mutations, which has been reported to inhibit ATP production
in AD patients [30]. In addition to mitochondria, endoplasmic reticulum, peroxisomes, and microglial
cells are also potential sources of ROS.

6.2. Endoplasmic Reticulum

The endoplasmic reticulum (ER) is mainly responsible for protein folding and lipid biosynthesis.
In the ER, ROS generation is induced by misfolded protein processing, depletion of the GSH, or through
the breakage and formation of disulfide bonds [49].
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6.3. Peroxisomes

Peroxisomes participate in many metabolic pathways that include fatty acid oxidation, amino acid
catabolism, and phospholipid biosynthesis. They generate the majority of the H2O2 inside the
body, which is balanced by catalases. This H2O2 level is increased when catalase is not working,
or when peroxisomes are damaged. Peroxisomes have been shown to be depleted or damaged by tau
aggregation in the rat primary hippocampal neurons, and N2a cells induce OS [31].

6.4. Microglia

Microglial cells express a high level of the glutathione peroxidase (GPx) antioxidant enzyme.
They also produce ROS, either to eliminate pathogens or during neuroinflammatory processes.
Recently, microglial cells were reported as ROS producers in tauopathies [11].

7. Chemical Properties of ROS

To gain a clearer perception of the ROS associated biological impact, one needs to understand the
chemical properties of ROS.

7.1. Electronic Configuration of ROS

Molecular oxygen is paramagnetic species, having two electrons with a parallel spin in the π*
orbital (Figure 2). Due to this kind of parallel spin, restriction is applied to an oxygen atom to take part
in redox reactions. This kind of electronic configuration enables the oxygen atom to accept electrons
during the redox reactions, making it unable to oxidize the biomolecules [38]. The molecular oxygen
can be converted quite easily into ROS by either energy transfer or electron transfer. Among the ROS,
energy transfer from oxygen results in the generation of singlet oxygen. As a result, singlet oxygen
has paired electrons with opposite spin, which enhance the oxidizing ability when compared with
molecular oxygen. By a one-electron reduction, O2 is converted into superoxide. Further, superoxide,
with another one-electron reduction, converts into hydrogen peroxide which later converts into
the hydroxyl radical by a one-electron reduction and finally the hydroxyl radical, upon reduction,
converts into water. Hence, molecular oxygen can generate ROS by electron or energy transfer,
making them more reactive than itself [50–52].
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7.2. Reactivity Trends of ROS

To gain more in-depth knowledge into the reactivity of ROS, one should understand the
thermodynamics of free radicals. To compare the trend of reactivity of the ROS, the role of reduction
potential is vital. To plot the reactivity trend of ROS, one should consider the reduction potential of
the one-electron reduction of molecular oxygen [38,50]. A few of the main features about the role of
reduction potential and reactivity are listed as follows: (a) Reduction potential is the ability of an atom
or molecule to acquire the electron; (b) oxidation is the loss of electron, whereas reduction is the gain
of electron; and (c) from the above points, it is evident that atoms or molecules with high reduction
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potential have high reactivity as will be easy to reduce. Based on the above assumption, one can easily
understand why molecular oxygen is a weak oxidant when compared with another ROS (Figure 3).
Here, O2, with the reduction potential of−0.33 V, is a poor electron acceptor [53]. The superoxide radical
also has limited reactivity when compared with its anionic charge, which makes it an electron-rich
center [44]. Hydrogen peroxide is generated by the one-electron reduction of superoxide, which is
also stable under physiological conditions, even though it has a +0.38 V reduction potential [52].
Among the ROS, the hydroxyl radical is the utmost powerful oxidizing agent, with a one-electron
reduction potential of +2.33 V. According to the reduction potential, the ROS reactivity trend can be
written as •OH > O2•

− > H2O2 > O2 [50,52].
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8. ROS Generating Agents in Tauopathies

8.1. Tau Aggregation

Tau aggregate is one of the primary culprits in tauopathies. There is clear evidence among OS
with tau hyperphosphorylation, polymerization, and toxicity in both animal models and patients [11].
OS produces oxidized fatty acids that stimulate in vitro tau polymerization [54]. Also, the overexpressed
tau protein showed increased OS in N2a cultured cells [31]. Besides, rat cortical neurons from truncated
tau expressing transgenic rats showed an increased level of ROS [55]. This evidence suggests
that OS directly promotes tau aggregation, and inversely toxic tau species stimulate OS conditions
in tauopathies.

