
c-Met signaling promotes IL-6-induced myeloma cell
proliferation
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Identification of signaling pathways in tumor cells able

to promote growth and survival of the malignant cells

are important for targeted treatment of cancers. Multi-

ple myeloma is a cancer caused by clonal expansion of

malignant plasma cells that are usually confined to the

bone marrow. Isolated primary myeloma cells only

rarely grow or survive outside of the bone marrow

microenvironment. A number of growth and anti-

apoptotic factors, including interleukin-6 (IL-6), have

been implicated in sustaining the malignant myeloma

cells (1).

Some 10 yr ago, we found that hepatocyte growth

factor (HGF) may play a role in multiple myeloma, a

finding later confirmed by various techniques in differ-

ent laboratories. The main results were that myeloma

cells produce HGF (2, 3), and that high serum levels of

HGF at diagnosis correlated with poor prognosis for

patients (4). Compared to healthy controls, bone
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marrow plasma from multiple myeloma patients con-

tained high levels of HGF (5). However, also in healthy

persons, HGF could be detected, both in bone marrow

plasma and serum. It has previously been shown by us

and others that myeloma cells express the HGF-recep-

tor c-Met (2, 3, 6, 7).

Recently, HGF and c-Met have been found to be sig-

nificantly dysregulated in gene expression profiling experi-

ments on purified plasma cells from multiple myeloma

patients. HGF was the only growth factor among 70

highly expressed genes in malignant plasma cells com-

pared to normal bone marrow plasma cells (8), and HGF

and IL-6 were also shown to characterize one of four

clusters of hyperdiploid myeloma (9). Furthermore, in a

study comparing transcriptional signatures between cells

from patients with multiple myeloma, chronic lympho-

cytic leukaemia, and Waldenströms macroglobulinaemia,

both HGF and MET as well as the receptor for IL-6,

were on the list of genes distinguishing myeloma from the

latter two conditions (10). Despite these findings, HGF

generally appears to be a weak growth factor for mye-

loma cells in vitro. Though there are exceptions (6, 11,

12), when tested for ability to induce cell proliferation or

prevent apoptosis in a large number of myeloma cell lines

or primary myeloma cells, HGF generally have had

limited effects (H. Hov and M. Børset, unpublished data).

MET was first cloned as a transforming gene from a

chemically transformed osteosarcoma cell line (13), later

HGF was identified as the only known ligand for c-Met

(14). c-Met signaling is essential for fetal development,

wound healing, and tissue regeneration in the adult

organism (15–20). Aberrant c-Met signaling has been

implicated in a large number of tumors (21, 22). The

receptor has been suggested to be important in creating

or maintaining a more malignant phenotype (23). c-Met

tyrosine kinase activation initiates complex downstream

signaling cascades involving several intracellular signaling

pathways. Such signaling pathways may however, be

shared by several receptor tyrosine kinases, and substan-

tial crosstalk may exist between signaling pathways

downstream of diverse receptors. Thus, under certain cir-

cumstances, the signal from one receptor tyrosine kinase

may be replaced with the signal from another receptor,

or the signals from two receptor kinases may act in con-

cert and potentiate each other.

Here, we present data indicating that c-Met signaling

promotes growth-stimulatory signaling from IL-6. Thus,

in myeloma cells, the presence of c-Met signaling may be

necessary to obtain full effect of other growth factors.

Conversely, IL-6 is also necessary to obtain full effect of

HGF in cell migration by increasing expression of

HGF’s receptor c-Met. The results suggest that targeting

c-Met signaling may attenuate cell proliferation induced

by other growth factors such as IL-6, and may therefore

represent a novel approach to cancer treatment also in

cancers that at first sight seem independent of c-Met

signaling.

