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Increasing evidence shows that the occurrence of human complex diseases is

closely related to the mutation and abnormal expression of

microRNAs(miRNAs). MiRNAs have complex and fine regulatory mechanisms,

which makes it a promising target for drug discovery and disease diagnosis.

Therefore, predicting the potential miRNA-disease associations has practical

significance. In this paper, we proposed an miRNA–disease association

predicting method based on multiple kernel fusion on Graph Convolutional

Network via Initial residual and Identity mapping (GCNII), called MKFGCNII.

Firstly, we built a heterogeneous network of miRNAs and diseases to extract

multi-layer features via GCNII. Secondly, multiple kernel fusion method was

applied to weight fusion of embeddings at each layer. Finally, Dual Laplacian

Regularized Least Squares was used to predict new miRNA–disease

associations by the combined kernel in miRNA and disease spaces.

Compared with the other methods, MKFGCNII obtained the highest AUC

value of 0.9631. Code is available at https://github.com/cuntjx/bioInfo.
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1 Introduction

An microRNA (abbreviated miRNA) is a small single-stranded non-coding RNA

molecule (containing about 22 nucleotides) found in plants, animals and some viruses

that functions in RNA silencing and post-transcriptional regulation of gene expression

(David (2018); Qureshi et al. (2014)). The first miRNA was discovered in 1993 by a group

led by Ambros and including Lee and Feinbaum (Lee R. C. et al. (1993)). In 2000, the

second small RNAwas characterized: let-7 RNA, which represses lin-41 to promote a later

developmental transition in C. elegans (Reinhart et al. (2000)). The let-7 RNA was found

to be conserved in many species, leading to the suggestion that let-7 RNA and additional

“small temporal RNAs” might regulate the timing of development in diverse animals,

including humans (Pasquinelli et al. (2000)). The dysfunction of miRNAs and their target

mRNAs may result in various human diseases (Bandyopadhyay et al. (2010)). For

instance, downregulation of miR-15 and miR-16 miRNAs also appears to be a feature

OPEN ACCESS

EDITED BY

Wen Zhang,
Huazhong Agricultural University, China

REVIEWED BY

Yuanyuan Ma,
Anyang Normal University, China
Jin-Xing Liu,
Qufu Normal University, China
Yijie Ding,
University of Electronic Science and
Technology of China, China

*CORRESPONDENCE

Yong Liang,
yongliangresearch@gmail.com

SPECIALTY SECTION

This article was submitted to
Computational Genomics,
a section of the journal
Frontiers in Genetics

RECEIVED 30 June 2022
ACCEPTED 20 July 2022
PUBLISHED 05 September 2022

CITATION

Lu S, Liang Y, Li L, Liao S and Ouyang D
(2022), Inferring humanmiRNA–disease
associations via multiple kernel fusion
on GCNII.
Front. Genet. 13:980497.
doi: 10.3389/fgene.2022.980497

COPYRIGHT

© 2022 Lu, Liang, Li, Liao and Ouyang.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 05 September 2022
DOI 10.3389/fgene.2022.980497

https://www.frontiersin.org/articles/10.3389/fgene.2022.980497/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.980497/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.980497/full
https://github.com/cuntjx/bioInfo
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.980497&domain=pdf&date_stamp=2022-09-05
mailto:yongliangresearch@gmail.com
https://doi.org/10.3389/fgene.2022.980497
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.980497


of pituitary adenomas (Osada and Takahashi (2007)). Three

miRNAs showed significantly more underexpression

compared to the other downregulated miRNAs. These

miRNAs are as follows: mir-127, mir-130a and mir-144

(Cahill et al. (2007)). The identification of miRNA-disease

associations contributes to a better understanding of the

relationship between miRNA and disease and the developing

of new therapeutic drugs and therapeutic targeting miRNA

(Brunetti et al. (2015); Chen et al. (2021)). Using biological

experiments to identify the associations between miRNAs and

diseases is time-consuming and expensive (Huang et al. (2019)).

In the last few years many computational methods have been

developed to explore the potential associations between miRNAs

and diseases. According to different forecasting strategies,

current methods can be divided into three categories: machine

learning-based methods, information dissemination-based

methods and similarity-based methods.

For machine learning-based methods, MLMDA (Zheng

(2019)) was proposed to predict the associations of miRNAs

and diseases. MLMDA extracts miRNA sequences by using a

k-mer sparse matrix and incorporates the similarity of miRNAs

and diseases. After being extracted by an autoencoder neural

network, the features are fed into a random forest classifier to

predict the associations between miRNAs and diseases. (Ji et al.