8.2. Amyloid-Beta Aggregation

Amyloid-beta (Aβ) aggregation is another pathogenic event in tauopathies. Numerous studies
have shown that OS promotes Aβ production by diminishing α-secretase activity and increasing β and
γ-secretase activity [56]. The AD mouse model (Tg2576-APP-PS1) has enhanced OS due to increasing
H2O2 levels and the peroxidation of proteins and lipids [57]. Oppositely, the accumulation of Aβ

increases OS and leads to memory dysfunction in the AD mouse (Tg2576-APP) [58] and mitochondrial
failure in the early stages of AD [30].

8.3. Metals

Copper (Cu), zinc (Zn) and iron (Fe) are the three most abundant metals in mammalian brains,
which regulate many synaptic functions. Aberrant homeostasis of these metals, like their levels,
mislocalization, and dysregulation, was evidenced in the hippocampus and amygdala of AD
patients [59]. In addition, aluminum (Al3+) is also associated with oxidative stress leading to
AD [60].
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8.4. Inflammation

Neuro-inflammation is expected in sites of metal deposition. Neuro-inflammation is followed by
the production of reactive compounds by microglial cells. The microglia can be activated by several
factors, including Aβ. Activated microglia play a role in AD onset by increased ROS burden and
oxidative stress [61].

8.5. Anti-Oxidant

Glutathione, uric acid, vitamin C and E, or antioxidant enzymes (superoxide dismutase, catalase,
etc.) are lower in AD patients [30,62]. Failure of the antioxidant defense systems induces OS that is
facilitated by Aβ depositions in AD mice with the APP mutation [30].

9. Evaluation of ROS in Tauopathies

Since OS is related to the pathophysiological mechanism in tauopathies (Figure 4), several surrogate
markers for ROS have been assessed. The measuring parameters mainly cover peroxides including
nucleic acid (8-OGH and 8-OHdG, protein or lipid (malondialdehyde, MDA or 4-hydroxynonenal,
4-HNE), antioxidant enzymes, superoxide dismutase (cytosolic SOD1 or mitochondrial SOD2),
glutathione levels, glutathione S transferase (GST), heme Oxygenase-1 (HO-1), homocysteine (Hcy)
levels, F2-isoprostanes (F2-IsoPs) and vitamins (A, C, or E). These markers are elevated or depleted in
particular brain regions of the same patient in tauopathies. A table (Table 1) is provided here based on
the available literature for potential OS markers in assessing tauopathies.
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Table 1. Potential oxidative markers in tauopathies (up-regulation is labeled as up-arrow,
and down-regulation is labeled as down-arrow).

OS Markers AD PSP PiD CBD FTD FTDP-17 FTLD PD

SOD1 ↓ [27]
↑ [63] ↑ [11] ↑ [64] ↑ [63]

SOD2 ↓ [27]
↑ [65] ↑ [11] ↓ [66] ↑ [64] ↑ [67]

Cu/Zn-SOD ↓ [27]
↑ [68] ↑ [11] ↑ [63]

GSH ↓ [27] ↑ [69]
↓ [70] ↓ [64] ↓ [69]

GST ↓ [71] ↓ [11]

Catalase ↓ [72] ↓ [73]

GPx ↓ [72]
↑ [74] ↑ [75] ↑ [11]

↓ [11]
↑ [76]
↓ [67]

Lipid peroxidase ↑ [27] ↑ [77] ↑ [78] ↑ [79]

MDA ↑ [27] ↑ [80] ↑ [64] ↑ [81]

4-HNE ↑ [27] ↑ [75] ↑ [81] ↑ [64] ↑ [82]

Vitamin A ↓ [83]

Vitamin C ↓ [84] ↓ [73]

Vitamin E ↓ [85] ↓ [73]

HO-1 ↑ [86] ↑ [86] ↑ [86] ↑ [86] ↑ [78] ↑ [87]

Protein carbonyl ↑ [27] ↑ [78] ↑ [63]

3-nitrotyrosine ↑ [27] ↑ [88]

8-OHG ↑ [27] ↑ [89]

8-OHdG ↑ [27] ↑ [89]

F2-IsoPs ↑ [27]

Hcy ↑ [90]

COX ↑ [91]

PDHC ↓ [92]

KGDHC ↓ [93]

10. Fluorescence Probes for ROS Detection

Fluorescent probes have advantages for high sensitivity and selectivity over other techniques.
Combined with fluorescent microscopy, the fluorescent probes can be used to visualize analytes
in living cells spatiotemporally. Also, this technique is fast and straightforward, without a unique
facility or high cost-efficiency. Fluorescent sensors (organic fluorophores), when recognizing the target
molecule, tend to change their fluorescence emission intensity or color [94–97]. Here we would like to
emphasize some of the basic concepts of the ROS probing based on the fluorescent technique (Table 2).

