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Abstract

Background: Although power outage (PO) is one of the most important consequences of 

increasing weather extremes and the health impact of POs has been reported previously, studies 

on the neighborhood environment underlying the population vulnerability in such situations are 

limited. This study aimed to identify dominant neighborhood environmental predictors which 

modified the impact of POs on multiple health outcomes in New York State.
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Methods: We applied a two-stage approach. In the first stage, we used time series analysis to 

determine the impact of POs (versus non-PO periods) on multiple health outcomes in each power 

operating division in New York State, 2001–2013. In the second stage, we classified divisions as 

risk-elevated and non-elevated, then developed predictive models for the elevation status based on 

36 neighborhood environmental factors using random forest and gradient boosted trees.

Results: Consistent across different outcomes, we found predictors representing greater 

urbanization, particularly, the proportion of residents having access to public transportation 

(importance ranging from 4.9–15.6%), population density (3.3–16.1%), per capita income (2.3–

10.7%), and the density of public infrastructure (0.8–8.5%), were associated with a higher 

possibility of risk elevation following power outages. Additionally, the percent of minority (−6.3–

27.9%) and those with limited English (2.2–8.1%), the percent of sandy soil (6.5–11.8%), and 

average soil temperature (3.0–15.7%) were also dominant predictors for multiple outcomes. 

Spatial hotspots of vulnerability generally were located surrounding New York City and in the 

northwest, the pattern of which was consistent with socioeconomic status.

Conclusion: Population vulnerability during power outages was dominated by neighborhood 

environmental factors representing greater urbanization.
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Introduction

Power outages (POs) are one of the most common consequences of extreme weather events 

worldwide, and one that may worsen in the context of increased energy demand as well as 

climate change. For example, Hurricane Maria in 2017 left households in Puerto Rico out of 

power for 84 days on average (Kishore et al., 2018a), resulting a total of 4.0 billion customer 

hours of interruption (Román et al., 2019). The heavy dependence of modern infrastructure 

on electricity can lead to significant public health impacts when power is lost (Anderson and 

Bell, 2012a; Christine et al., 2019a; Kishore et al., 2018b).

A few studies have provided epidemiological evidence on the adverse health impact of 

power outages. For example, Christine et al (Christine et al., 2019b) reported significant 

elevations in all-cause mortality and hospitalizations for multiple health outcomes due to 

citywide and localized power outages in New York City. Lin et al(Lin et al., 2011a) observed 

that mortality and respiratory hospital admissions following the August 14, 2003, Northeast 

Blackout were significantly elevated by two to eight fold. Most recently, we observed 

significant associations of power outages with the elevated rate of COPD hospitalization as 

well as increased severity of symptoms and hospital charges (Zhang et al., 2020b).

These evidences provided critical quantitative supporting information for future preventive 

strategies designed to improve the electricity supply system, however, significant gaps 

remain in our further understanding of how these adverse health impacts of power outages 

were shaped by the neighborhood environmental characteristics. Some studies suggested 

that lower socioeconomic characteristics such as a higher low-education rate, a higher 
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poverty rate and a higher percentage of minorities were associated with a higher health 

impact of general environmental hazards(Barry E et al., 2011a; Nayak et al., 2020; Zoraster, 

2010). One of our previous studies suggested that housing and transportation factors such 

as a higher percentage of people living in multi-unit structures or group quarters were 

top contributors to an increased impact of catastrophic storms on cardiovascular diseases 

and mental disorders (Zhang et al., 2020a). Identification of such dominant predictors is 

critical for the development of preventive strategies targeted on communities with certain 

characteristics or at locations. However, no studies have ever been designed to examine the 

neighborhood environmental predictors underlying the health impact of power outages.

To address this important knowledge gap, we conducted a large population-based study 

in New York State to identify dominant neighborhood environmental predictors including 

socioeconomic indicators, landscape characteristics and built environment metrics. We 

also developed predictive models for the health impact of power outages based on these 

predictors and assessed the population vulnerability in order to identify the geographical 

hotspots. Given the numerous predictors involved in the single model, we used sophisticated 

machine-learning methods to address the potential collinearity issue as well as to 

accommodate the complex relationships between the outcome and predictors and inter-

predictor interactions.