(2020)). proposed a model called GraRep based on embedding-

based heterogeneous information integration method which is

adopted to learn the behavior information of miRNA and disease

node in the network. And then, the random forest classifier is

used to predict potential miRNA-disease associations. (Zhou

et al. (2021)). proposed a model named DAEMKL for

predicting miRNA-disease associations via deep autoencoder

with multiple kernel learning. Sample imbalance is a major

problem in this type of methods.

For information dissemination-based methods, (Chen et al.

(2017a)), proposed a model called HAMDA which made use of

the hybrid graph-based recommendation algorithm and

extended previous recommendation algorithm by combing the

usage of network structure, information propagation and adding

more field-related information into the disease-miRNA

association network. (Chen et al. (2018)). proposed a model

named heterogeneous label propagation (HLPMDA), in which a

heterogeneous label was propagated on multi-network and the

model can calculate the strength of the data of associations which

help to produce a better prediction. This type of methods relies

on the connectivity of the network, and to increase connectivity,

it is often necessary to add additional types of nodes and

associations to the network.

Similarity-based methods are based on the hypothesis that

similar functions of miRNAs are more likely to be related to the

similar diseases. (Jiang et al. (2010)). created the method of

forming both a functionally associated miRNA network and a

human phenotypic one to find out whether the former ones are

linked to phenotypically related diseases. At last, the potential

miRNA-disease associations were predicted by the similarity

score. WBSMDA (Chen et al. (2016)) calculated the within-

score and between-score by integrating the similarity of miRNAs

and diseases, and combined these scores to obtain the final scores

for potential miRNA-disease association inference. In addition, it

is also common practice to combine similarity with matrix

transformation. (Xiao et al. (2018)). proposed a model called

GRNMF, which integrated the disease semantic information and

miRNA functional information to estimate disease similarity and

miRNA similarity. And then, they used a graph to regularize

non-negative matrix factorization framework to simultaneously

identify potential associations for all diseases. (Li et al. (2021)).

proposed a computational model called SCMFMDA, which

based on similarity constrained matrix factorization for

miRNA-disease associations prediction. These methods rely

on the definition of similarity. In addition, similarity-based

methods are also commonly used in microbe–disease

associations studies. For example, (Yin et al. (2020)), proposed

a model named NCPLP, which is based on network consistency

projection and label propagation to infer potential

microbe–disease associations. However, there is not any

accepted evaluation method to account for the accuracy and

reasonableness of similarity definitions.

In biological bipartite networks, Multiple Kernel Learning

(MKL) (Gönen and Alpaydın (2011)) is a common method used

to improve model performance. Firstly, MKL uses the multiple

information of the samples to compute the multiple kernel

matrix, and then obtains the optimal kernel matrix by fusing

multiple kernel matrices. MKRMDA (Chen et al. (2017b)) based

on MKL and Kronecker regularized least squares, which could

automatically optimize the combination of multiple kernels for

disease and miRNA, and achieved average AUCs of 0.8894 ±

0.0015 in five fold cross validation. (Qi et al. (2021)). presented a

clustering method based onmultiple kernel combination that can

directly discover groupings in scRNA-seq data. MKLC-BiRW

(Yan et al. (2019)) is proposed to predict new drug–target

interactions by integrating diverse drug-related and target-

related heterogeneous information. (Yang et al. (2022)).

proposed a model based on Multiple Kernel fusion on Graph

Convolutional Network with three layers, called MKGCN, for

inferring novel microbe–drug associations. MKL can improve

the prerformance of the model by combining a variety of

information. Therefore, generally speaking, the more

information is fed to the model, the easier it is to improve the

predictive abilities of the model.

It is worth noting that researchers have begun to focus on

identifying multiple types of miRNA-disease associations. (Chen

et al. (2015)). was the first to study the problem. They developed a

Restricted Boltzmann machine model (RBMMMDA) for

multiple types of miRNA-disease association prediction. (Yu

N. et al. (2022)). built a model named TFLP based on tensor

factorization and label propagation. (Zhang et al. (2022)).

proposed a signed graph neural network method (SGNNMD)
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to predict deregulation types of miRNA-disease associations.