Materials and methods

Reagents

Recombinant human IL-6 was from R&D Systems

(Abingdon, UK). HGF was purified from the human

myeloma cell line JJN-3 as described previously (3) or

purchased from PeproTech EC Ltd (London, UK). The

c-Met tyrosine kinase inhibitor PHA-665752 (24) was a

kind gift from J. G. Christensen (Pfizer Inc., New York,

NY, USA). The Shp2 inhibitor NSC-87877 and the

MEK1 ⁄2 inhibitors PD98059 and U126 were from

Merck Chemicals Ltd (Nottingham, UK). The following

c-Met antibodies were used: clone DL-21 from Upstate

(Waltham, MA, USA); Met (25H2) and anti-phospho-

Tyr1349c-Met from Cell Signaling Technology (Beverly,

MA, USA); Fluorescein isothiocyanate (FITC) labeled

anti-human c-Met, eBioclone 97, from eBioscience

(San Diego, CA, USA); the neutralizing antibody clone

95309 from R&D Systems. Anti-Shp2, anti-phospho-

Tyr542Shp2, anti-phospho-Tyr580Shp2, and anti-Gab1

were from Upstate (Lake Placid, NY, USA). Anti-phos-

pho-Ser473Akt, anti-phospho-Tyr705STAT3, anti-STAT3,

anti-phospho-Thr202 ⁄phospho-Tyr204-p44 ⁄42 MAPK, anti-

p44 ⁄42 MAPK, anti-phospho-Tyr307Gab1, and anti-phos-

pho-Tyr627Gab1 were from Cell Signaling Technology.

Anti-GAPDH was from Abcam (Cambridge, UK).

Rabbit anti-HGF serum was raised by us as previously

described (4).

Cell lines and primary patient samples

ANBL-6 cells and INA-6 cells were kind gifts from Dr

Diane Jelinek (Mayo Clinic, Rochester, MN, USA)

and Dr Martin Gramatzki (University of Erlangen-

Nuremberg, Erlangen, Germany), respectively. OH-2

and IH-1 were established in our laboratory as

described previously (25, 26). Cell lines were grown in

RPMI 1640 with 10% fetal calf serum (FCS) or

human serum (OH-2 and IH-1), 2 mmol ⁄L l-gluta-

mine, and 40 lg ⁄mL gentamicin (complete medium)

and 1 ng ⁄mL IL-6.

CD138-positive cells were purified from left over mate-

rial from bone marrow aspirates taken for diagnostic

purposes by immunomagnetic separation (27). Myeloma

cells were purified using Macs MicroBeads (Miltenyi Bio-

tec, Auburn, CA, USA). The use of bone marrow aspi-

rates for this purpose was approved by the regional

ethics committee and by informed consent from the

patients.
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Proliferation assay

Cells were washed four times in Hank’s balanced salt

solution (HBSS), seeded in 96-well plastic culture

plates (Corning Costar, Corning, NY, USA) at

1–10 · 104 cells ⁄well in 200 lL of 0.1% bovine serum

albumin (BSA) (cell lines) or 1% FCS (primary cells) in

RPMI 1640 with 2 mmol ⁄L l-glutamine, and 40 lg ⁄mL

gentamicin (serum-free media). After 48 h 1 lCi of

methyl-[3H]thymidine (NEN Life Science Products, Bos-

ton, MA, USA) was added per well and cells were har-

vested either 6 or 18 h later with a Micromate 96-well

harvester (Packard, Meriden, CT, USA). ß-radiation was

measured with a Matrix 96 ß counter (Packard).

Migration assay

INA-6 cells were washed four times in HBSS, resus-

pended in serum-free media, and seeded (2 · 106 cells ⁄ -
well) in the top compartments of polycarbonate

transwells (pore size, 5 lm; Corning Costar). The total

volume was 100 lL in the top compartments and 600 lL
in the bottom compartment. All samples were performed

in duplicates. After 18 h, the number of cells that had

migrated through the membrane to the bottom chamber

was determined by a Coulter Counter Z1 (Beckman

Coulter, Fullerton, CA, USA).

Immunoblotting

Cells were washed four times in HBSS and seeded at

106 cells ⁄mL in serum-free media with or without cyto-

kines. PHA-665752 was added 15–30 min prior to cyto-

kines. To detect phosphorylated Gab1, Shp2, and c-Met in

ANBL-6, cells were depleted of FCS and IL-6 by four

washes in HBSS, and seeded at 106 cells ⁄mL in RPMI

1640 with 0.1% BSA and a 1 : 750 dilution of rabbit anti-

HGF serum over night. Cells were then washed four times

in HBSS and seeded in 0.25 mL of RPMI 1640 with 0.1%

BSA in 24-well plates (4 · 106 cells ⁄well). PHA-665752

was added to the wells (were indicated) 15 min before

incubation with HGF or IL-6 for 10 min. Then, cells were

counted by a Coulter Counter Z1 (Beckman Coulter, Ful-

lerton, CA, USA), pelleted, and resuspended in 20 lL lysis

buffer (11) per 500 000 cells. Thereafter, immunoblotting

was performed as previously described (11).

