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Abstract

Mature microRNAs (miRNAs) regulate most human genes through direct base-pairing with

mRNAs. We investigate the underlying principles of miRNA regulation in living cells. To this

end, we overexpressed miRNAs in different cell types and measured the mRNA decay rate

under a paradigm of a transcriptional arrest. Based on an exhaustive matrix of mRNA-

miRNA binding probabilities, and parameters extracted from our experiments, we developed

a computational framework that captures the cooperative action of miRNAs in living cells.

The framework, called COMICS, simulates the stochastic binding events between miRNAs

and mRNAs in cells. The input of COMICS is cell-specific profiles of mRNAs and miRNAs,

and the outcome is the retention level of each mRNA at the end of 100,000 iterations. The

results of COMICS from thousands of miRNA manipulations reveal gene sets that exhibit

coordinated behavior with respect to all miRNAs (total of 248 families). We identified a small

set of genes that are highly responsive to changes in the expression of almost any of the

miRNAs. In contrast, about 20% of the tested genes remain insensitive to a broad range of

miRNA manipulations. The set of insensitive genes is strongly enriched with genes that

belong to the translation machinery. These trends are shared by different cell types. We

conclude that the stochastic nature of miRNAs reveals unexpected robustness of gene

expression in living cells. By applying a systematic probabilistic approach some key design

principles of cell states are revealed, emphasizing in particular, the immunity of the transla-

tional machinery vis-a-vis miRNA manipulations across cell types. We propose COMICS as

a valuable platform for assessing the outcome of miRNA regulation of cells in health and

disease.

Author summary

Alteration in miRNA expression occurs throughout cell differentiation, inflammation,

viral infection, tumorigenesis, and other pathologies. Notwithstanding a rich body of

experimental data intended to assess the outcome of miRNA alterations in cells, the

underlying design principles remain obscure and fragmented. In this study, we develop a

quantitative stochastic model that simulates the mRNA steady-state in view of alteration
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in miRNAs’ abundance. We systematically analyzed the behavior of miRNA-mRNA regu-

lation and confirm that the stochastic nature of miRNA regulation reveals unexpected

robustness of cell behavior across cell types. Specifically, we expose the immunity of the

translational machinery towards miRNA regulation. The developed platform, called

COMICS compares the results of miRNA regulation across various cell types. Based on

stochastic and probabilistic considerations, we provide a dynamic and flexible framework

that quantifies the competition of miRNAs within cells in health and disease.

Introduction

Mature microRNAs (miRNAs) are small, non-coding RNA molecules (*22 nucleotides) that

regulate genes through base-pairing with their cognate mRNAs, mostly at the 30 untranslated

region (3’-UTR) [1–3]. In multicellular organisms, miRNAs act post-transcriptionally by

affecting the destabilization and degradation of mRNAs, as well as interfering with the transla-

tion machinery [4–6]. Switching between cell states is accompanied by a shift in the profile of

miRNAs [7]. Indeed, miRNA-dependent transitions are documented in cells undergo quies-

cence [8], differentiation [9], viral infection [10] and cancer transformation [11, 12].

In humans, there are ~2500 mature miRNAs that derive from ~1900 genes [1]. Studies

of miRNA-mRNA regulatory networks reveal that almost all coding genes have multiple puta-

tive miRNA binding sites (MBS) at their 3’-UTR [13–15], and many miRNAs can possibly tar-

get hundreds of transcripts [16, 17]. However, current estimates postulate that only ~60% of

the human coding genes are regulated by miRNAs [18, 19]. Most of our knowledge of the spec-

ificity of miRNA-mRNA network is based on computational prediction tools [20] that use

parameters learned from in-vitro overexpression or miRNA knockdown experiments [21].

Additionally, the CLIP-Seq experiments produce bulk lists of interacting miRNAs and

mRNAs from healthy and diseased cells [22]. A revised protocol, called CLASH, provides vali-

dated pairs of miRNAs and their binding site sequences (MBS) on targeted mRNAs [2, 23].

Unfortunately, many of the above protocols suffer from low coverage and poor consistency

(discussed in [24]).

A quantitative perspective for miRNA regulation is strongly dependent on the identity and

quantity of limiting factors in living cells. Example is the AGO protein, a crucial catalytic com-

ponent of the RNA silencing complex (RISC) [25, 26]. From the mRNA perspective, the num-

ber of miRNA molecules, and the positions of MBS along the relevant transcript determine the

potential of miRNA interactions [27]. The outcome is a rich regulatory network displaying a

“many to many” relation of miRNAs and mRNAs. Such design supports noise reduction [28–

30], and robustness against environmental fluctuation [31].

A cellular view of miRNAs networks was formulated by the ceRNA hypothesis [32, 33].

Accordingly, overexpression of MBS-rich molecules of RNA may displace miRNAs from their

primary authentic targets [34, 35], resulting in an attenuation relief of specific mRNAs. The

result of such a competition is an interplay between direct and indirect effects on gene expres-

sion [36, 37]. The dynamics of the miRNA-target regulatory network in view of direct and dis-

tal regulation had been modeled [38]. It was further postulated that many of the miRNA weak

sites contribute to target-site competition without imparting repression [34].

In this paper, we describe a quantitative stochastic model that challenges the cell steady-

state in view of alteration in miRNAs’ abundance. Our model operates at the cellular level and

compares the overall trend of miRNA regulation in various human cell lines. We have system-

atically analyzed the behavior of miRNA-mRNA interacting pairs. This analysis confirmed
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that the stochastic nature of miRNA regulation reveals unexpected robustness of the transla-

tional machinery in living cells.

Results

Determining miRNAs stability and decay rate of mRNAs upon

transcriptional arrest

The nature and extent of miRNA regulation in living cells are depicted by the absolute quanti-

ties, composition, and stoichiometry of the miRNAs and mRNAs [39]. In this study, we model

the outcome of the miRNA-mRNA network under a simplified paradigm in which the synthe-

sis of new transcripts (miRNA and mRNAs) is prevented.

We first tested the relative changes in the quantities of miRNAs and mRNAs in HeLa and

HEK-293 cell-lines, in the presence of the transcriptional inhibitor Actinomycin D (ActD, Fig

1A). Overall, we mapped 539 and 594 different miRNAs in untreated HeLa and HEK-293

cells, respectively (Fig 1A). In addition, 16,236 and 16,463 different expressed mRNAs (not

including miRNAs) were mapped from HeLa (S1 Dataset) and HEK-293 cells (S2 Dataset),

prior to ActD treatment, respectively. We then tested the composition of miRNAs and

mRNAs 24 hrs post-treatment. Importantly, the number of miRNA molecules 24 hrs after the

application of the drug remains constant in HeLa (Spearman rank correlation, r = 0.94) and

Fig 1. Expression profiles of miRNA and mRNA under transcription arrest. Counting miRNAs (left) and mRNAs (right) for the

4 different time points for HeLa (top) and HEK-293 (bottom). (A) The samples were collected at 0, 2, 8, and 24 hrs following

transcription inhibition by ActD. (B) Expression of miRNAs (left) and mRNAs (right) in pairs of 4 different time points for HeLa

(top) and HEK-293 (bottom). Gene expression is presented by logarithmic scale (log10). Spearman correlation (r) is listed for each

pair along with the p-value of the significance. Source data is available in S1 Dataset (HeLa) and S2 Dataset (HEK-293). (C) Relative

abundance of each expressed mRNAs for HeLa cells. At time 0, the relative abundance is set to 100%, and at each proceeding time

points the abundance relative to time 0 is reported. Each line represents a single gene (mRNA). Only genes with a minimal

expression level of 0.02% expression are listed (equivalent to 97 FPKM, total of 860 genes). The blue line represents the average of all

reported genes at each time point. (D) Compilation of mRNA retention distribution (probability density function, PDF) of all the

reported genes after 8 hrs and 24 hrs from initiation of transcription inhibition by ActD. All genes with a retention level�100 are

combined (at 100% retention).

https://doi.org/10.1371/journal.pcbi.1007204.g001

Modeling cellular miRNA regulation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007204 December 2, 2019 3 / 24

https://doi.org/10.1371/journal.pcbi.1007204.g001
https://doi.org/10.1371/journal.pcbi.1007204


HEK-293 cells (Spearman rank correlation, r = 0.97, Fig 1B). In contrast, the number of

mRNAs molecules has monotonically declined in accordance with the effect of ActD on the

bulk of mRNAs (Fig 1A). Maximal variability in the profile of mRNAs is measured between 0

hr and 24 hrs for HeLa (Fig 1B, Spearman rank correlation, r = 0.84, top right) and HEK-293

cells (Spearman rank correlation, r = 0.88, bottom right, right). Supporting figures show the

pairs for all other time points for HeLa (S1 Fig) and HEK-293 (S2 Fig), respectively.