And WeightTDAIGN was proposed by (Ouyang et al. (2022))

later. All these models are capable of identifying multiple types of

miRNA-disease associations, but the performance of these

models is not yet as good as that of those designed to identify

single potential type of miRNA–disease association.

As we all know, Graph Convolutional Networks (GCNs)

(Kipf and Welling (2016)) generalize convolutional neural

networks (CNNs) (LeCun and Bengio (1995)) to graph-

structured data. GCN is being widely used in various

biological problems (Yang et al. (2022); Han et al. (2019); Li

et al. (2020); Zhao et al. (2021)). Most of the recent models based

on GCN achieved their best performance with 2 or 3 layer

models. Such shallow architectures limit their ability to extract

information from high-order neighbors. However, stacking more

layers and adding non-linearity tends to degrade the

performance of these models. Such a phenomenon is called

over-smoothing (Li et al. (2018)), which suggests that as the

number of layers increases, the representations of the nodes in

GCN are inclined to converge to a certain value and thus become

indistinguishable. This over-smoothing phenomenon is neither a

bug nor a special case, but an essential nature for GNNs. As

mentioned before, MKL can improve the prerformance of the

model by combining a variety of information. Therefore, it is

advisable to combine MKL with a GNN model which can stack

more layers to improve the model’s performance. (Chen et al.

(2020)). proposed Graph Convolutional Network via Initial

residual and Identity mapping (GCNII), a deep GCN model

which can largely resolve the over-smoothing problem. In this

paper, we propose a new model Multiple Kernel Fusion on

GCNII(Chen et al. (2020)), called MKFGCNII, for predicting

miRNA–disease associations. Firstly, we built a heterogeneous

biological network including an miRNA network and a drug

network. Secondly, we employed a multi-layer GCNII to extract

the embedding features on each layer. Thirdly, we calculated the

kernel matrix by the embedding features on each layer, and fused

multiple kernel matrices based on a weighting method. Finally,

Dual Graph Regularized Least Squares (DLapRLS) (Ding et al.

(2020)) was used to predict new miRNA–disease associations by

all the combined kernels. In the experiment, the best

performance was achieved when the MKFGCNII model

reached 16 layers. Under this condition, the performance of

the MKFGCNII model under 5-fold cross-validation obtained

the average area under the curve (AUC) of 0.9631 and area under

the precision-recall (AUPR) of 0.9746. Furthermore, we also

conducted case studies about esophageal neoplasms, lymphoma,

and prostate neoplasms. The results showed that 48, 47, and 47 of

the top 50 miRNAs related to these diseases were verified by

dbDEMC and miR2Disease databases, respectively. Our

experimental results demonstrated that the MKFGCNII model

can be a usefull tool for helping researchers study miRNA-disease

associations.

The main contributions of our article are as follows: 1) Our

model applies the GCNII Network into Multiple Kernel fusion.

2) We apply deep layer GCNII to extract different structural

information in the Heterogeneous graph. 3) Our model combines

DLapRLS, MKL and GCNII and achieves good performance on

the HMDD 2.0 (Li et al. (2014)) dataset.

FIGURE 1
The overview of our proposed method.

Frontiers in Genetics frontiersin.org03

Lu et al. 10.3389/fgene.2022.980497

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.980497


2 Materials and methods

2.1 Human miRNA-disease associations
database

The dataset used in this paper is HMDD v2.0 database

which can be downloaded from https://www.cuilab.cn/hmdd

(Li et al. (2014)). This dataset contains 495 miRNAs,

383 diseases, and 5,430 experimentally verified miRNA-

disease associations. Inferring novel associations in human

miRNA–disease network can be regarded as a kind of

biological bipartite network prediction. In our experiment,

we represented miRNAs and diseases as two different types of

nodes in the network. The node set of Nm miRNAs is defined

as M � {m1, . . . , mNm}. Similarly, we described the node set of

Nd diseases as N � {d1, . . . , dNd}. An adjacency matrix

Y ∈ RNm×Nd is created to store miRNA-disease associations.

In this matrix, 495 rows represent the number of miRNAs,

383 columns represent the number of diseases. If miRNA mi

(1 ≤ i ≤ Nm) is associated with disease dj (1 ≤ j ≤ Nd), Yij = 1,

otherwise Yij = 0.