Flow cytometry

Cells were washed four times in HBSS and seeded at a

concentration of 250 000 ⁄mL in serum-free media. After

overnight incubation with cytokines, cells were labeled

with 0.25 lg FITC-conjugated anti-c-Met antibody (eBio-

science, San Diego, CA, USA. Catalog number 11-8858)

or 0.25 lg FITC-conjugated isotype control antibody

(Cat. no. 11-4301). Viable cells were gated from the for-

ward-, side-scatter dot plot, and analyzed for fluorescence.

Ras activation assay

Ras activation was measured with a Ras activation kit

(Stressgen Bioreagents, Victoria, BC, Canada) according

to the manufacturer’s protocol. Briefly, ANBL-6 cells were

washed four times in HBSS and serum starved for 4 h,

incubated with 200 nm PHA-665752 for 30 min, and then

stimulated with cytokines for another 10 min. Cells were

pelleted and lysed in buffer containing Complete Mini

protease inhibitor tablets (Roche, Basel, Switzerland). Ly-

sates from 6 · 106 cells were incubated with 80 lg of a

Glutathion S-transferase fusion protein containing the

Ras binding domain of Raf1. Lysates were thereafter

placed on an immobilized glutathione disc on a spin col-

umn for 1 h at 4�C with gentle rocking. The columns were

washed and eluted with 50 lL SDS sample buffer contain-

ing b-mercaptoethanol. Twenty-five microlitre of sample

were subjected to gel electrophoresis and Western blotting,

and membranes were probed with a specific Ras antibody.

Unfractionated lysates were similarly subjected to immu-

noblotting to control total amount of Ras.

Fluorescent in situ hybridization analysis

Cytospin slides were used for fluorescent in situ hybrid-

ization (FISH) analysis. Hybridization was performed

using standard procedure (Vysis, Downers Grove, IL,

USA). Thereafter, cells were counterstained with DAPI

(Vysis) and scored using a Nikon Eclipse 90i epifluores-

cence microscope with PlanApo VC 60x ⁄ 1.4oel (Nikon

Instruments Europe, Badhoevedorp, the Netherlands),

and software CytoVision version 3.7 Build 58, 2005

(Applied Imaging, San Jose, CA, USA). Information on

probes is available in a Table S1.

Statistics

The statistical significance was determined using two-

tailed, unpaired Student’s t-test. The minimal level of sig-

nificance was P = 0.05.

Results

IL-6 augmented HGF-effects by increasing c-Met
expression

Even though HGF activates c-Met in INA-6 cells (11) the

effects of HGF on cell proliferation in this cell line are

moderate. Thus, in the absence of other growth factors,

HGF-induced proliferation was limited (Fig. 1A). Inter-

estingly, the presence of HGF together with IL-6 potenti-

ated cell proliferation compared to the proliferation
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obtained with IL-6 alone (Fig. 1A). HGF had stronger

effects in migration of INA-6 cells (28) (Fig. 1B), while

there was no migration after IL-6 treatment. However, IL-

6 increased migration by HGF substantially.

A simple explanation for these findings could be that

HGF receptor expression was low and rate limiting for

HGF signaling. Indeed, after 20-h treatment with IL-6

the expression of c-Met protein in INA-6 was elevated

compared to the expression in untreated cells (Fig. 1C).

The presence of HGF downregulated c-Met expression

as this study and many other studies also have shown

previously (29). Similar results were obtained when

c-Met cell surface expression was analyzed by flow

cytometry. Cells treated with IL-6 (Fig. 1D lower panel)

had higher surface expression of c-Met than untreated

cells (Fig. 1D upper panel). Also in the myeloma cell

lines OH-2 (Fig. 2A,B) and IH-1 (Fig. 2C,D) similar

results were seen: HGF alone did not increase prolifera-

tion but potentiated the effect of IL-6, and likewise,

incubation with IL-6 increased the expression of c-Met.