Fig 1C follows the changes of the expression of individual genes in HeLa cells along 24 hrs

following the drug treatment. A change in each mRNA abundance is quantified relative to its

expression level at the starting point. To avoid numerical instability, we only report on the

retention percentage for genes that are expressed above a predetermined threshold (see Mate-

rials and methods, a total of 860 genes, Fig 1C). We illustrate how the overall distribution of

the retention level (in %, 860 genes) varies between two time points, 8 hrs and 24 hrs (Fig 1D).

The average retention rate is ~83% after 8 hrs and decreases to 53% 24 hrs following ActD

treatment. These results validate that the decay rate for most mRNAs is a gradual process that

continues for 24 hrs.

Direct targets and non-target mRNAs are affected by miRNAs

overexpression

Fig 2 shows the results of direct and indirect effects of overexpressing hsa-mir-155. HeLa cells

were transfected with individual miRNAs, and the number of miRNA and mRNA molecules

Fig 2. Retention profile of mRNAs following overexpressing miRNAs in HeLa cells. Relative mRNA retention in HeLa cells that

were transfected and overexpressed with hsa-mir-155. Measurement were taken at 4 time points as indicated. (A) The retention plots

are partitioned to target genes (i) (pink, left panels) and (ii) non-target genes (blue, middle panels). In (iii), the pink and blue lines

are the average retention patterns for hsa-mir-155 for the targets and non-targets, respectively. (B) Distribution of genes retention

after 24 hrs following the ActD treatment, according to their labels as targets (upper panel, pink) and non-targets (lower panel, blue).

The plots compare the retention of genes from the control (smooth line), and from hsa-mir-155 overexpressed condition (dashed

line). The number of genes that are included in the analyses are indicated in parentheses. Target genes are marked by pink lines (top)

and the non-target genes by blue lines (bottom). Note the shift in the distribution in the non-target genes towards the genes with

higher retention level. All genes with a retention level�100 are shown as 100% retention. (C) Retention levels are summarized by

the box plots showing all time points following the ActD treatment (0 hr, 2 hrs, 8 hrs and 24 hrs) for target (pink) and non-target

(blue) gene lists.

https://doi.org/10.1371/journal.pcbi.1007204.g002
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was measured 24 hrs after the addition of ActD. We quantified the effect of hsa-mir-155 by

considering its predicted targets. Specifically, for each miRNA, we split all expressed genes

into targets and non-targets gene sets, according to TargetScan 7.1 table [27] (see Materials

and methods). Retention rates of all genes relative to their starting point are shown (Fig 2A).

The average decay rate for hsa-mir-155 direct targets is slightly faster compared with the larger

set of non-target genes (Fig 2A, compare pink and blue thick lines). Furthermore, the decay

after 24 hrs from ActD treatment for HeLa cells overexpressing hsa-mir-155 is enhanced in

the transfected vs. naïve cells (Fig 2B, upper panel). While the shift in the relative mean statis-

tics (Fig 2B) for the direct targets is marginal (p-value = 0.122), the shift for the non-target

genes is significant (p-value of 0.002, Fig 2B, compare solid and dashed lines). A boxplot sum-

mary of all time points partitioned to target genes and non-target gene sets is shown (Fig 2C).

Repeating the test for all time points confirmed the trend for each of the experimental time

points (0 hr = 1.72e-03, 2 hrs = 3.36e-05, 8 hrs = 3.73e-03 and 24 hrs = 2.47e-2). The result

implies a certain degree of stabilization for the non-target genes as a result of hsa-mir-155

overexpression. A similar trend for the retention profile from HeLa cells overexpressing hsa-

mir-124a was observed (S3 Fig).

We conclude that under the described experimental settings, the miRNA regulatory net-

work affects the probabilities of miRNA-target interactions, mostly by an indirect propagation

of interactions, presumably due to competition on MBS, along with a continuous change in

the miRNAs-mRNAs stoichiometry.

A probabilistic approach for miRNA—mRNA interactions

The experimental results (Figs 1 and 2) emphasize the need for a systematic approach for

studying miRNA-mRNA interaction network while considering the quantitative constraints in

living cells. For our computational approach, we designed a stochastic process in which miR-

NAs and mRNAs compete dynamically, where the miRNA-mRNA binding probabilities dic-

tate the level of suppression of gene expression. We used the miRNA-MBS interaction matrix

from TargetScan, where each interaction is associated with a probability score. These scores

are a proxy for the effectiveness of miRNA binding to a specific MBS. Genes that lack MBS in

their 3’-UTR, are not listed in the TargetScan matrix and are excluded from our analysis. Alto-

gether, TargetScan matrix reports on over 8.2 M interactions many of which are questionable.

Rather, we restrict the analysis to the 1,183,166 interactions which are annotated by TargetS-

can as high-quality miRNA-mRNA pairs (see Materials and methods, and S1 Text).

We set to investigate the properties of the miRNA-mRNA interaction network in living

cells. To this end, we developed an iterative simulator called COMICS (COmpetition of MiR-

NAs Interactions in Cellular Systems). Fig 3A illustrates a single iterative cycle of COMICS.

The probabilistic framework relies on a constant updating of the cell-state. The cell state is sen-

sitive to the actual quantities of occupied versus free molecules, and to the calculated miRNAs

and mRNAs distributions. COMICS iterations are designed to capture the stochastic nature of

miRNA regulation in living cells.

Fig 3B is a breakdown of the COMICS process through the lens of the targeted mRNAs.

Importantly, while the nature and the positions of MBS at the 3’-UTR of a transcript are given

for each mRNA variant, the expression profiles of miRNAs and mRNAs differ across cell types

(S1 Dataset (HeLa), and S2 Dataset (HEK-293)). Therefore, the composition of miRNAs and

mRNAs, and their absolute numbers in a cell dominate the sampling process (Fig 3B, pink

frames). At each iteration, a miRNA is randomly sampled, with probability proportionate to

its relative abundance. Next, one of its target genes is randomly chosen according to the mea-

sured expressed mRNAs distribution. A binding event may occur according to the binding
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Fig 3. Scheme of the COMICS platform and performance of the simulation process. A schematic view for a single iteration of

COMICS simulation. (A) A scheme for a single iteration step. After each successful interaction step, the distributions of the miRNA

and mRNA in the cells are updated. Therefore, the next iteration is slightly changed due to resetting of the mRNA composition and

availability of the free pool of miRNAs. The input for the simulator matches the experimentally determined molecular profile of the

cell under study. (B) The outline of the major steps of COMICS operation from the mRNA perspective. The composition of miRNAs

in the cells is obtained from the experimental measurement at 0 hr, normalized for 50k miRNAs and of 25k mRNAs. For HeLa cells,

these are 3666 types of mRNAs that are included in the analysis (i.e. above a minimal threshold). Sampling of the miRNA and

mRNAs is done according to their distribution and the probability of the interaction according to TargetScan interaction matrix