2.2 MiRNA functional similarity

(Wang et al. (2010)) proposed a model to calculate miRNAs

functional similarity, which was based on the assumption that

miRNAs with similar functions are often connected with similar

diseases and vice versa. Based on (Wang et al. (2010))’s previous

work, we can download the miRNA functional similarity data

from https://www.cuilab.cn/files/images/cuilab/misim.zip

directly. In this paper, we constructed a matrix

MFS ∈ RNm×Nm to describe the functional similarity between

miRNAs, where element MFS(mi, mj) represents the

functional similarity between miRNA mi and mj.

2.3 Disease semantic similarity

Based on (Xuan et al. (2013)) and (Schriml et al. (2012))’s

study, firstly, we got the relationships between different diseases

from the medical subject headings (MeSH) database (https://

www.ncbi.nlm.nih.gov/). Then, we constructed the disease

semantic similarity networks by using Disease Ontology

information and calculated disease semantic similarity. Every

disease can be represented by a directed acyclic graph (DAG) in

the MeSH database. DAG (di) = (di, T (di), E (di)) represents a

directed acyclic graph of disease di, which contains disease di, its

ancestor nodes T (di), and the set of directly connected edges E

(di) from the ancestor nodes to node T (di). Then, the semantic

contribution value of disease dk to di can be calculated as follows:

SC1di dk( ) � 1, if dk � di

max Δ × SC1di dk′( ){ }, other
{ . (1)

where dk’ denotes the children node of dk,Δ denotes the contributing

factor of semantic decay, which was set to 0.5 according to Xuan

et al. (2013). The contributing factor of disease di to itself was set to 1.

From Eq. 1 we know that if the distance from disease dk to disease di
increases, the semantic contribution factor will decrease. Then, the

semantic value of disease di can be calculated by:

SV1 di( ) � ∑
dk∈T di( )

SC1di dk( ). (2)

According to the assumption that the more DAGs are shared

between diseases, the more similar they are. The disease semantic

similarity DS1 (di, dj) between disease di and dj can be calculated

by utilizing the following formula:

DS1 di, dj( ) � ∑dk∈T di( )∩T dj( ) SC1di dk( ) + SC1dj dk( )( )
SV1 di( ) + SV1 dj( ) . (3)

In order to predict miRNA-disease associations, (Pasquier

and Gardès (2016)), investigated the hypothesis that information

attached to miRNAs and diseases can be revealed by

distributional semantics to calculate disease semantic

similarity. So, the distributional information on miRNAs and

diseases can be represented in a high-dimensional vector space.

In this way, every appearance of diseases in the same layer of

DAG can be taken into account. The semantic contribution value

of disease dk to di can be calculated as follows:

SC2di dk( ) � −log num DAGs dk( )( )
Nd

( ). (4)

Then, the semantic value of disease di is calculated by Eq. 5

and the disease semantic similarityDS2 (di, dj) between disease di
and dj is calculated by Eq. 6 as follows:

SV2 di( ) � ∑
dk∈T di( )

SC2di dk( ), (5)

TABLE 1 Algorithm 1 Algorithm of our proposed method.
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DS2 di, dj( ) � ∑dk∈T di( )∩T dj( ) SC2di dk( ) + SC2dj dk( )( )
SV2 di( ) + SV2 dj( ) . (6)

We integrated DS1 and DS2 together as the final

disease semantic similarity for a better disease semantic

similarity. The final disease semantic similarity is defined as

follows:

DSS di, dj( ) � DS1 di, dj( ) +DS2 di, dj( )
2

. (7)

2.4 Gaussian interaction profile kernel
similarity for diseases and miRNAs

To obtain topological information of miRNAs and

diseases in relational graphs, we can calculate the Gaussian

interaction profile kernel similarity for miRNAs and diseases

by using miRNA-disease association network (Chen et al.

(2016)). Firstly, based on assumptions that similar miRNAs

are more likely to be associated with similar diseases, we

utilized a binary vector BI(mi), which is the ith row of

matrix Y, representing the associations between miRNA mi

and all diseases. Then, the Gaussian interaction profile kernel

similarity for miRNAs MGS (mi, mj) between miRNA mi and

mj can be calculated as below:

MGS mi,mj( ) � exp γm‖BI mi( ) − BI mj( )‖2( ), (8)

γm � αm/ 1
Nm

∑Nm

i�1
‖BI mi( )‖2⎛⎝ ⎞⎠. (9)

Here, αm has been set to 1 referring to Chen et al. (2016)’s

studies. Taking the same approach, we can calculate the Gaussian

interaction profile of diseases MGS (mi, mj) between diseases di
and dj as follows:

DGS di, dj( ) � exp γd‖BI di( ) − BI dj( )‖2( ), (10)

γd � αd/ 1
Nd

∑Nd

i�1
‖BI di( )‖2⎛⎝ ⎞⎠. (11)

Here, a binary vector BI(di), which is the ith column of

matrix Y, represents the associations between disease di and all

miRNAs. αd has been set to 1 referring to (Chen et al. (2016))’s

studies.