Materials and methods

Study population and design

This study covered the entire population of New York State. All hospital admission records 

with a principal diagnosis of cardiovascular diseases, respiratory diseases, respiratory 

infectious diseases, food-and-water-borne diseases or injuries between 2001 and 2013 were 

included. We focused on these outcomes since they were the major disease groupings 

previously reported to be associated with environmental stressors and were biologically 

plausible (Anderson et al., 2013; Anderson and Bell, 2012b; Bloom et al., 2016; Christine et 

al., 2019b; Li et al., 2019).

As described in Fig. 1, we first conducted a time-series analysis to examine whether the 

risk ratio (RR) of a health outcome (associated with power outages) increased (RR > 1) 

following POs at each power operating division. A power operating division is a spatial unit 

in which an electricity company operates and maintains the electric distribution facilities. 

The entire state contains ~1700 power operating divisions, with an average population of 

11,061 per division. We then linked the risk elevation status with relevant predictors at 

the division level and developed predictive models based on machine learning algorithms. 

We finally used the optimal predictive model to identify the dominant predictors and the 

spatial pattern of the health impact of power outages. With the time-series analysis, we 

were able to control important time-varying confounders and capture the cumulative health 

effect of power outages (Bhaskaran et al., 2013a; Gasparrinia et al., 2010). The machine 

learning methods have multiple unique advantages including accommodating correlations 

between predictors and outlier issues in the data and having better predictive performance 

than traditional parametric models (Zhang et al., 2016a).
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Health data and outcomes

We retrieved the hospital admission data between 1/1/2001–12/31/2013 from the New York 

Statewide Planning and Research Cooperative System (SPARCS, https://www.health.ny.gov/ 

statistics/sparcs/), a legislatively mandated database covering 95% of hospitals across the 

state (Rich et al., 2019; Zhang et al., 2018). We retained records with a principal diagnosis 

of major population health concerns including cardiovascular diseases (the International 

Classification of Diseases, Ninth Revision (ICD 9) code: 393–396, 401–405, 410–415, 

427, 428, 430–434, 436–438), respiratory diseases (ICD 9 code: 480–488, 491–496, 518), 

respiratory infectious diseases (ICD 9 code: 480–488), food-and-water-borne diseases (ICD 

9 code: 001–009) or injuries (ICD 9 code: E880-E910). We geocoded each hospitalization 

record to the power operating division level based on the residential address reported to 

the SPARCS. We defined the outcome for the time-series analysis as the daily number of 

hospital admissions in each power operating division and for each health outcome. The 

outcome for the machine learning methods was the risk elevation status (0/1) identified 

based on the results of the time-series analysis.

Exposure data and predictors

For each operating division, we obtained the total number of customers, the date a power 

outage occurred as well as the number of customers affected from the NYS Department 

of Public Service. We divided the number of affected customers over the total number of 

customers to calculate the coverage of power outage for each day in each division. We 

identified the 50 th percentile of the coverage among all PO days in all divisions which was 

0.5% and defined a day with PO coverage above this cutoff as an exposure day, otherwise as 

a control day. This criterion was selected based on previous studies and to capture the health 

impact of small localized power outage events(Sheridan et al., 2021; Zhang et al., 2020c).

To develop the predictive model for the health impact of power outage, we retrieved data on 

predictors including socioeconomic variables from the American Community Survey (ACS) 

(Barry E et al., 2011b), landscape variables from the National Land Coverage Database 

(NLCD) (Homer et al., 2015) and Soil Survey Geographic Database (SSURGO) (Bocinsky, 

2019), and built environment variables from the Environmental Quality Index (EQI) of the 

U.S. Environmental Protection Agency (EPA) (Lobdell et al., 2011). A full list of these 

neighborhood environmental factors are presented in the results section. We included these 

factors as the major predictors since they were considered to be the most important and 

comprehensive predictors for residential environment and population vulnerability (Barry E 

et al., 2011c; GISP, n.d.; Nayak et al., 2018; Zhang et al., 2020a).