(with 1.2 M values). A dashed mRNA shown after N iterations signifies an occupied transcript that is still halted prior to its removal

form the list, and releasing of its bound miRNAs. (C) The retention of HeLa expressed genes along COMICS simulation for for 1M

iterations and 100 k iterations (D). COMICS simulation on input from HeLa cells reports on 3666 types of mRNAs and 110 of

miRNAs. These numbers account for the 50k and 25k molecules of miRNAs and mRNAs, respectively. Each grey line represents the

retention profile of a single type on mRNA. The blue line shows the mean retention. For graphical clarity, only mRNA above a

predefined expression (>0.02%) are shown. (E) Testing COMICS performance and dependency on the information in TargetScan

interaction matrix. COMICS simulation performance in HEK-293 was compared to experimentally validated pairs as reported

from CLASH data on HEK-293. The histogram shows the performance in term of the significant of the overlap of the reported

COMICS results (for each 10k, total 100k iterations) using TargetScan probabilistic converted matrix (grey), and two versions of

randomization for the interaction table (S7 Fig). The statistical test was based on the 251 genes that are reported as pairs miRNA-

mRNA pairs by CLASH and expressed above the minimal expression threshold used for COMICS simulation protocol. The use of

the TargetScan matrix shows significant results versus CLASH data (at the significant range p-value of 1e-4 to 1e-6). Applying any of

the randomizations for the miRNA-MBS interaction table, caused a drop in the performance to non-significant values.

https://doi.org/10.1371/journal.pcbi.1007204.g003
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probability of the sampled miRNA-mRNA pair. Following such event, the distributions of

both, the miRNA and mRNA are updated (Fig 3A and 3B). Specifically, the status of the

mRNA following a successful pairing change accordingly (i.e., marked as ‘prone to degrada-

tion’). The status of mRNA as ‘occupied’ and ‘prone to degradation’ does not prevent it from

engaging in subsequent bindings. However, binding to MBS in close proximity to an occupied

site on the same transcript is excluded. Such overlapping MBS are defined according to a mini-

mal spacing between them. An occupied mRNA is marked for degradation with some delay,

mimicking the in-vivo likely scenario of multiple miRNA binding on the same transcript. The

cellular experiments (Fig 1B, S1 and S2 Figs) confirmed that miRNAs are extremely stable and

their level is unchanged. Thus, once an occupied mRNA is removed, all bounded miRNAs

return to the free miRNA pool. As a result, the stoichiometry of miRNA to mRNA is gradually

changing with an increase in the ratio of miRNAs to free mRNAs.

The results of COMICS run for 100k and one million iterations on HeLa cells are shown.

Fig 3C and 3D show the decay rate of 755 genes whose expression exceeds a predetermined

threshold (>0.02% of mRNA molecules). We observed that changes in gene expression (mea-

sured by the retention level) are most pronounced at the initial phase of the COMICS run (i.e.

100k iterations). Following 1M iterations, the mean retention of mRNAs continues to drop (to

43.5%, 1M iterations, Fig 3C). A similar degree of decay was observed following 24 hrs of tran-

scriptional arrest in living cells (Fig 2). The S3 Dataset reports on the output of mRNA expres-

sion as produced by COMICS, along the 1M iteration run. Comparing the results from

COMICS with the cell experiments following 24 hrs of ActD on Hela and HEK-293 cells

showed high correlation at 100k (Spearman correlation of 0.6 and 0.58, respectively). The cor-

relation dropped to 0.38 (HeLa) and 0.35 (HEK-293) at 1M iterations (S4A Fig). The rest of

the analyses are based on COMICS run with 100k iterations. It is consistent with the more sen-

sitive phase of the simulation, as illustrated by comparing the changes in retention of mRNAs

relative to the beginning of the simulations (p-value of Wilcoxon signed-rank test = 1e-94, S4B

Fig).

The output of COMICS and results from a direct miRNA-mRNA pairing experiment were

compared (Fig 3E). Specifically, we tested the correspondence along the COMICS run with

respect to results from the CLASH experiment [23] (Fig 3E), both performed on HEK-293

cells. The overlap of our data and the CLASH [23] experiment is highly significant throughout

the iteration run (Fig 3E, hypergeometric test p-value = 0.0014). Remarkably, replacing the

TargetScan miRNA-MBS interaction matrix with two versions of randomized tables (see

Materials and methods, and S1 Text) eliminated the statistical agreement between CLASH and

COMICS results (Fig 3E). We conclude that the stochastic probabilistic protocol used by

COMICS faithfully simulates global trends in miRNA regulation that takes place in living cells.

Simulating miRNA overexpression by COMICS reveals stabilization of

non-target genes

COMICS makes it possible to perform exhaustive overexpression experiments while testing

the impact on mRNA decay. Notably, miRNA profiles are among the strongest characteristics

of cell identity and cell states. We activated COMICS by manipulating the abundance of hsa-

mir-155 from its native state (x1, no overexpression) to varying degrees of overexpression

(marked by multiplication factors: x0.5, x3, x9, x18, x90, x300 and x1000) using the probabilis-

tic in-silico simulation framework (Fig 3B). In practical terms, overexpression of a single

miRNA causes the re-distribution of all other expressed miRNAs (Fig 4A). Fig 4A illustrates

that overexpression of miRNA (hsa-mir-155) by a factor of x300 and x1000. Under these con-

ditions, hsa-mir-155 comprises 20% and 50% of all miRNAs respectively. It is important to
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note that the calculated fraction of each miRNA in the cell following overexpression depends

on its initial abundance in the native cell.

Fig 4B demonstrates the gradual change in mRNA retention of each gene (above a predeter-

mined threshold) along the 100k iterations of COMICS simulation (source data in S4 Dataset

for HeLa and HEK-293 cells). The analysis reveals that the final retention level is sensitive to

the degree of overexpression (Fig 4C). In the case of hsa-mir-155 in HeLa cells, elevating the

Fig 4. miRNA overexpression paradigm using COMICS platform. (A) The percentage of miRNA is sorted from lowest (left) to

highest (right). Seven different hsa-mir-155 over expression simulations are shown (x1, x3, x9, x18, x90, x300 and x1000) from

bottom to top. The fraction of hsa-mir-155 from the entire miRNA pool in the system is marked in pink. The relative percentage of

each miRNA abundance is separated by vertical line. (B) Overexpression simulation of hsa-mir-155 in eight different overexpressing

levels (marked by multiplication factors), where hsa-mir-155 target genes are marked in pink and all other non-target genes are

marked in gray. The mean retentions of both gene groups are plotted in bold lines. (C) Average final retention of the different

simulation runs, using different overexpression factors of hsa-mir-155 as shown in B partitioned to hsa-mir-155 target and non-

target genes. A statistical test was performed to test for the significance of the final retention for hsa-mir-155 x1 and x1000. The t-test

p-value for the target genes is 5.77e-12 and for the non-target genes is 0.00054.

https://doi.org/10.1371/journal.pcbi.1007204.g004
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miRNA from x18 to x90 caused a drop in the average retention of its targets, a trend that is

even more prominent at higher overexpression levels. A minor, but consistent and significant

increase in the retention of non-target genes (Fig 4C, gray color) is observed (t-test p-value =

0.00054).

A unified pattern of mRNA retention is associated with overexpression of

miRNAs

To determine whether the composition and stoichiometry of miRNAs and mRNAs dictate

miRNA regulatory behavior, we performed exhaustive and systematic manipulations of all cel-

lular miRNAs (see S5 Dataset for miRNA profiles in different cell lines). We first clustered

individual miRNAs according to their families. Altogether there are 248 such families in HeLa

cells that match their representation in the miRNA-MBS TargetScan prediction matrix (see

Materials and methods). We multiply the basal abundance (x1) of each of miRNA families by a

factor (f) to get matrices of retention values of genes (rows) and miRNA (columns, 248 fami-

lies). As each miRNA family was overexpressed by the tested factor (f), we obtained a series of

matrices for each factor (x3, x9, x18, x90, x300 and x1000). Thus, matrix Mfij is the final reten-

tion of gene i after 100k iterations of COMICS for the overexpressed experiment of miRNA j
(Fig 5A). For an unexpressed miRNA, a minimum level of expression is assigned as its initial

level (x1 level, see Materials and methods). For clarity, the matrix Mfij in Fig 5 is restricted to

genes whose initial expression level exceed a pre-determined threshold (e.g., 775 rows for

HeLa cells, S6 Dataset).