2.5 Integrated similarity for miRNAs and
diseases

By integrating the calculations above, we can get the

integrated similarity for miRNAs IM0 (mi, mj) between

miRNA mi and mj as Eq. 12, and the integrated

similarity for diseases ID0 (di, dj) between disease di and

di as Eq. 13.

IM0 mi,mj( ) � MFS mi,mj( ), if MFS mi,mj( ) exits
MGS mi,mj( ), otherwise

⎧⎨⎩ , (12)

ID0 mi,mj( ) � DSS di, dj( ), if DSS di, dj( ) exits
DGS di, dj( ), otherwise

⎧⎨⎩ . (13)

2.6 Heterogeneous network

Inspired by (Yang et al. (2022)), we built a heterogeneous

biological network including an miRNA network IM0, a

disease network ID0, and an association network between

miRNAs and diseases. Finally, we constructed the

heterogeneous network defined by the adjacency

matrix A ∈ R(Nm+Nd)×(Nm+Nd):

TABLE 2 Five-fold cross-validation results performed by MKFGCNII
based on HMDD v.2.0.

Testing
set

Acc.(%) Prec.
(%)

Recall
(%)

F1 score
(%)

AUC
(%)

AUPR
(%)

1 92.27 91.78 93.27 92.52 96.67 97.44

2 92.77 93.15 92.73 92.94 96.56 97.51

3 92.82 93.78 92.10 92.93 96.15 97.18

4 92.68 92.95 92.70 93.83 96.59 97.58

5 92.40 92.88 92.13 92.50 96.15 97.06

Average 92.59 ±
0.24

92.91 ±
0.72

92.57 ±
0.49

92.94 ± 0.54 96.42 ±
0.25

97.35 ±
0.22

TABLE 3 The comparison results of MKFGCNII model with other latest
models according to 5-fold cross-validation on HMDD
v.2.0 dataset.

Method AUC(%)

DBMDA (Zheng et al. (2020)) 91.29

CEMDA (Liu et al. (2021)) 92.03

MDPBMP(Yu et al. (2022a)) 92.14

NIMCGCN(Li et al. (2020)) 92.91

M2GMDA (Zhang et al. (2020)) 93.23

MSHGATMDA (Wang et al. (2022)) 93.45

HGANMDA (Li et al. (2022)) 93.74

MKFGCNII(our) 96.42

Bold represents the maximum value.
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A � IM0 Y
YT ID0

[ ]. (14)

2.7 Deep graph convolutional network

As we know, Graph Convolutional Network (GCN) is a

neural network that can learn low dimensional

representation. However, stacking more layers and adding

non-linearity will cause GCN to appear over-smoothing.

Therefore, we applied the GCNII (Chen et al. (2020))

model which is a deep model that can effectively extract

the embedding from the graph and partially solve the

problem of over-smoothing to extract the embedding of

heterogeneous graph on each layer.

Specifically, given a heterogeneous network adjacency matrix

A as defined above, the GCNII model of the heterogeneous

network can be defined as follows:

H l+1( ) � σ 1 − αl( )~PH l( ) + αlH
0( )( ) × 1 − βl( )In + βlW

l( )( ). (15)

where H(l) is the lth layer embedding of nodes, where l = 1,

. . ., L;αl, βl are hyperparameters, we set αl = α in our method,

βl � log(λl + 1) ≈ λ
l , λ is hyperparameter. ~P � ~D

−1/2 ~A~D
−1/2

,
~P � ~D

−1/2 ~A~D
−1/2 � (D + In)−1/2(A + In)(D + In)−1/2, D the

diagonal degree matrix of A, W(l) ∈ R(Nm+Nd)×(ki) is a

learnable weight matrix for the lth neural network layer

and ki is the dimensionality of embeddings of lth layer

GCNII, σ(·) is a non-linear activation function.