Statistical analysis

Divisions with < 100 residents or < 5 cases per year were excluded to ensure a reasonable 

sample size, leaving 407–1574 divisions included (accounting for 80.0–93.3% of the total 

cases for different outcomes). In the first stage, we developed a distributed lag nonlinear 

models (DLNM) with quasi-Poisson distribution in each division for each health outcome 

(Bhaskaran et al., 2013b; Gasparrini, 2013). Specifically, we regressed the daily number of 

cases against the indicator of exposure/control days, meanwhile adjusting for time-varying 

confounders including day of the week, holidays, the long-term trend and seasonality, and 
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weather confounders including temperature and humidity (Xiao et al., 2017; Zhang et al., 

2016b). We also controlled the ambient concentration of PM2.5, the most important air 

pollutant, and weather events including hurricanes, winter storms, thunderstorms, flooding, 

strong wind events and heat events as reported to NOAA (ftp://ftp.ncdc.noaa.gov). In 

this stage, we estimated the cumulative health effect (i.e., risk ratio, RR) within the first 

week (0–6 lag days) following POs and defined divisions with RR > 1 as risk elevated 

communities (i.e., 1), all others as non-elevated communities (i.e., 0).

In the second stage, with the dataset containing the risk elevation status (0/1) variable 

and numerous predictors at the community (i.e., division) level, we developed and applied 

predictive models in following steps (LeDell et al., 2019a):

1. Dataset splitting. We generated a random variable, included it into the dataset 

and split the dataset into the training set (80% records) and the testing set (20% 

records).

2. Feature selection. As there is not gold standard for an optimal model used for the 

initial step of variable selection, we ran a gradient boosted model (additionally 

with an initial learning rate of 0.01) or a random forest model using 200 trees, 3 

folds of cross validation, a maximum interactive depth of 5, and a sampling rate 

of 0.7. We utilized two major tree models with which we focused on the relative 

importance of predictors, and selected those with an importance greater than the 

random term.

3. Grid search. We refitted predictive models based on selected predictors. To 

determine the model with the best predictive performance, we searched for 

the optimal combination of parameters (i.e., hyper-parameter) based on cross 

validation with the grid search feature of the h2o package in R. More details 

regarding the parameters in grid search are presented in Table 1. We also added 

a built-in balance procedure or SMOTE (Synthetic Minority Over-sampling 

Technique) procedure to the original models to balance the class distribution 

and to check the improvement in the model performance (Torgo, 2010a).

4. External validation and application. We validated the optimal predictive model 

with the testing set. With the optimal model, we determined the relative 

importance of each predictor, identified the dominant predictors, and investigated 

the association of those predictors with the health impacts of power outages. 

Finally, we utilized the full predictor data at the community (i.e., division) level 

to predict the possibility of elevated health risk following POs across the entire 

state covering the less populated divisions (accounting for 16.7–20% cases) 

where statistical modeling cannot be developed.

We completed geocoding using the Street and Address Maintenance Program in ArcGIS 

10.3.1 (The NYS GIS Program Office, 2017) and accomplished all analyses with R 3.4.1.
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Results

Descriptive statistics

There was a total of 3,537,802 hospital admissions due to cardiovascular diseases, 1,906,429 

due to respiratory diseases, 808,755 due to respiratory infections, 166,772 due to food and 

water borne diseases and 1,037,245 due to injuries reported across the New York State 

during the study period. We observed that power outages overall were associated with 

an increased hospitalization rate in 29.7% electric operating divisions for cardiovascular 

diseases, 24.2% for respiratory diseases, 20.1% for respiratory infectious diseases, 21.9% for 

food and water borne diseases, and 29.1% for injuries, as compared with non-power outage 

periods.

Overview of the predictor contributions

As described in Table 1, the optimal models we identified for those outcomes generally 

were models based on the random forest algorithm with outcomes balanced using the 

SMOTE procedure. The optimal number of trees and the optimal maximum depth of 

interactions varied across health outcomes. Based on the optimal predictive models, we 

found the average relative importance of predictors were generally consistent across the 

three categories: the socioeconomic factors (ranging 3.5–5.4% for outcomes except food 

and water borne diseases), landscape factors (ranging 1.6–4.6%), and built environment 

factors (ranging 4.3–5.3% for outcomes except food and water borne diseases). The relative 

importance of socioeconomic factors was slightly higher for respiratory infections whereas 

built environment factors were slightly more important for the cardiovascular and respiratory 

diseases compared with other outcomes, as described in Table 2. The average importance 

of predictors for the food and water borne diseases generally was larger as fewer predictors 

were identified.