Inspecting Mfij for each overexpression condition reveals the presence of a substantial set of

genes that are characterized by high retention >85% for�90% of the tested miRNAs (i.e., the

high retention criterion satisfied by at least 225 of the 248 tested miRNA families). We refer to

this set as cross-miRNAs stable genes. The number of stable genes is 185 genes for HeLa, 176

genes for HEK-293 and 123 genes for MCF-7. Running COMICS on HeLa cells for 200k itera-

tions, instead of the default 100k setting, obviously resulted in fewer number of genes with

high retention (<85% retention, 71% of the genes when compared to 100k iteration run).

However, testing the set of cross miRNA stable set validated that 94% (176 out of 185 in Hela)

of the genes overlap, validating the robustness of the gene resulting lists to the parameters of

COMICS run. A full detailed analysis of cross-miRNAs stable genes is available in S7 Dataset.

These unexpected observations imply that a set of genes in each cell type is resistant to

miRNA-dependent attenuation of gene expression, regardless of the actual identity of the

miRNA. Such coordinated, concerted action of miRNAs seems to be valid for any tested cell

type, and to the best of our knowledge was not described previously.

The matrix Mf also reveals a small well-defined gene set that is highly sensitive to miRNA

regulation. Specifically, these are genes with a retention rate below 50% for�90% of the tested

miRNAs among all overexpression experiments. These genes are referred to as cross-miRNAs

sensitive genes. We report on the sensitive genes for HeLa (23 genes), HEK-293 (34 genes) and

MCF-7 (22 genes). For a full detailed analysis of cross-miRNAs sensitive genes see S8 Dataset.

These results imply that a small set of genes in each cell type is prone to regulation by (almost)

any overexpressed miRNA. Therefore, attenuation in gene expression is expected for a small

set of genes regardless of the actual miRNAs’ composition. Changing the definition for stable

and sensitive gene list had a negligible effect on the resulting list and the downstream analysis

(S1 Text).

For illustration, the matrices [Mfij (x300)] for HeLa (Fig 5B) and HEK-293 (Fig 5C) are col-

ored to indicate genes with high (red) and low retention (blue) levels. The matrices represent

clustering by genes and miRNAs, where the clustering dendrogram highlights the emergence
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of a strong signal for the sensitive genes (blue rows) in both cell types. Still, a remarkable rich-

ness in the retention pattern is associated with each gene and miRNA (Fig 5C, zoom in, Mfij

x300). The miRNAs that are naturally clustered by their similar profile across all genes (shown

by a coherent pattern across columns) will not be further discussed.

We then tested whether the characteristic of the retention profiles is persists across different

cell types. Fig 5D and 5E compare the average retention observed for each of the shared genes

Fig 5. miRNA overexpression matrices. (A) The columns stand for the different miRNAs overexpressed by factor f, and the rows

stand for the different genes above a predetermined expression level. (B) Heatmap of the retention range (in %) for genes where all

miRNAs are overexpressed at a factor x300. Each row is associated with a specific gene nad the clustering is performed by the rows

(i.e. genes). The matrix includes 248 expressed miRNAs in HeLa cells. (C) Zoom-in of a small section of the heatmap of the retention

range for genes that were overexpressed at a factor x300 as shown in B. Each row is associated with the retention by overexpressing

any of the miRNAs. (D) HeLa and HEK-293 average final retention comparison in a control setting (x1). Each point stands for a

shared gene in the 248-overexpression conditions (a row in the heatmap presented in B, C). (E) HeLa and HEK-293 average final

retention comparison as in D for the over expression factor x300.

https://doi.org/10.1371/journal.pcbi.1007204.g005
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from HeLa and HEK-293. A large difference is observed in the distribution of genes for HeLa

and HEK-293 when profiles in Mfij (x1) and Mfij (x300) are compared. This global view sug-

gests that the same miRNA manipulations drive different cell types to greatly differing end-

state.

Identifying a set of genes that are insensitive to miRNA manipulations in

different cells

To better characterize the cross-miRNA stable genes, we tested their correspondence in each

of the analyzed cell types. Fig 6A shows the unified pattern for Mfij that was found in HeLa,

HEK-293, and MCF-7 for the cross-miRNAs stable and sensitive gene sets. Note that the anal-

ysis is limited by the subset of genes common to all three cell types, and to those genes with

expression level exceeding a predetermined threshold (>0.04% of expressing mRNA

Fig 6. Comparison of sensitive and stable gene sets in different cell types. (A) Overlap of the cross-miRNA stable genes in HeLa,

HEK-293 and MCF-7 cells. Only genes that are expressed in at least two cells are listed. The gene list of the stable genes is available in

S7 Dataset. (B) Overlap of the cross-miRNA sensitive genes in HeLa, HEK-293 and MCF-7 cells. Only genes that are expressed in at

least two cells are listed. The gene list of the stable genes is available in S8 Dataset. (C) The 48 stable genes shared by HeLa, HEK-293

and MCF-7 cells according to their functional annotations: (i) small ribosomal subunit (18 genes), (ii) large ribosomal subunit (17

genes), (iii) cytoskeleton (5 genes), (iv) translation elongation (3 genes) (v) 4 additional genes. For detailed list see S9 Dataset. (D-G)

Comparison of the number of targeting miRNA of sensitive genes, stable genes, and others (not sensitive and not stable in HeLa

cells). (D) Statistics of the comparisons are significant for the comparison of stable genes set and both sensitive and other genes (t-

test p-values of 7.53e-11 and 6.48e-21, respectively). No significant difference between sensitive and other genes. (E) Comparison of

the number of MBS of sensitive genes in HeLa cells. Statistics of the comparisons are significant for the comparison of stable genes

set and both sensitive and other gene sets (t-test p-values of 2.07e-9 and 5.6e-15, respectively). No significant difference between

sensitive and other genes. (F) Comparison of the initial abundance of sensitive genes. Statistics of the comparisons are significant for

the comparison of stable genes set and both sensitive and other genes (t-test p-values of 0.017 and 0.015, respectively), and no

significant difference between sensitive and other genes. (G) Comparison of the average expression of the targeting miRNAs of each

gene in HeLa cells. Significant differences between all three gene sets were found (t-test p-values 2.52e-22, 3.07e-9 and 8.7e-11 for the

comparison of stable-sensitive, stable-others and sensitive-others, respectively). Full statistics are shown in Supplemental S2 Table.

https://doi.org/10.1371/journal.pcbi.1007204.g006
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molecules). From 78 (MCF-7), 102 (HeLa) and 110 genes (HEK-293) defined as cross-miR-

NAs stable genes, 48 genes are common to all three cell types. The overlap among all three

gene lists is very significant (Chi-Square test, p-value = 1.35e-08, Fig 6A). It argues that the sta-

ble genes are immune to miRNA regulation under a wide range of overexpression settings and

across numerous cell types, a phenomenon that corroborates the notion of a concerted action

of miRNAs in each cell types. The list of shared 48 genes is shown in S9 Dataset.

A similar analysis that was performed on the cross-miRNAs sensitive gene lists (S8 Dataset)

resulted in an opposite trend. Not only is such gene set far smaller (Fig 6B). No shared genes

appear as sensitive in these three cell types.

We tested whether the computational discovery of stable and sensitive gene sets is corrob-

orated by our cellular experiments. To this end, we created computational-based and experi-

mental-based lists and tested the statistical significance for the overlap of such lists by

applying a hypergeometric test. For COMICS, we considered genes that exhibit a coherent

retention level for at least 90% of the overexpressing miRNAs, and meet the threshold of

>85% retention for stable, and <50% for sensitive genes. For the experimental-based lists,

we collect genes that meet the same % retention threshold for gene expression ratio at 24 hrs

relative to 0 hr. At 100k iterations COMICS and HeLa cells stable list significantly overlap

(p-value = 0.00064, S5 Fig). For HEK-293, the sensitive list displays maximal significance.