Inhibition of c-Met signaling reduced IL-6-induced
proliferation

We have previously demonstrated an autocrine HGF-c-

Met loop promoting growth of the myeloma cell line

ANBL-6 (11). However, under serum-free conditions there

was almost no baseline proliferation in ANBL-6 cells, sug-

gesting that the HGF-c-Met loop could not sustain prolif-

eration on its own (Fig. 3A). IL-6 promoted growth of the
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then harvested, lysed, and subjected to gel electrophoresis and Western blotting. The membrane was probed with an anti-c-Met antibody and a

GAPDH antibody as loading control. (D) INA-6 cells were grown in serum-free media with or without 1 ng ⁄ mL IL-6 over night, labeled with FITC-
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cells in a dose-dependent manner. Surprisingly, inhibiting

c-Met signaling with the specific c-Met tyrosine kinase

inhibitor, PHA-665752, in the presence of IL-6 gave a

potent and dose-dependent reduction in cell proliferation

(Fig. 3A). To confirm that c-Met activation was important

for IL-6-induced proliferation, the kinase inhibitor was

replaced by an antibody blocking HGF binding to c-Met

(Fig. 3B). The antibody reduced IL-6-induced prolifera-

tion to a similar extent as did the c-Met kinase inhibitor.

Taken together, the results indicate that IL-6 is dependent

on c-Met signaling for full growth promotion also in the

ANBL-6 cell line. However, there were no clear differences

in c-Met expression after IL-6 treatment in these cells

(Fig. 3C), indicating that some other mechanism than

receptor upregulation is responsible for the dependency on

c-Met signaling in IL-6-induced proliferation.

IL-6-induced proliferation was dependent on activated
c-Met in some primary myeloma cells

We found nine primary isolates out of 12 tested that

responded reasonably well to IL-6 in the presence of

HGF. As often is the case with primary myeloma

samples, the DNA synthesis between samples showed

considerable variation. Inhibiting c-Met with PHA-

665752 reduced IL-6-induced proliferation in six sam-

ples (Fig. 4A, MM1–MM6); however, in two of the

samples the changes were minor (MM1 and MM2).

These results suggest that c-Met signaling is required

for full effect of IL-6 also in some primary myeloma

cells. In two of the samples (MM8 and MM9), IL-6-

induced proliferation was not affected by the presence

of the c-Met inhibitor. IL-6 can therefore also promote

cell proliferation independently of c-Met. The expres-

sion of c-Met was only examined in four of the

patients because of limited amounts of cells (Fig. 4B).

The level of c-Met was low in untreated cells but
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increased with IL-6 in the patient samples MM2 and

MM4, which is similar to the results obtained with the

INA-6, OH-2, and IH-1 cell lines. There seemed to be

no increase in c-Met expression after IL-6 stimulation

in the patient sample MM3 despite dependence on c-

Met in IL-6-induced proliferation in these cells. This is

similar to findings in the ANBL-6 cell line suggesting

other mechanisms for synergy between IL-6 and HGF

than IL-6-induced upregulation of c-Met expression. In

the patient sample MM9, the IL-6-induced proliferation

was not dependent on c-Met signaling, and there was

no increase of c-Met expression after IL-6 treatment

(Fig. 4A,B). Because elevated HGF expression has been

reported to characterize a subgroup of the hyperdiploid

myeloma patients, we analyzed some of the most com-

mon genetic aberrations in our primary samples by

FISH (Table 1 and Materials and methods). Of the

responders, two had IgH translocations while one had

not. Response to c-Met inhibition was therefore not

dependent on the presence or absence of an IgH trans-

location. None of the non-responding patients was

positive for IgH tranlocations.

IL-6-activation of Ras-MAPK signaling was c-Met
dependent

As IL-6 did not change c-Met expression in ANBL-6

(Fig. 3C), we decided to further examine the intracellu-

lar pathways involved in potentiation of IL-6-induced

proliferation by c-Met in this cell line. Cells were
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starved for 4 h to increase endogenous HGF levels.

PHA-665752 reduced the modest phosphorylation of

p44 ⁄ 42-MAPK in the control wells (Fig. 5A, top panel,

lanes 1 and 2), indicating that the autocrine HGF acti-

vated p44 ⁄ 42-MAPK weakly. Adding IL-6 increased

p44 ⁄ 42-MAPK phosphorylation substantially. When

cells were treated with the c-Met tyrosine kinase inhibi-

tor PHA-665752 there was almost complete abrogation

of IL-6-induced phosphorylation of p44 ⁄ 42 MAPK

(lane 4 vs. lane 3). Similarly, the antibody blocking

HGF binding to c-Met inhibited IL-6 induced p44 ⁄ 42
MAPK phosphorylation (lane 5 vs. lane 3) in a similar

manner as PHA-665752. Taken together, the results

indicate that IL-6 was dependent on c-Met signaling

for full activation of p44 ⁄ 42 MAPK. In contrast, IL-6-

induced phosphorylation of STAT3 (Fig. 5A, middle

panel) was independent of the c-Met inhibitor PHA-

665752 and the antibody inhibiting HGF binding to c-

Met.