In our study, we employed ReLU(Rectified Linear Unit) as

the non-linear activation function. We constructed the initial

embedding for the first layer H(0), H(1) and the last layer H(L+1) as

follows:

H 0( ) � 0 Y
YT 0

[ ], (16)

H 1( ) � GAT H 0( )( ), (17)

H L+1( ) � W L+1( )H L( ) + b L+1( ). (18)

where GAT(Veličković et al. (2017)) represents a two-layers

GAT model, W(L+1), b(L+1) are the weight matrix and bias of

the fully connected layer, respectively.

2.8 Multi-kernal fusion

We can extract multiple embeddings for multi-layer

GCNII model, which represents information of different

graph structures. Specifically, H0 represents the initial

features of nodes in the heterogeneous graph, and Hl+1

(l = 1, . . ., L) aggregates the l-order neighbor

information of nodes and original features according to

the weight parameter αl in Eq. 15. According to Eq. 15, we

know that the embedding of each layer will be accompanied

by the initial embedding. Thus, the problem of over-

smoothing can be partially solved by controlling the

hyperparameter αl, which means that the information

aggregation of each layer can effectively avoid the

phenomenon of homogenization, facilitating the

execution of downstream tasks. Therefore, the

embedding information on each layer can effectively

represent different information. Thus, it is reasonable for

us to perform multi-kernal fusion on these, and then use the

fused information to make predictions.

For the embedding of lth layerH(l)(l = 1, . . ., L), we can divide

H(l) into two parts. The first Nm lines are used as miRNA

TABLE 4 Influence of hidden layers.

The
number
of
hidden
layers

Acc
(%)

Prec.
(%)

Recall
(%)

F1 score
(%)

AUC
(%)

AUPR
(%)

2 82.78 85.31 80.29 82.63 88.72 91.30

4 89.66 90.87 88.81 89.78 94.19 95.55

8 92.16 92.55 92.12 92.33 95.67 96.85

16 92.58 92.91 92.57 92.94 96.42 97.35

FIGURE 2
AUPR of models with different iterations.
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embeddings and expressed as H(l)
m , and the last Nd lines are used

as disease embeddings; then,the embedding of each layer can be

represented as H(l) � H(l)
m

H(l)
d

[ ] ∈ R(Nm+Nd)×ki ,

H(l)
m ∈ RNm×kl , andH(l)

d ∈ RNd×kl .Finally, we used H(l)
m , H(l)

d and

Gaussian interaction profile kernal similarity function to calculate
the miRNA and disease kernel matrices on lth layer as follows:

IMl i, j( ) � exp −γl‖H l( )
m i( ) −H

j( )
m ‖2( ), (19)

IDl i, j( ) � exp −γl‖H l( )
d i( ) −H

j( )
d ‖2( ). (20)

where IMl ∈ RNm×Nm , IDl ∈ RNd×Nd , H(l)
m (i) and H(l)

d (i)
represent the ith row in the lth layer miRNA and disease

embeddings, i.e. the ith row of H(l)
m and H(l)

d , respectively; γl

FIGURE 3
AUPR of models with different dropout, ϕm, ϕd, γ and θ.

FIGURE 4
AUPR of models with different α, λ, nhidden and the dimension of last layer.
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denotes the corresponding bandwidth, we set γl = γ, l =

1, . . ., L.
In order to make full use of the information to improve the

performance of predicting miRNA–disease associations, we

integrated all the kernels above with multiple kernel

fusion, then adopted the weighted sum method to combine

all kernel matrices. The combined kernel can be defined as

follows:

IM � ∑L+1
i�0

ωm
i IMi, (21)

ID � ∑L+1
i�0

ωd
i IDi. (22)

where IM ∈ RNm×Nm , ID ∈ RNd×Nd , ωm
i � μ

n+(i+1)θ, and ωd
i �

μ

n+(i+1)θ are the corresponding weight of miRNA kernels and

disease kernals, respectively; n is the number of hidden layers

of GCNII. μ and θ are hyperparameters. Here, we set μ � n
2.

2.9 Dual Laplacian regularized least
squares model

Inspired by (Ding et al. (2020)) and (Yang et al. (2022)), we

adopted the Dual Laplacian Regularized Least Squares

(DLapRLS) method to predict miRNA–disease associations.