Fluorescent probes for hydrogen peroxide are mainly based on boronate esters via the
H2O2-induced oxidation of arylboronate ester to phenols [98–100]. It is known that under mild
alkaline conditions H2O2 reacts with arylboronic acids and arylboronate ester to produce phenols [101].

Most of the probes for the superoxide radical are based on reaction-based mechanisms, where the
superoxide will react with a probe to generate a new molecule with a different fluorescence intensity or
color of the probe. These probes are based on superoxide-induced oxidation reactions and reactions
with nitroxide [102]. Another essential feature of the superoxide is strong nucleophilicity, where it is
known as a super nucleophile. Due to this inherent property, fluorescent probes for superoxide are
mainly based on nucleophilic substitution reaction [103]. In this case, most of the time, the leaving
group is from the phosphinate group [104], triflate group [105], 2,4-dinitrobenzenesulfonyl [106],
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nitro-ethers [107], and related groups. Recently, a sulfinate-based chemosensor for superoxide sensing
was reported to reduce the molecular size, with good solubility and a cLogP value of 3.8 [108].

Detection of the hydroxyl radical is very challenging due to its low concentration. It is the
most reactive among the various classes of the ROS. The hydroxyl radical can oxidize most of the
biomolecules like carbohydrates, proteins, and nucleic acids. One of the main classes for hydroxyl radical
detection is the oxidation of leuco forms of fluorescent dyes (cyanine, 2,7-dichlorodihydrofluorescein,
and dihydrorhodamine) mediated by hydroxyl radical. These probes become highly fluorescent
upon reaction with a hydroxyl radical by recovering the π-conjugation networks through hydrogen
atom abstraction, and subsequently one-electron oxidation [109–112]. Some of the nitroxides have
been exploited as fluorescent probes for hydroxyl radicals. Here, the diamagnetization reaction
between nitroxide and radical restores the fluorescence intensity was exploited, where the CH3 radical
(generated from hydroxyl radical and dimethyl sulfoxide, DMSO) reacts with the nitroxide moiety to
produce the diamagnetic adduct [95,113].

Singlet oxygen is produced by energy transfer from O2. As a result, singlet oxygen has paired
electrons with opposite spin (spin-restriction state) which enhance oxidizing ability when compared
with molecular oxygen. The fluorescent probes for singlet oxygen have been developed based on
[2 + 4] cycloaddition, where singlet oxygen acts as a strong dienophile [109,114,115].

Most of the probes for peroxynitrite are based on the organic reactions of probes with peroxynitrite.
These reactions include the oxidation of chalcogenides, boronic acids or boronates, hydrazides,
the cleavage of C-C double bonds, and oxidative N-dearylation [116,117]. Among these, the most
common reaction is the oxidation of chalcogenides (S, Se, and Te) [118,119].

Different types of functional groups have been studied for the detection of NO, which are o-diamino
aromatic compounds, luminescent lanthanide complexes, transition-metal complexes, quantum dots,
and carbon nanotube sensors. The most commonly studied method for the detection of NO is based
on the reaction of a O-diaminophenyl group with NO to generate triazole [120,121].

The fluorescent probes for hypochlorite are mostly based on xanthene probes. The mechanism
behind this sensing is the spiro-ring opening of the xanthene probes, which react with hypochlorite [95].
Also, some of the probes are based on the oxidation of catechol to benzoquinone [122].

Apart from these probes, some of the fluorescent probes for the detection of ROS are reported
in Alzheimer’s disease. An oxalate-curcumin-based probe was reported for the imaging of reactive
oxygen species in AD. Here, the oxalate moiety was utilized, which reacts with H2O2 to produce the
fluorescence signal with a shift in wavelength [123–126]. A bifunctional fluorescent probe based on
the benzothiazole core has been reported for H2O2 and amyloid aggregate detection. The probe is
a combination of benzothiazole and a boronate ester [127].
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Table 2. ROS and their mode of detection using fluorescent probes.

ROS Fluorescent Probe Reaction Examples

Hydrogen peroxide H2O2-induced oxidation of arylboronate
ester to phenols.
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11. Controlling of ROS as Therapeutic Approaches of Tauopathies

Despite the unmet needs for the treatment of tauopathies, FDA-approved treatments are limited
to alleviate memory deficits and behavioral changes. Despite the fact that extensive drug discovery
programs have been conducted over previous decades, there are still no convincing drugs. Some drugs
have adverse side effects or exhibit a lack of cognitive improvement in trial participants. For these
reasons, new strategies for therapeutic pathways are being considered. Potent pieces of evidence for the
imbalance phenomena of oxidants/antioxidants in AD led to the hypothesis that compounds scavenging
free radicals or upregulating the OS defense mechanism might provide therapeutic approaches for
AD (Table 3).