The p44 ⁄ 42 MAPK are downstream targets of active

Ras. As seen in Fig. 5B, Ras activation by IL-6 was also

dependent on c-Met signaling as PHA-665752 reduced

the effect of IL-6 substantially. Thus, the dependency on

c-Met in IL-6-mediated p44 ⁄42 MAPK activation is a

consequence of dependency on c-Met in IL-6-mediated

Ras activation. Taken together, the results suggest that

the basis for the potentiating role of c-Met signaling on

IL-6-induced proliferation is upstream of Ras.

In analogy with previous reports (30), we found that

the Ras-MAPK pathway was important for proliferation

of ANBL-6 cells because the MEK1 ⁄ 2-inhibitors
PD98059 and U126 both inhibited proliferation in these

cells (Fig. 5C).

IL-6 was dependent on c-Met for phosphorylation of
Gab-1 and Shp2

The results above indicated that molecules upstream of

Ras are possible mediators of the synergy between HGF

and IL-6 in inducing proliferation in ANBL-6 cells.

Among candidate molecules in this pathway are the tyro-

sine phosphatase Shp2 and the adaptor molecule Gab-1

(31). In Fig. 6A,B, we examined the ability of HGF and

IL-6 to induce phosphorylation of Gab1 and Shp2 in

ANBL-6 cells. Because these cells produce HGF endoge-

Table 1 Genetic aberrations in patient samples

Sample
IgH
split t(11;14) t(4;14) del13 del17 t(6;14) t(14;16)

Sample
taken

MM1 1 0 0 0 0 1 0 D

MM2 R

MM3 R

MM4 1 1 0 0 0 D

MM5 0 0 0 D

MM6 D

MM7 0 0 0 D

MM8 0 0 0 D

MM9 0 0 1 0 D

Empty cells, not determined; 1, present; 0, absent; D, at diagnosis; R,

at relapse.

Ctr           IL-6 A 

B C 

PHA-665752           +           + 
c-Met antibody                            + 

phospho p44/42 MAPK 

pSTAT3 

p44/42 MAPK 
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GTP-Ras 

Total Ras 
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Figure 5 c-Met signaling was necessary for IL-6-induced activation of the Ras-MAPK pathway in ANBL-6 cells. (A) ANBL-6 cells were washed

and serum starved for 4 h allowing endogenous HGF-production, preincubated with 200 nM PHA-665752 or 2 lg ⁄ mL of an antibody blocking HGF

binding to c-Met for 30 min and stimulated with 1 ng ⁄ mL IL-6 for 10 min. Cells were lysed and subjected to Western blotting. Membranes were

probed with antibodies against phospho-p44 ⁄ 42 MAPK or phospho-STAT3 tyr 705, stripped and reprobed with an antibody against total p44 ⁄ 42

MAPK. (B) Lysates from ANBL-6 were made as in (A) and subjected to affinity precipitation with a Raf1-Ras binding domain-GST fusion protein to

pull down GTP-bound Ras and then detected on Western blot with a Ras antibody. Total Ras was detected in the same lysates to ensure equal

amounts of Ras in the experiment (lower panel). (C) ANBL-6 cells were grown in serum-free media in the presence of 0.1 ng ⁄ mL IL-6 with or

without the MEK1 ⁄ 2 inhibitors PD98059 or U126 for 3 d before estimation of DNA synthesis. Error bars represent SEM of triplicate measure-

ments. * Denotes statistically significant difference from the situation without inhibitors (P < 0.05).
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nously resulting in low c-Met expression, we preincubat-

ed the cells over night with anti-HGF serum to increase

c-Met expression before addition of IL-6 for 10 min with

or without the presence of the c-Met kinase inhibitor as

indicated in Fig. 6A,B. IL-6 induced low phosphoryla-

tion of tyrosine 542 on Shp2 under these conditions

(Fig. 6A left hand panels). In contrast, HGF induced

low but detectable phosphorylation of Gab1. Impor-

tantly, in the presence of HGF, the phosphorylation of

Shp2 was further increased with IL-6 (Fig. 6A right hand

panels). Furthermore, the Gab1 and Shp2 phosphoryla-

tion induced with the combination of HGF and IL-6

was markedly reduced in the presence of the c-Met

kinase inhibitor. These results indicate that the combina-

tion of HGF and IL-6 gave more pronounced activation

of Shp2 than either cytokine alone, suggesting that Shp2

activation induced by IL-6 also is dependent on c-Met

activation.