However, throughout the COMICS run (50k iteration intervals, 20 hypergeometric tests).

the calculated p-values remain significant, ranging from 1e-3 to 1e-10 (S5 Fig). Despite the

strong statistical overlap of the COMICS and the experimental results, fundamental differ-

ences exist between the computational and the experimental settings. Specifically, numerous

processes that regulate mRNA degradation in living cells (e.g., poly-A shortening, decap-

ping) are not explicitly implemented in COMICS. Nevertheless, a strong resemblance is

measured between genes lists exposes understudied design principle for miRNA regulation

in cells.

The cross-miRNAs stable set is enriched in genes of the translation

machinery

We applied annotation enrichment tools (see Materials and methods) to the set of cross-

miRNA stable genes from HeLa cells (185 stable genes, S7 Dataset). We found that these genes

are extremely enriched in Gene Ontology (GO terms) associated with numerous aspects of

translation, including translational elongation (GO:0006414), mitochondrial translation

(GO:0032543), SRP-dependent co-translational protein targeting to membrane, translational

termination (GO:0006415) and more. Combining coherent annotations yield statistically

strong enrichment signal (DAVID tool, corrected FDR p-value = 1e-77 to 1e-53) for ribosome

structure, elongation machinery, and translational fidelity. Notably, enrichment of annotations

associated with protein translation and translation machinery applies for the cross-miRNA sta-

ble gene lists from all three cell types (S10 Dataset).

We further tested the enrichment of these genes in biological pathways according to the

Reactome database. We observed a large collection of pathways that signifies the lists from

each cell type (185, 176 and 123 cross-miRNAs stable genes in HeLa, HEK-293 and MCF-7,

respectively). Actually, over 20 translation related pathways are shared among the stable

genes of each of cell type. Examples for such pathways include GTP hydrolysis and joining

of the 60S ribosomal subunit (FDR ranges from e-80 to e-61), Eukaryotic translation elonga-

tion (FDR ranges from e-77 to e-65), Cap-dependent translation initiation (FDR ranges

from e-70 to e-60) and more. For a comprehensive list of enriched Reactome pathways see

S10 Dataset.
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Inspecting annotation enrichment for the set of genes that were identified as cross-miRNA

sensitive genes reveal no functional coherence when the individual lists from the different cell-

types were compared (S10 Dataset).

The correspondence between the computationally derived stable and sensitive gene lists

with the cell experiments yields statistically significant results (S5 Fig). We applied an indirect

test to determine whether the function of the high retention genes in the experimental setting

agrees with functions associated with COMICS results. We performed an enrichment test

based on the collection of Reactome pathways. All expressed genes from overexpression hsa-

miR-155 in HeLa cells were sorted by their retention percentage. The top 10% (1192 genes of

11924 listed genes, S1 Table) were subjected to annotation enrichment test. Many of the

enriched pathways are associated with translation machinery (FDR ranges from 1e-13 to 1e-

6). We conclude that functional overlap is evident for stable genes that are reported experi-

mentally and computationally. It provides a further support for the validity of COMICS to

reflect trends of miRNA regulation in living cells.

Fig 6C focuses on annotation partition for the 48 genes that are common to all three cell

lines (Supplemental S9 Dataset). The dominant role of translational machinery (Annotation

clustering enrichment score ~1e-49) unified annotations of translation elongation and cyto-

solic ribosome (FDR p-value of 1.18e-67 and 9.36e-60, respectively). Translational machinery

component with small and large subunits (35 genes), elongation factors (EIF4A1, EEF1D,

EEF1B2) and nucleolin (NCL) account for 79% of the genes in the list. Many of these genes

play a role in ribosome production and its dynamics as replicated in the Reactome enriched

pathways (S10 Dataset).

We conclude that the cross-miRNA stable gene set signifies the translational machinery.

Specifically, the translational machinery highlights a functional gene set that is immune to the

regulatory layer of miRNAs. This observation applies to all tested cells and proposes an over-

looked cellular robustness to miRNA perturbations.

Finally, we tested the properties that characterize genes associated with the cross-miRNA

stable and sensitive gene sets with respect to all other genes (S7 and S8 Datasets). Four

properties were tested: (i) the number of targeting miRNAs (Fig 6D), (ii) the number of MBS

(Fig 6E), (iii) the initial expression level (Fig 6F), and (iv) the binding potential according to

the expression of the most dominant miRNAs in each cell type (Fig 6G, S5 Dataset). Recall

that features (iii-iv) are cell specific. We observed that genes belonging to the stable set are

characterized by smaller number of MBS and smaller number of targeting miRNA relative to

other genes (t-test = 6.48e-21 and 5.64e-15, respectively). While the statistic for the initial

expression levels of these genes is marginal for all cell types, the most significant differentiating

feature between the stable and sensitive gene sets is the targeting potency by the most abun-

dant miRNAs in cells (t-test = 2.52e-22, Fig 6G). For example, The most abundant miRNA

expressed in HEK-293 is hsa-mir-7 (25% of total miRNA molecules). While it targets only

3.5% of the stable genes, it can bind to 94% of the cross-miRNA sensitive gene set. Therefore,

we conclude that stable genes are inherently resistant to regulation by any of the most abun-

dant miRNAs, despite the presence of MBS to low expressing miRNAs. The S2 Table lists the

detailed t-test statistics for the feature-based analysis of all three cell lines.

We claim that the exhaustive and unbiased comparison between the stable and sensitive

genes reveals an overlooked signal referring to the nature of the MBS in view of their gene

functions. Despite the great difference in overall miRNA composition of different cell lines,

several miRNAs are shared across many cell-types (e.g., hsa-mir-21, hsa-let-7 and hsa-mir-92).

In all tested cells, the MBS for these genes are excluded from the genes of the translational

machinery. Therefore, various cellular systems are intrinsically immune to fluctuations in

translation by abundant miRNAs.
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Discussion

miRNAs stability as a major determinant in cell regulation

Direct measurements of miRNA and mRNA composition in cells cannot trivially predict their

behavior [13, 39]. Detailed quantitative consideration of miRNA and mRNA governs the

dynamics and the steady state of the expressed genes [21, 40]. Nevertheless, the underlying

rules for post-transcriptional regulation by miRNAs are still missing [41].

We studied cells’ response to miRNA regulation under a simplified condition of transcrip-

tional arrest by testing the retention profiles of mRNAs as readout. Upon such condition, the

dominant effect of miRNAs is most likely via attenuation of mRNA stability rather than by

translation repression [42]. As most miRNAs are transcribed by RNA PolII from their own

promoters, it is essential to account for the effect of transcription arrest on miRNA abundance.

The results in Fig 1B, S1 and S2 Figs show that miRNAs are extremely stable at least during the

24 hrs after the cells were exposed to ActD. In all studied systems, stabilization of miRNAs is

attributed to the protecting capacity of AGO-2 [43]. The number of AGO-2 molecules in cells

is insensitive to transcriptional arrest [44]. Our results further show that despite the presence

of ActD, AGO-2 is not limiting in the system (Fig 1).

The starting point for COMICS simulation is the gene expression pattern as measured

experimentally in different cell types (Fig 1, S1 and S2 Figs). COMICS simulation considers a

molecular ratio of 2:1 between miRNAs and mRNAs, under the assumption of excess in AGO-

2. The probabilistic analysis of cells under varying levels of miRNA overexpression argues that

AGO-2 occupancy is not a limiting factor. Actually, a change in the number of molecules,

while maintaining the stoichiometry impacts mostly on the dynamic of miRNA-mRNA pair-

ing (S1 Text, S6 Fig).