11.1. Antioxidant Pathway

By reviewing the OS theories in tauopathies, several therapeutic approaches have been conducted
in different tauopathies. Curcumin, found in turmeric, is an antioxidant that decreases Aβ-induced
tau hyperphosphorylation in PC12 cells. It also protects PC12 cells through the inhibition of OS [131].
Another class of antioxidant, methylene blue (methylthioninium chloride, MB), which can penetrate
the blood brain barrier, diminished oxidized nucleic acids and tau hyperphosphorylation in tauP301S

transgenic mice [132]. Administration of coenzyme Q10 (CoQ10; a critical member in electron transport
chain), which has antioxidant effects, can significantly reduce tau phosphorylation, lipid peroxidation
and OS, while ameliorating behavioral deficits and the survival rate of tauP301S transgenic mice [133].
The overexpression of thioredoxin peroxidase, an antioxidant enzyme, worsens disease phenotypes of
tauR406W transgenic drosophila [66]. In PD mice, sulforaphane (found in cruciferous vegetables) were
found to be effective at protecting dopaminergic neurons and enhancing GSH levels [134]. Brilliant blue
G, an antagonist of the P2X7R pathway of several neurodegeneration, can cross the blood brain barrier
to ameliorate neuropathology in AD and PD mouse models [135].

11.2. Catalase

Catalase, located in peroxisomes, cytoplasm, and mitochondria, is responsible for H2O2

conversion into water and oxygen by using iron or manganese as a cofactor. The administration of
SOD/catalase mimetic EUK-207 deteriorates disease phenotypes by reducing phosphorylated tau and
lipid peroxidation in 3xTg-AD mice [136].

11.3. Vitamin

Cells and animal studies, as well as clinical studies, have shown a particular connection between
vitamins and tauopathies. The antioxidant activities of vitamins may be useful for the treatment
of tauopathies. Proper supplementation of vitamins can reduce the tauopathy incidence in the
general population and improve the state of patients. Vitamin C is a water-soluble antioxidant that is
abundant in vegetables, fruits, and animal livers. It involves in the inhibition of OS, reducing lipid
peroxidation, the exclusion of free radicals, and acts as a cofactor for antioxidant enzymes [137].
Vitamin E is a lipid-soluble high antioxidant which can diminish the effects of peroxide, also protecting
against lipid peroxidation in cell membranes. Vitamin C (ascorbic acid), when used to treat primary
corticohippocampal neurons from tau transgenic rats (Tau151–391 4R), decreased ROS levels in the
neurons, tau inclusions in the spinal cord, and improved behavior [138]. Supplementation of
vitamin E (α-tocopherol) delayed tau pathology by attenuating motor weakness in the tau mouse
model (B6D2/F1-Tau44) [139]. A recent study has shown that omega-3 fatty acids plus vitamin
E supplementation can improve total antioxidant capacity and GSH levels in PD patients [140].
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Table 3. Therapeutic approaches of tauopathies related to ROS.

Therapeutic
Approaches Chemical Agents Treating Route and Doses Experimental Model Reference

Antioxidant
pathway

Curcumin 10 µg/mL for 1 h Aβ treated PC12 cell [131]

Methylene blue 4 mg/kg in diet TauP301S mouse [132]

CoQ10 0.5% in diet TauP301S mouse [133]

Paraquant 30 mM in diet for 48 h TauR406W drosophila [66]

Sulforaphane 5 mg/kg twice a week by
intraperitoneally C57Bl/66-OHDA mouse [134]

BR 297 500 nM for 24 h APP treated SH-SY5Y cell [145]

S14 5 mg/Kg/daily for 4 weeks
by intraperitoneally Tg2576APP/PS1 AD mouse [146]

Resveratrol 500–1000 mg/daily for 26
months by orally AD patients [147]

Catalase EUK-207 3.41 mM/day for 28 days
by micro-osmotic pump C57BL/6/129S-3xTg-AD mouse [136]

Vitamin

Ascorbic acid 250–500 µM for 24 h Neurons form Tau151–391 rat [138]

α-tocopherol

0.5–1.5 mM in diet for 10
days tauR406W drosophila [66]

49 IU/Kg in diet B6D2/F1-tau44 mouse [139]

2000 IU/day for 6 months AD patient [148]

Tocotrienol 5 mg/Kg/day for 15
months by orally APPswe/PS1dE9 mouse [149]