IL-6 has been reported to phosphorylate the IGF-1

receptor as basis for synergy between IL-6 and IGF-1

(32). Phosphorylation of c-Met induced by IL-6 could

have been an explanation for potentiation of Shp2 phos-

phorylation in ANBL-6 cells. However, this seemed not

to be the case (Fig. 6B).

To see if Shp2 activation was involved in activation of

p44 ⁄ 42 MAPK activation, we tested the effect of the

novel Shp2-inhibitor NSC-87877. This inhibitor binds to

the catalytic cleft of Shp2 and inhibits both basal, and

EGF-induced Shp2 phosphatase activity as well as EGF-

induced p44 ⁄ 42 MAPK phosphorylation which is known

to be dependent on Shp2 (33). In the presence of IL-6

and endogenous HGF, NSC-87877 inhibited phosphory-

lation of p44 ⁄ 42 MAPK in ANBL-6 cells in a dose-

dependent manner, without affecting the phosphorylation

of STAT3 (Fig. 6C). These results suggest that whereas

Shp2 is involved in p44 ⁄ 42 MAPK activation, it has no

role in STAT3 phosphorylation which is entirely depen-

dent on IL-6 in this setting. Furthermore, the synergy

observed in Ras-MAPK signaling is dependent on the

synergy in phosphatase activity of Shp2.

Discussion

The main finding reported here is that IL-6-induced

proliferation may be dependent on c-Met signaling in

myeloma cells. The potentiating effect of HGF ⁄ c-Met on

IL-6 signaling could be explained by two mechanisms: (i)

IL-6 increased the level of c-Met on the cell surface of

myeloma cells making cells more sensitive to HGF; and

(ii) IL-6 relied on HGF ⁄ c-Met to fully activate the Ras-

MAPK pathway possibly through Shp2 activation.

HGF is found in bone marrow plasma of both healthy

subjects and myeloma patients (5), and bone marrow

stromal cells constitutively produce HGF (34). More-

over, syndecan-1 binds HGF on the surface of myeloma

cells (5) bringing HGF in close proximity of its receptor

c-Met. Immunohistochemical staining for HGF on bone

marrow biopsies revealed that plasma cells from almost

all myeloma patients stained positive for HGF (K. W.

Wader, unpublished data). In this context, the IL-6-

induced increase in c-Met expression as shown here may

become vital for HGF sensitivity and growth promotion

of the cells. This is in line with other reports indicating

that increase of c-Met expression enhances both the bio-

logic effects of HGF and c-Met signaling in various cell

types (35–37). A recent publication also indicates that

the level of c-Met expression is important for the survival

of myeloma cells as partly downregulation of c-Met lead

to myeloma cell death (38). Moreover, in vivo induction

IL-6                                  +     +                        +      + 
PHA-665752            +             +               +               + 

HGF A 

B 

C 

pGab1, tyr 672 

Gab1 

pSHP2, tyr 580

SHP2 

SHP2 

pSHP2, tyr 542

NSC-87877 (µM)     –       2.5       5       10        25

phospho p44/42 MAPK 

pSTAT3 

p44/42 MAPK 

IL-6                                  +     +                        +      + 
PHA-665752            +             +               +               + 

HGF 

p-c-Met, tyr 1349 

c-Met 

Figure 6 HGF was necessary for Gab-1-Shp2 activation in ANBL-6

cells. (A) ANBL-6 cells were incubated overnight with a 1 : 750 dilu-

tion of anti-HGF serum (to inhibit autocrine HGF-stimulation and sub-

sequently increase c-Met expression), then washed, cultured with or

without 200 nM PHA-665752 for 15 min and stimulated for 10 min

with or without HGF (100 ng ⁄ mL) or IL-6 (1 ng ⁄ mL). Lysates were

prepared and subjected to Western blot analysis. Membranes were

probed with antibodies against phospho-Gab1 tyr 627, phospho-Shp2

tyr 580 or 542. After stripping of membranes, probing with antibodies

against total Gab-1 or total Shp2 were used to control gel loading. (B)