Dominant predictors in different categories

When comparing different factors within each category, we observed that 1) within the 

socioeconomic category factors representing a greater urbanization such as population 

density (importance ranging 3.3–16.1%) and per capita income (importance ranging 2.3–

10.7%) generally were associated with a higher possibility of elevated health risk during 

power outages. In contrast, less urbanized divisions such as those with a higher percent of 

residents living in mobile homes (importance ranging −10.2% to −2.9%) usually had a lower 

health risk. The percent of minority, population density, per capita income, and percent of 

mobile homes were top contributors to the vulnerability of multiple health outcomes as 

displayed in Fig. 3. 2) In addition, we found that elevated health risk was also associated 

with other urbanization indicators such as the proportion of residents having access to public 

transportation (importance ranging 4.9–15.6%) and the density of public infrastructure 

including healthcare (importance ranging 3.9–8.5%) and education (importance ranging 0.8–

7.6%) related business. 3) The average soil temperature (importance ranging 3.0–15.7%) 

and the percent of sand in soil (importance ranging 1.6–11.8%) were two most important 

landscape predictors for multiple health outcomes, as described in Table 2 and Fig. 3.
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Dominant predictors between different outcomes

When comparing different health outcomes, although the overall trend of a higher health 

risk in divisions with a higher degree of urbanization was generally consistent, top 

contributors were slightly different for different outcomes. In addition to the common 

dominant predictors, each health outcome also had its unique important contributors as 

described in Fig. 3. The risk of cardiovascular diseases and respiratory infections was higher 

in divisions with a higher percent of sand in soil (importance 11.8% and 6.5%, respectively). 

The elevated risk of food and water borne diseases was associated with a higher percent 

of residents with limited English proficiency (importance 8.1%). All health risks were 

significantly associated with the percent of minority among the total population (importance 

ranging −6.3% to 27.9%).

Optimal predictive model-based vulnerability of elevated health risk and the spatial pattern

According to Fig. 2, the best predictive model for the hospitalization rate of cardiovascular 

diseases yielded an area under the receiver operating characteristic curve (AUC) of 0.81 in 

the model training, and an AUC of 0.80 in the internal cross validation and an AUC of 0.77 

in the final external testing. AUCs were generally consistent across training, cross validation 

and testing for a predictive model which ranged 0.72–0.73 for respiratory diseases, 0.78–

0.80 for respiratory infections, 0.77–0.86 for food and water borne diseases, and 0.76–0.83 

for injuries. Fig. 4 displayed the predicted possibility surface of risk elevation for each 

health outcome across the state. Consistent across different health outcomes, elevated risk 

generally was more likely to occur among the communities in downstate areas surrounding 

the New York City and among those in the northwest counties including Erie, Monroe and 

Onondaga.

Discussion

Identifying dominant neighborhood environmental indicators

Higher risk in more urbanized areas.—We found that the health impact of power 

outages overall tended to be higher in areas with a higher degree of urbanization as 

indicated by a higher population density, greater accessibility to public transportation 

system, and a higher density of public infrastructure, which was consistent across different 

health outcomes. This suggests that highly developed and generally reliable urban critical 

infrastructure systems may be associated with heightened vulnerability, compared to more 

rural areas, in the event of disruption (Cutter et al., 2016). Although few studies have 

evaluated the sociodemographic variations in the health impact of power outages, our 

finding was in agreement with the limited existing epidemiological evidence. For example, 

it was reported that respiratory admissions increased by 23% (95%CI: 3–46%) during the 

2003 Northeast Blackout in high-income and more urbanized areas of New York City 

whereas it did not increase in less urbanized regions, as compared with non-blackout days 

(Lin et al., 2011b). Similar disparities have been reported for the health impact of natural 

disasters. A long-term study on the hurricane damage on the U.S. Gulf Coast surprisingly 

revealed that residents at the highest health risk were Whites and nonpoor households 

(Logan and Xu, 2015). A greater vulnerability among residents in more urbanized areas 

was expected, particularly during power outages. Electricity is one of the most important 
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components in the process of urbanization. A higher degree of urbanization implies a 

stronger reliance on electricity (Kaur and Luthra, 2018; Zhao and Zhang, 2018). For 

example, urban areas are larger consumers of electricity in order to support more public 

infrastructures and business such as healthcare facilities and water supplies, more home 

appliances such as air conditioners and humidifiers, and more healthcare devices such as 

nebulizers and oxygen monitors, compared with less developed areas. Therefore, residents 

in more urbanized areas generally adapt to a greater electrical dependency and tend to be 

affected more by power outages compared with those living elsewhere (Zhang et al., 2020a).