Metal chelator

Clioquinol 30 mg/kg/day for 5 weeks
by orally TgCRND8-AD mouse [141]

PBT2 250 mg/day for 12 weeks
by orally AD patient [142]

CuIIGTSM 10 mg/kg/daily by orally APP/PS1 AD mouse [143]

Desferrioxamine
125 mg twice daily/5 days
per week for 24 months by
intramuscularly

AD patient [144]

11.4. Metal Chelator

Alterations in metallostasis (mainly Zn, Cu and Fe) are responsible for AD. So, ionophore addition
would be another treatment choice by restoring ion balances. Clioquinol (5-chloro-7-iodo-quinoline-8-ol)
is a moderate chelator for Cu, Zn, and Fe that rescued memory impairment in the TgCRND8-AD
mouse after oral administration [141]. The second generation of clioquinol is PBT2, which is now in
a clinical trial (phase II) [142]. Both of their modes of action probably rely on copper ionophore activity.
Based on this mechanism, another copper containing chelator, CuIIGTSM [bis(thiosemicarbazone)],
was developed, which could change GSK-3β activity, tau phosphorylation, and restore cognitive
impairment in APP/PS1 transgenic mice [143]. One Fe chelator, desferrioxamine, was intramuscularly
injected into AD patients, slowing the clinical progression of dementia [144].

12. Conclusions

Oxidative stress contributes to the development of tauopathies. It forms vicious pathophysiology
inducing mitochondrial dysfunctions, neuronal damages and promotes metal toxicity. The complex
nature, genesis, and responses of ROS in tauopathies are still actively being investigated. At the
cellular level, individual cells generate excessive levels of ROS, followed by a dysfunctional state of
mitochondria that interacts with redox metals and oxidative stress-responsive elements. Although the
formation of ROS poses a threat to tauopathies, compensatory responses provoked by ROS removal or
the prevention of the ROS generation pathway may interrupt the onset or slow down the progression
of tauopathies through multiple mechanisms. These mechanisms include the reduction of oxidative
stress-mediated neuronal toxicity, a decrease of tau phosphorylation and aggregation, restoration of
mitochondrial function, and metal homeostasis. Therefore, treatment with antioxidants could be an
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alternative approach to target molecular events implicated in tauopathies. However, evidence on
antioxidants as potential therapeutic agents for tauopathies has not been carried out to a significant
level. Hence, a more in-depth understanding of OS in tauopathies is in high demanded.
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Abbreviations

•OH Hydroxyl radical
1O2 Singlet oxygen
8-OHdG 8-Hydroxy-2’-deoxyguanosine
8-OHG 8-Hydroxy-2’-guanosine
Aβ Amyloid beta’ Abeta
AD Alzheimer’s disease
Al Aluminium
ATP Adenosine triphosphate
CBD Corticobasal degeneration
CNS Central nervous system
CO3•− Carbonate radical
CoQ10 Coenzyme Q10
COX Cytochrome oxidase
Cu Copper
DMSO Dimethyl sulfoxide
ER Endoplasmic reticulum
ETC Electron transport chain
FDA US Food and Drug Administration
Fe Iron
FTD Frontotemporal dementia
FTDP-17 FTD with parkinsonism linked to chromosome-17
FTLD Frontotemporal lobar degeneration
GPx Glutathione peroxidase
GSH Glutathione
GST Glutathione S transferase
H2O2 Hydrogen peroxide
Hcy Homocysteine
4-HNE 4-Hydroxynonenal
HO-1 Heme oxygenase-1
HO2 Hydroperoxyl radical
HOBr Hypobromous
HOCl Hypochlorous
HOI Hypoiodous acids
Hr Hour
KGDHC α-Ketogluterate dehydrogenase complex
MAPK Mitogen-activated protein kinase
MB Methylene blue; methylthioninium chloride
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NFT Neurofibrillary tangle
NO or NO• Nitric oxide radical
NO2− Nitrite
NO2• Nitrogen dioxide radical
O2
− or O2•

− Superoxide anion radical
O3 Ozone
ONOO− Peroxynitrite
OS Oxidative stress
PD Parkinson’s disease
PDHC Pyruvate dehydrogenase complex
PiD Pick’s disease
PSP Progressive supranuclear palsy
PTM Posttranslational modification
RNS Reactive nitrogen species
RO• Alkoxyl radical
ROI Reactive oxygen intermediate
ROO• Peroxyl radical
ROS Reactive oxygen species
SOD Superoxide dismutase
SQ•− Semiquinone radical
Zn Zinc
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