Cells were treated as in (A). Immunoblots were probed with an anti-

body detecting phosphorylated tyrosine 1349 of c-Met. After stripping

of the membrane, total c-Met level was detected with a c-Met-spe-

cific antibody. (C) ANBL-6 cells were preincubated with different con-

centrations of the Shp2-inhibitor NSC-87877 for 5 h and then

stimulated with 1 ng ⁄ mL IL-6 for 10 min. Immunoblots were probed

with antibodies against phospho-p44 ⁄ 42 MAPK or phospho-STAT3 tyr

705, stripped and reprobed with an antibody against total p44 ⁄ 42

MAPK.
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of the IGF-1 receptor has been reported in the murine

myeloma model 5T33MM, and this induction was

necessary for biological effects of IGF-1 in these experi-

ments (39).

Inhibiting c-Met had substantial effects on IL-6-

induced proliferation in four out of nine primary

samples, although the frequency of this mechanism in

primary myeloma patients is hard to estimate due to the

low numbers of samples. These results are intriguing in

the light of the work of Chng et al. (9). They describe a

cluster of hyperdiploid patients with high expression of

HGF and IL-6 suggesting biologic importance of these

cytokines in these patients. As part our routine check on

MM patients, we screen for the genetic aberrations

denoted in Table 1. These data are not sufficient to des-

ignate patients to the hyperdiploid group or even less to

the HGF ⁄ IL-6 subgroup of hyperdiploid myeloma. Nev-

ertheless, response to c-Met inhibition was present in

patients with t(6; 14) or t(11; 14) or without IgH translo-

cations. This suggests response in non-hyperdiploid (and

thus not exclusively in hyperdiploid) cases because IgH

translocations are strongly associated with non-hyperdip-

loid myeloma and a rare event in hyperdiploid patients

(40, 41). Further studies are necessary to see, if hyperdip-

loid patients with high HGF- and IL-6-expression are

subjected to synergy between IL-6 and HGF, and if they

can benefit from c-Met inhibition.

The potentiating effect of c-Met signaling in IL-6-

induced p44 ⁄ 42 MAPK activation in ANBL-6 cells was

intriguing and a novel observation. Neither HGF nor

IL-6 alone could induce Ras-MAPK signaling, but the

combination of HGF and IL-6 was necessary to activate

this pathway. The Ras-MAPK pathway is a major regu-

lator of cell proliferation, and has previously been shown

to be important for myeloma cell proliferation in vitro

and in vivo (30). However, the role of c-Met as a regula-

tor of IL-6-induced Ras-MAPK signaling has to our

knowledge not been shown in myeloma cells before.

The synergy between IL-6 and c-Met in ANBL-6 cells

was also evident at the level of Shp2 phosphorylation.

Thus, the synergy between IL-6 and HGF must converge

on Shp2 or be a result of synergy upstream of Shp2. IL-

6 did not induce phosphorylation of c-Met or Gab1 as

HGF did while IL-6 treatment resulted in phosphoryla-

tion of Shp2. Thus, there may be two ways in which

Shp2 can be phosphorylated: IL-6 may induce Shp2

phosphorylation on tyrosine 542 whereas c-Met signaling

potentiates the phosphorylation of both tyrosine 542 and

580 in a process dependent on Gab1. There is some sup-

port for such a mechanism in the literature as it has been

shown that Shp2 can directly bind to the cytoplasmic tail

of gp130 and become activated (42). Furthermore, IL-6

has previously also been shown to phosphorylate Shp2

in the myeloma cell line MM1.S (43). There is also

evidence that the double phosphorylation of Shp2 on ty-

rosines 542 and 580 is important for full catalytic activity

of Shp2 (44). The results presented here indicate that

both IL-6 and c-Met activation may be required for full

catalytic activity of Shp2.

Shp2 activation appeared to be necessary for the acti-

vation of p44 ⁄ 42 MAPK as the novel SHP2 inhibitor

NSC-87877 abrogated cytokine-mediated MAPK phos-

phorylation in ANBL-6. NSC-87877 is also known to

inhibit the tyrosine phosphatase Shp1; however, Shp1

has been shown to negatively control receptor signaling

(45), and even to reduce MAPK-activation in thyroid

carcinoma and neurons (46, 47).

Here, we show that c-Met signaling may be important

in myeloma cell proliferation induced by IL-6. Targeting

HGF ⁄ c-Met may therefore attenuate growth promotion

by other growth factors than HGF, and c-Met signaling

may be a target for therapy also in multiple myeloma.
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