Higher risk in areas with higher minorities.—Our findings also suggested a higher 

health impact from power outages in areas with a higher proportion of minorities and 

those with language barriers. The impact of the percentages of minority and those with 

language barriers was consistent with numerous previous findings (Di et al., 2017; Parker 

et al., 2018). These residents are considered the most vulnerable groups in response to 

environmental stressors, as potential results of obstacles to receiving safety information 

and help-seeking (e.g. undocumented persons) and/or inadequate access to primary and 

specific health care and limited health insurance and medical benefits (Bolin and Kurtz, 

2018; Muncan, 2018). Our findings also emphasized the importance of potential research 

and intervention strategies targeting minority communities to improve the health disparities 

in numerous health issues.

Higher risk with certain soil conditions.—Surprisingly, we found a higher health risk 

of power outages in areas with higher percentages of sandy soil and in areas with a higher 

soil temperature. In general, sandy soils are lighter and looser than other soil types and have 

limited water-holding capacity (Fang and Su, 2019; Hagyó and Tóth, 2018). The holding 

capacity of sandy soils is significantly lower than clay, silt or heavier soils (Chiras, 2009). 

Therefore, it was likely that the electricity poles and distribution lines were less sustainable 

in areas with a higher percent of sandy soils. Potential mechanism for the impact of soil 

temperature remains unknown. However, a possible interpretation was that soil temperature 

could affect certain biological processes underground, thus, affect the water-retain capacity 

and holding power of the soil (Nishar et al., 2017). Another possibility was that higher 

soil temperature may also be associated with higher-intensity human activities (e.g. heavier 

traffics and heat island effect) in more urbanized regions.

Identifying spatial hotspots with optimal models

According to the optimal predictive models, we identified that the communities in and 

surrounding the New York City and those located in the northwest counties such as Erie, 

Monroe and Onondaga were more likely to be the spatial hotspots during power outages. 

This pattern was consistent across different health outcomes. The potential mechanism 

underlying the spatial pattern remains unclear. However, it was likely shaped by the joint 

effect of dominant predictors which were associated with a higher level of urbanization. 

Specifically, we found that the spatial pattern of the health risk identified in the current study 

is consistent with the spatial distribution of average wages across the state as reported by the 

U.S. Bureau of Labor Statistics (New York–New Jersey Information Office, 2016) as well as 

with the distribution of per capita income reflected by the 2006–2010 American Community 
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Survey 5-Year Estimates (Wikipedia contributors, 2019). These findings confirm that health 

risks following power outages are generally greater in more urbanized areas than elsewhere, 

and our models have good predictive capacity to capture these trends.

Optimal predictive models

We found that our models based on machine learning algorithms had good predictive 

performance in identifying the elevated health risk following power outages. While 

traditional regression models may suffer from collinearity issues when multiple predictors 

with high correlation are included in the same model and misfit issues when the impact 

of a predictor on the outcome is nonlinear, as well as prone to unreliable estimates in 

presence of outliers in the data, the machine learning methods used in the current study 

overcome these limitations through a recursive binary split algorithm (Sidey-Gibbons and 

Sidey-Gibbons, 2019; Tian et al., 2019). The marginal effect of a predictor, regardless of 

being linear or nonlinear, correlated to the impact of other predictors or not, could be well 

captured with the machine learning algorithm (Elith et al., 2008; LeDell et al., 2019b). 

Therefore, machine learning methods usually have a better predictive performance than 

the traditional methods and have been increasingly used in environmental health studies. 