COMICS is robust towards a broad range of parameters

We tested the reliability of COMICS to accurately reflect the miRNA-mRNA competition in

living cells. To this end, we altered extensively the simulator’s operational parameters and

assessed the sensitivity and robustness of the results (File S1 Text). Overall, we demonstrated

the robustness of COMICS by varying a large number of parameters (e.g., number of COMICS

iterations, S4, S5 and S6A Figs; Stoichiometry of miRNAs and mRNAs, S6B and S6C Fig; Sim-

ulator intervals for mRNA degradation, S6D Fig; Interaction scoring tables, S7 Fig). Recall that

in living cells additional processes take place for dictating the half-life and stability of cyto-

plasmic mRNAs. These processes involve the activity of several exoribonucleases, decapping

enzyme, RNA modifying enzymes, as well as RNA secondary structure and localization [45].

Evidently, such miRNA-independent processes are not explicitly modelled by COMICS.

Moreover, we validated the dependency of COMICS outcome on the quality of the miR-

NA-MBS table of interactions. Moreover, the sampling protocol of miRNAs and mRNAs was

altered without effecting the overall outcome (S7 Fig). The used interaction table integrates a

rich body of knowledge on miRNA specificity and affinity according to computational and

experimental evidence [27].

There are several natural extensions to COMICS that we intend to explore in the future.

This includes the formulation of a synergistic cooperativity of miRNA binding at non-overlap-

ping MBS [16, 46], allowing options for rationally induce preselected mRNAs, and including

parameters associated with the ceRNA paradigm. In general, COMICS framework is attractive

for testing unresolved questions and emerging principles of miRNA regulation in vivo [21,

32, 37].
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miRNA composition is a major determinant in establishing cell identity

We developed COMICS platform to handle scenarios where cells undergo drastic changes in

their miRNA composition. Altogether, the results of thousands of simulation processes were

completed to test the impact of alteration in the expression of hundreds miRNA families (Fig

5). We were able to describe general trends from these simulations that apply to three different

cell types (S8 Fig). Importantly, each of the tested cell expresses a different profile of miRNAs,

supporting the notion of a unique miRNA profile determines the cell identity [47] (S1 Text,

S8B Fig). Indeed, a transition between cell types is attributed to the presence and expression

level of a specific miRNA (e.g. miR-34a [48]). Similarly, the actual miRNA profiles are associ-

ated with the establishment of cell malignant states [49, 50].

Two extreme miRNA regulation trends were revealed in this study. Firstly, the robustness

of a translation apparatus to (almost) any miRNAs. Secondly, the extreme sensitivity of a cell-

specific small set of genes to (almost) any miRNAs. The identification of a small set of genes

(about 3% of the reported genes) that is exceptionally sensitive to miRNA regulation, is sur-

prising as it predicts that down-regulation of gene expression will result from altering the

expression of almost any miRNA (Fig 6B). Remarkably, many of the sensitive genes are

nuclear, and play a role in transcription regulation, nuclear function and a collection of cell

processes (S10 Dataset). Over-enrichment in MBS for the most abundant miRNAs signify

many of these sensitive genes (S2 Table). For example, targeting by hsa-mir-21 is prevalent

among the cross-miRNA sensitive genes. The hsa-mir-21 occupies 27% and 32% of total miR-

NAs in naive MCF-7 and HeLa cells, respectively (S5 Dataset, S8A Fig). The hsa-mir-21 occu-

pies 58 and 73 MBS among the sensitive genes identified in MCF-7 (list of 22 genes) and HEK-

293 (list of 34 genes), respectively.

We plan to extend the use of COMICS to a large collection of human cell lines (e.g., NCI-

60) for assessing the generality of our findings. Specifically, applying COMICS simulations to

cells that are signified by metastatic potential is attractive for planning specific miRNA manip-

ulation for a desired outcome.

Characteristics of genes with respect to the most abundant miRNAs

A relatively large gene set (about 20% of the reported genes) that is exceptionally stable to

almost any miRNA manipulation, irrespectively to the actual levels of the miRNA in cells is

unexpected (S6 and S8 Datasets). Based on the statistically significant functional overlap

among three cell types it is postulated that the stable genes share unified feature in their 3’-

UTR sequences. Indeed, the most significant difference between the features associated with

the sensitive and stable sets (p-value = 1.57e-23) concerns the cellular level of miRNA expres-

sion levels (Fig 6G). In cancer cells, the most abundant miRNA genes (e.g., hsa-mir-21, hsa-

mir-30, hsa-mir-15/16) are involved in cancer development. In these instances, a minor

change in the expression of such miRNAs leads to a cell state transition [51]. In view of our

findings, we propose that at least in humans, the ribosomal proteins and various components

of the translation machinery became robust to miRNA regulation. Eventually, many of the

ribosomal subunits were not included in the stable gene list with some ribosomal proteins

show sensitivity to miRNA regulation, other ribosomal proteins may have very short 3’-UTR

and no MBS. The later genes are completely excluded in our analysis. Throughout the analysis

we only considered genes that are reported with high confidence MBS by the TargetScan prob-

ability matrix (see Materials and methods). We propose that genes of the translation machin-

ery achieve a maximal robustness vis-a-vis miRNA regulation. The outcome is that genes that

play role in translation are practically resistant to changes even in the presence of high express-

ing miRNAs.
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In summary, the immunity of the translation system to miRNA regulation suggests that it

may be part of a global cell strategy [52]. Evidently, there is a fundamental difference between

transcription and translation processes. While the transcription system can quickly respond to

the needs dictated by abrupt changes in the environment, the translational machinery is very

costly and slow responding, and as such is less prone to variations. Therefore, sustaining an

immunity towards the majority of miRNAs, including the high expressing ones unveil an over-

looked design principle in miRNA regulation. The driving force of evolution, acting on targets

and their MBS underlying the properties of the miRNA network in many organisms [53]. It is

for the future to investigate whether this evolutionary refinement of 3’-UTR of the components

of the translation apparatus can be generalized to other organisms along the phylogenetic tree.

Materials and methods

Cell culture

Human cell line of HeLa (cervix epithelial, # CCL-2) and HEK-293 (embryonic kidney,

# CRL-1573) were purchased from the cell-line collection of ATCC. Cells were cultured at

37˚C, 5% CO2 in Dulbecco’s Modified Eagle Media (DMEM, Sigma), supplemented with 10%

FBS (Life Technologies), and 1% antibiotics mixture (Sigma-Aldrich, Cat # P4333). Cells were

maintained for 2 weeks and passing and splitting cells was carried out at 70–80% confluence.

Transcription arrest and miRNA overexpression

Overexpression of miRNAs was performed by transfected HeLa cells and HEK-293 with

miRNA expression vectors that are based on the miR-Vec system, under the control of CMV

promotor (Origene). Cell transfection was done using Lipofectamine 3000 (Invitrogen) as

described by the manufacturer. Cells at 70% to 80% confluency were transfected with 1.5μg

purified plasmid DNA containing hsa-mir-155 and hsa-mir-124a (kindly contributed by

Noam Shomron, Tel Aviv University). Control empty vector expressing GFP (0.15μg) was

mixed with the CMV-miR expressing vectors. Cells were monitored by fluorescent microscopy

at 36 and 48 hrs post transfection. The efficiency of cell transfection was>75% of the HeLa

cells and ~100% of the HEK-293 according to the GFP expression at 48 hrs post transfection.

Transcription inhibition was achieved by adding to cultured HeLa and HEK-293 cells media

containing Actinomycin D (ActD, 10 μg/ml in DMSO), or the appropriate control (i.e.

DMSO). Cells were treated with ActD (10 μg/mL, Sigma) 24 hrs post-transfection. Cells were

cultured in 6-well plates and following treatment were lysed in 1 ml TRIzol (Invitrogen) at the

indicated time points (0 hrs, 2 hrs, 8 hrs, 24 hrs).

Library preparations for deep sequencing

Purification of total RNA containing miRNA extracted from ~2�106 cells using QIAzol Lysis

Reagent RNeasy plus Universal Mini Kit (QIAGEN, GmbH, Hilden, Germany). To ensure

homogenization a QIAshredder (QIAGEN, GmbH, Hilden, Germany) mini-spin column has

been used. Sample has been transferred up to RNeasy Mini spin column and centrifuge for 15s

at�8000g at room temperature, and the mixture was processed according to the manufactur-

er’s standard protocol. Samples with an RNA Integrity Number (RIN) >8.5, as measured by

Agilent 2100 Bioanalyzer, were considered for further analysis. mRNA libraries were generated

using the Illumina Truseq RNA V2 library Seq protocols.

For small RNA library construction, ~1 μg of RNA was used. RNA was ethanol precipitated

to enrich for small RNA. Small RNA libraries were prepared according to NEBNext Small

RNA Library Prep Set for Illumina (Multiplex Compatible) Library Preparation Manual.
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Adaptors were then ligated to the 5’ and 3’ ends of the RNA, and cDNA was prepared from the

ligated RNA and amplified to prepare the sequencing library. The amplified sequences were

purified on 4% E-Gel Agarose gels (ThermoFisher # G401004), and sequences representing

RNA <200 nt were extracted. Data used are derived from at least two biological duplicates.

The average values of the two independent sets are reported.

RNA deep sequencing analysis

RNA extracted from HeLa and HEK293 cells were taken from independent library prepara-

tions and were processed in the same sequencing slides according to standard Illumina Proto-

col [54]. Deep sequencing was performed on small RNA (<200 nt) molecules and for mRNA

by standard RNA-Seq Illumina Protocol. Each of the 48 RNA-sequencing samples covers the

mRNA and miRNA sets (24 sets for the ActD treated on two cells types, at 4 times points with

two sets of miRNA overexpression and a set for the control transfected by an empty vector).

Each sample consisting of ~25M total reads of length 100 for each read for mRNA detection,

and ~10M total reads for the miRNA detection. The sequencing data was processed by

removal the adaptors and filtering out low quality sequences. The filtered high-quality frag-

ments were mapped to the human transcriptome of hg19 gtf file from UCSC provided by Gal-

axy. Specifically, the sequenced small RNAs were trimmed using Cutadapt ver. 1.13 and

quality filtered using FASTX toolkit. Short reads (~30 nt long) were mapped to miRNA using

mapped to miRNA genes using miRExpress 2.0 [55]. Longer reads were aligned against

human genome hg19 using TopHat 2.1.1 under default flags. For mRNA expression evalua-

tion, mapped reads were submitted to Cufflinks toolkit version 2.2.1. Out of the mapped reads,

only reads of length> = 17 were considered. miRNA sequences refer to mapped, high quality

reads that are aligned to any of the pre-miRNA as defined by miRbase databases (ver. 21.0)

[56].

Normalizations of mRNA expression and miRNA families

For analysis of all experimentally tested samples an estimation of mRNA molecules per cell

was assigned to 25,000 molecules at time 0 (25k, prior to activation of the transcription inhibi-

tion protocol). Ten of the highly expressed genes were selected from the top ranked list of

mRNAs. These genes were selected as being stable throughout the 24 hrs of the ActD protocol,

along all four time points and were considered anchor genes. According to their quantification

and the total quantity of the gene expression distribution a correction was implemented based

on these anchored genes. The listed values for mRNAs (S1 and S2 Datasets) are based on pair-

end sequencing protocol and calculated as FPKM. miRNAs are counted as TPM (S5 Dataset).

For the rest of the analysis, reported genes are those with an overall expression which is above

the threshold of 5 molecules after the quantification correction procedure (>0.02% expres-

sion). For miRNA normalization we estimated 50,000 molecules per cells and only miRNAs

with more than 1 molecule after quantification were considered. The identified miRNAs were

compiled to their families. This transformation was applied to the TargetScan scoring tables

and the most significant score of miRNA representative was assigned to its family.

miRNA in silico manipulations

Overexpression scheme is based on multiplication of the available miRNA amount by numer-

ous factors (from x1 to x1000). The addition of miRNA molecules calls for re-calculating a

new miRNA distribution while fixing the amount of miRNA in the cell. In case that a specific

miRNA had not been detected in the native cell, an arbitrary starting minimal amount of

0.01% (the equivalent of 5 molecule/ cell) is considered.
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TargetScan probabilistic pairing of miRNA-mRNA

The probabilistic framework interaction table was adapted from the scores provided by Tar-

getScan [27]. Accordingly, high probability of successful interactions is calculated from a com-

bination of strongly supported miRNA-mRNA pairs that comply with features from sequence,

secondary structure and evolution conservation. The complete miRNA-mRNA table include

8.22 M pairs that covers also poorly conserved interactions. We compiled the version of Tar-

getScanHuman (Release 7.1) that reports on 19,475 genes (28,353 transcripts). We extracted

the TargetScan mRNA CWCS scores (cumulative weighted context++ score), which is a proxy

for the predicted repression based on the different properties of the MBS sites. The CWCW

estimates the score by compiling the contribution of multiple MBS according to a miRNA

family and the relative positioning at the 3’-UTR of the transcript. The predicted repression

scores range from 0–1, and are identical for all representation of the relevant miRNA family

members [27]. We used a compressed version of the table that report only on pairs that are

supported by conserved miRNAs with 1,183,166 pairs, covering 18,953 genes and 289 miRNA

families.

COMICS sampling and iterations

In each run, a random miRNA is chosen from the predetermined available miRNAs distribu-

tion. Next, a target is chosen randomly according to the available target distribution. mRNA

that is already bounded by other miRNA molecules can be a putative target for the chosen

miRNA, if the relevant binding site is not overlapping an occupied MBS on the same molecule.

Overlapping binding sites are considered for neighboring MBS that are <50 nucleotides apart.

Note that MBS that physically overlap in their sequence are already removed by TargetScan

with the notion that overlapping sites cannot be occupied at the same time. A binding event

will occur according to the miRNA-mRNA binding probability as extracted from TargetScan

interaction table (or other prediction tables). The conversion of the interaction scores to the

binding probabilities was done according to TargetScan score: p = 1–2score. Upon a binding

event, the free miRNA and mRNA distributions are updated, and the bounded mRNA mole-

cules are marked as being occupied. An occupied molecule is removed after 1000 iterations

following a successful binding event (a tunable parameter for halting an instant mRNA degra-

dation, S5D Fig). For mRNA to be eliminated, at least one MBS must be reported as occupied.

During those iterations, it is eligible to bind other miRNAs in any of its non-overlapping bind-

ing sites. After mRNA removal, the bounded miRNAs are released and return back to the free

miRNA pool and are suitable for engaging in further binding events.

Statistics and bioinformatics

P-values were calculated using a paired and unpaired t-test, Fisher exact test, Kolmogorov

Smirnov (KS) test, Wilcoxon signed-rank or Chi-square tests. For testing the correspondence

of two sets of different sizes, we have used the KS test. Statistical values are based on correla-

tions were performed using standard Python statistical package. Annotation enrichment statis-

tics [57] was used using the Gene Ontology (GO) annotation platform that address Panther

protein groups and Reactome pathways. For testing the effect of different background gene

lists for an enrichment statistic we applied DAVID [58]. The clustering enrichment score is

based on one tail Fisher exact corrected for the number of gene ontology annotations that are

used. Enrichment was performed in view of genes that are potential candidates for our analysis

and against the set of genes that express with a minimum of 0.02% of the mRNA overall

expression. Corrections for multiple hypothesis were applied and FDR results are reported.
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Supporting information

S1 Table. Annotation enrichment for the top 10% (1192 genes) from HeLa cells overex-

pressed with hsa-mir-155, sorted by high retention level (mRNA expression at 24 hrs rela-

tive to 0 hr).

(XLSX)

S2 Table. Summarizes the statistic characteristics of the sensitive and stable sets for 3 cell

lines: HEK-293, HeLa and MCF-7.