Particularly, multiple strategies including feature selection, grid search in hyperparameters 

and case balancing could be used to further improve the machine learning algorithm (LeDell 

et al., 2019b; Torgo, 2010b). In the current study, all areas under the ROC curves were 

greater than 0.70, most of which were above 0.75. Although there is no gold standard to 

define a “good” predictive performance, generally, an AUC > 0.70 for a predictive model 

can be deemed appropriate. Our AUC estimates are within the range of those for predictive 

models reported in existing studies (Li et al., 2022; Saatchi et al., 2022; Song et al., 2021; 

Tang et al., 2022) which usually are in clinical settings. Compared with clinical predictors 

which generally are used for individual-based outcome predictions, environmental predictors 

are of a greater public health significance which are usually predictive for outcomes at 

the population level where clinical variables may not be feasible. In addition, consistently 

appropriate AUCs across different data splits suggested that our models were consistently 

effective in both internal and external settings.

Strength and uncertainties

This study has several strengths including the assessment of multiple important health 

outcomes on millions of hospital admissions across the entire New York State and, 

to the best of our knowledge, the first study investigating the dominant neighborhood 

environmental characteristics shaping the population vulnerability to adverse health impact 

during power outages. The diverse racial/ethnic background of the population and 

socioeconomic conditions across the state increases the generalizability of our findings. 

In regards to the methodology, we used sophisticated machine learning algorithms to 

overcome limitations such as collinearity and nonlinearity issues among the traditional 

models, and applied multiple strategies including grid search and case balancing to boost 

the performance of the predictive models. This study provides a standard framework for the 

application of machine learning methods to environmental health studies.
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Although our study provides new insights, some uncertainties should be acknowledged. 

First, the negative health impacts of power outages may be confounded by reduced air 

pollution concentrations as select power plants may shut down during some outages 

(Marufu et al., 2004) and by effects from the extreme weather events which were the most 

common causes of power outages. While this issue usually was not considered in previous 

research, we minimized the confounding of air pollution and weather events by integrating 

these additional pieces of information from different sources and controlling them in the 

assessment of the health risk of power outages. Second, this study was limited to evaluating 

the impacts on hospital admissions of cardiovascular, respiratory and intestinal illness and 

injury, which did not include any clinic or emergency department visits. Thus, this study 

may be missing some percentage of health impacts from power outages. However, as 

severely injured residents and those with severe exacerbation of cardiovascular, respiratory 

or intestinal symptoms generally require immediate care and treatment through hospital 

admission, our study captures the most severe groups. Third, the statistical significance of 

RR estimates was not considered in the definition of risk elevated communities since the 

statistical significance was largely subject to the sample size. However, the small sample 

size at the fine division level should be acknowledged. Future work should confirm these 

findings by taking the statistical significance of effect estimates into consideration.

Conclusion

Based on the optimal models, we found greater adverse health impacts of power outages 

in areas with a higher degree of urbanization. The trend was consistent across different 

health outcomes, with specifically the percent of residents having access to the public 

transportation, population density, and the percent of minority and soil characteristics being 

dominant predictors. The optimal predictive models indicated a higher possibility of health 

risk elevation during power outages for more urbanized communities in downstate counties 

and those located in the northwest of the state.
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Fig. 1. 
Diagram of Model Development and Application. The health risk elevation status identified 

using the time-series analysis was linked to a comprehensive set of 36 factors at the 

community level to develop the predictive models and to evaluate the contribution of each 

factor to the health risk elevations.
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Fig. 2. 
The Predictive Performance of the Optimal Models. The tuned models were confirmed with 

internal training, cross-validation and external testing. The area under the ROC curve was 

generally high, indicating a good predictive performance.
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Fig. 3. 
Associations between Top Five Contributors and the Health Impact of Power Outages, by 

Health Outcomes. The solid curves represented the marginal effect of a contributor on the 

outcome while the dashed lines represented the average marginal effect over the range of 

the contributor as was fitted linearly. Factors representing a greater urbanization such as 

population density and per capita income generally were associated with a higher possibility 

of elevated health risk during power outages. In contrast, less urbanized divisions such as 

those with a higher percent of residents living in mobile homes usually had a lower health 

risk. The percent of minority, population density, per capita income, and percent of mobile 

homes were top contributors to the vulnerability of multiple health outcomes.

Zhang et al. Page 17

Hyg Environ Healh Adv. Author manuscript; available in PMC 2023 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Predicted Possibility of Elevated Health Risk Associated with Power Outages across the 

New York State. Consistent across different health outcomes, elevated risk generally was 

higher in downstate areas and northwest counties including Erie, Monroe and Onondaga.
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