(XLSX)

S1 Fig. The expression profile of miRNA and mRNA in HeLa cells under transcription

arrest by ActD. (A) Expression of miRNAs in pairs of 4 different time points. RNA samples

were collected at 0 hr, 2 hrs, 8 hrs and 24 hrs following transcription inhibition by ActD. The

scale for the expression levels is in log10 scale. Spearman correlation (r) is listed along the p-

value of the significance. (B) Expression of mRNAs in pairs of 4 different time points. RNA

samples were collected at 0 hr, 2 hrs, 8 hrs and 24 hrs following transcription inhibition by

ActD. The scale for the expression levels is in log10 scale. Spearman correlation (r) is listed

along the p-value of the significance.

(TIF)

S2 Fig. The expression profile of miRNA and mRNA in HEK-293 cells under transcription

arrest by ActD. (A) Expression of miRNAs in pairs of 4 different time points. RNA samples

were collected at 0 hr, 2 hrs, 8 hrs and 24 hrs following transcription inhibition by ActD. The

scale for the expression levels is in log10 scale. Spearman correlation (r) is listed along the p-

value of the significance. (B) Expression of mRNAs in pairs of 4 different time points. RNA

samples were collected at 0 hr, 2 hrs, 8 hrs and 24 hrs following transcription inhibition by

ActD. The scale for the expression levels is in log10 scale. Spearman correlation (r) is listed

along the p-value of the significance.

(TIF)

S3 Fig. Retention profile of mRNAs following miRNA overexpressing in HeLa cells. (A)

Percentage of the genes according to their labels as targets (upper panel, pink) and non-targets

(lower panel, blue) according to their retention measured at 24 hrs. (B) The plots compare the

partition of genes from the control (smooth line), and from hsa-mir-124a overexpressed condi-

tion (dashed line). The number of genes that are included in the analyses are marked in paren-

theses. Target genes are shown in pink lines (top) and the non-target genes are shown in blue

lines (bottom). Note the shift in the distribution in the non-target genes towards the genes with

higher retention level. All genes with a retention level�100 are shown as 100% retention.

(TIF)

S4 Fig. The statistical significance of experimental data and COMICS across simulation

runs. (A) Spearman rank correlation of experimental data for HeLa and HEK-293 following

24 hrs application of ActD. At the beginning of the simulations and following 100k and 1M

runs. (B) Results from the Wilcoxon signed-rank by -log10(p-value) for the differences in the

simulation runs as indicated in the x-axis. The most dynamic section of the difference occurs

at the initial 100k iterations. The higher the values, the most significant are the overlap of the

gene lists from the experimental and computational settings.

(TIF)

S5 Fig. The statistical significance of gene lists derived from experimental data and COM-

ICS. (A) The outcome for the cross miRNA-stable and cross-miRNA sensitive sets (marked as
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stable and sensitive). The COMICS performance is compared in view of the results from the

transcription arrest experiment in HeLa (A) and HEK-293 cells (B). At each of the indicated

steps of the COMICS simulation run, the statistical overlap in gene retention for genes that share

their characteristics for>90% of all overexpressed miRNAs. Moreover, stable (defined as>85%

retention) or sensitive genes (<50% retention) are calculated. The statistical significance is mea-

sured by hypergeometric test with exact p-value which is transformed to -log10(p-value) (y-

axis). The higher the values, the most significant are the overlap of the gene lists from the experi-

mental and computational settings. The statistical significance associated with the correspon-

dence of the results are shown at a resolution of each 50k iterations for 1M iteration run (x-axis).

(TIF)

S6 Fig. Comparison of different parameter settings of COMICS simulator. (A) Pearson

correlation coefficients of the final retention after different simulation runs. Each run was con-

ducted using a different set of parameters: different quantification and stoichiometry of

miRNA mRNA ratio; different iteration interval between mRNA binding events, and varying

the parameter for removal of a mRNA from the system. (B) The retention distribution at the

end of different runs. The quantity of total mRNAs was fixed to 25k molecules, while its ratio

with miRNAs quantity was varying to 1:1, 1:2, 1:4 and 1:8. (C) The retention distribution at

the end of different runs. The quantity of total miRNAs was fixed to 50,000 molecules, while

its ratio with mRNA quantity was set to 2:1, 1:1, 1:2 and 1:4. (D) The retention distribution at

the end of different runs. The removal interval varied to 1000, 5000 and 10,000 iterations.

(TIF)

S7 Fig. Comparison of different simulator runs using different scoring tables. Pearson cor-

relation of different simulation runs using three miRNA-mRNA interaction scoring tables:

(i) TargetScan (marked as TS), (ii) randomized table of TargetScan. The randomization was

done by fixing the total scores of each gene (row) and each miRNA (column) in the original

TargetScan table. (iii) Naïve random table. In this case the original scores of TargetScan table

were assigned to random pairing of miRNA–mRNA. Three independent simulation repeti-

tions were performed using each of the above tables. Results for the Pearson rank correlations

are color coded. Dark blue indicate correlation of 1.

(TIF)

S8 Fig. Abundant miRNA and shuffling cell-specific miRNA profiles. (A) Heatmap of

miRNA from HeLa, HEK-293 and MCF-7 cell-lines in view of the abundance of each miRNA

(colored in log10 scale) in each cell-type. The joint list of miRNAs includes the most abundant

miRNAs that occupies 90% of the miRNA molecules (i.e. 45k out of 50k) in each cell-type. The

fraction occupied by each of the listed miRNA, for each of the cell-type is available in S5 Data-

set. (B) Pairs of miRNA and mRNA are shown according to their origin. Pearson correlation

of the endpoint of the genes following 100k iterations and testing any of the genes that are

above the minimal expression (5 molecules, 0.02% of total amount of mRNA). The number of

mRNAs that are considered in the analyses are 516 for the pair of HeLa and HEK-293; 285 for

the pair of HeLa and MCF-7 and 305 to the pair of HEK-293 and MCF-7. The p-value of the

correlations are very significant for all pairs. All p-values correlation values are < 1e-15.

(TIF)

S1 Text. The text covers the design architecture of COMICS as a probabilistic based

miRNA-mRNA simulator. It reports on the sensitivity and robustness with respect to numer-

ous parameters’ changes.

(DOCX)
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S1 Dataset. The mRNAs and miRNAs expression profiles from HeLa cells, and following

overexpression of hsa-mir-155.

(XLSX)

S2 Dataset. The mapped mRNAs and miRNAs expression profiles for the experiment per-

formed in HEK-293 cells.

(XLSX)

S3 Dataset. The output of the % retention along COMICS 1M iterations at a 10k resolution

from HeLa cells with normalized quantities of miRNAs and mRNAs used as input for

COMICS iterations.

(XLSX)

S4 Dataset. COMICS 100k run at a 1k iteration resolution. The output of the % retention is

shown for HeLa and HEK-293 cells.

(XLSX)

S5 Dataset. Lists of miRNA expression levels for 3 cell types. Used as input for COMICS

iterations.

(XLSX)

S6 Dataset. The matrix of miRNA retention levels for 248 miRNAs and 775 genes. Source

data for Fig 5.

(XLSX)

S7 Dataset. Results of the three cross-miRNA stable genes from HeLa, HEK-293 and MCF-

7 cells. Only genes that with >5 normalized expression level are listed. The dataset includes a

detailed information on the miRNA identity, summary statistics on MBS number and miRNA

composition for each gene.

(XLSX)

S8 Dataset. Results of the three cross-miRNA sensitive genes genes from HeLa, HEK-293

and MCF-7 cells. Only genes that with>5 normalized expression level are listed. The dataset

includes a detailed information on the miRNA identity, summary statistics on MBS number

and miRNA composition for each gene.

(XLSX)

S9 Dataset. Lists of the unified stable genes shared by HEK-293, HeLa and MCF-7 (48

genes).

(XLSX)

S10 Dataset. The results from enrichment tests for functional annotation for stable genes

that are shared among 3 cell lines (HEK-293, HeLa and MCF-7, 48 genes) and individual

stable lists from each of these cell types. Gene annotation list for the sensitive list is presented

(based on EnrichR system). The annotation enrichments are based on DAVID scoring method

and the Reactome pathway enrichment.

(XLSX)
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