DLapRLS can avoids overfitting by adding graph

regularization. Thus, the loss function can be defined as follows:

minJ � ‖IMαm + IDαd( )T − 2Ytrain‖2F
+ϕmtr αT

mLmαm( ) + ϕdtr αT
dLdαd( ). (23)

where ‖ ·‖F is the Frobenius norm, Ytrain ∈ RNm×Nd is the

adjacency matrix for miRNA–disease associations in the

training set; αm and αTd ∈ RNm×Nd are learnable matrices;

Lm ∈ RNm×Nm and Ld ∈ RNd×Nd are the normalized Laplacian

matrices, as follows:

Lm � D−1/2
m ΔmD

−1/2
m ,Δm � Dm − IMm, (24)

Ld � D−1/2
d ΔdD

−1/2
d ,Δd � Dd − IDd. (25)

where Dm � ∑Nm
i�1 IM and Dd � ∑Nd

i�1ID are diagonal degree

matrix. Finally, we can obtain the prediction F̂ for

miRNA–disease associations from IM and ID as follows:

F̂ � IMαm + IDαd( )T
2

. (26)

2.10 Training

We used Adam (Da (2014)) to update the parameters of

GCNII, and then got the iterative function directly by calculating

the partial derivatives for the parameters of DLapRLS. We first

assume that αd is a constant matrix when we optimize αm. Thus,

the partial derivative of the loss function Eq. 23 with respect to αm
can be calculated as follows:

zJ

zαm
� 2IM IMαm + IDαd( )T − 2Ytrain( ) + 2ϕmLmαm (27)

By letting zJ
zαm

� 0, αm can be obtain as follows:

IMIM + ϕmLm( )αm � IM 2Ytrain − αT
dID

T[ ],
αm � IMIM + ϕmLm( )−1IM 2Ytrain − αT

dID
T[ ]. (28)

Similarly, the partial derivative of the loss function Eq. 23

with respect to αd can be calculate as follows:

zJ

zαd
� 2ID IDαd + IMαm( )T − 2YT

train( ) + 2ϕdLdαd. (29)

TABLE 5 Top 50 miRNAs related to esophageal neoplasms predicted
by MKFGCNII.

Rank miRNA Evidence Rank miRNA Evidence

1 hsa-mir-375 dbDEMC 26 hsa-mir-
200b

miRCancer

2 hsa-mir-
200c

dbDEMC 27 hsa-mir-663 dbDEMC

3 hsa-mir-31 dbDEMC 28 hsa-mir-95 dbDEMC

4 hsa-mir-7 dbDEMC 29 hsa-mir-338 dbDEMC

5 hsa-let-7a miRCancer 30 hsa-mir-9 dbDEMC

6 hsa-mir-21 dbDEMC 31 hsa-mir-
133b

dbDEMC

7 hsa-mir-1 dbDEMC 32 hsa-mir-
520c

dbDEMC

8 hsa-mir-
196a

dbDEMC 33 hsa-mir-126 dbDEMC

9 hsa-mir-218 dbDEMC 34 hsa-mir-203 dbDEMC

10 hsa-mir-142 Unconfirmed 35 hsa-mir-152 dbDEMC

11 hsa-mir-145 dbDEMC 36 hsa-mir-
199b

dbDEMC

12 hsa-mir-
200a

dbDEMC 37 hsa-mir-222 dbDEMC

13 hsa-mir-521 dbDEMC 38 hsa-mir-494 dbDEMC

14 hsa-mir-107 dbDEMC 39 hsa-mir-561 dbDEMC

15 hsa-mir-486 dbDEMC 40 hsa-mir-223 miRCancer

16 hsa-mir-10b dbDEMC 41 hsa-mir-22 dbDEMC

17 hsa-mir-18b dbDEMC 42 hsa-mir-27b dbDEMC

18 hsa-let-7g miRCancer 43 hsa-mir-
216b

miRCancer

19 hsa-mir-370 dbDEMC 44 hsa-mir-26b dbDEMC

20 hsa-mir-497 dbDEMC 45 hsa-mir-299 Unconfirmed

21 hsa-mir-16 dbDEMC 46 hsa-mir-18a dbDEMC

22 hsa-mir-151 dbDEMC 47 hsa-mir-127 dbDEMC

23 hsa-mir-211 dbDEMC 48 hsa-mir-372 dbDEMC

24 hsa-mir-212 dbDEMC 49 hsa-mir-
146a

dbDEMC

25 hsa-mir-140 dbDEMC 50 hsa-mir-
451a

dbDEMC
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Similar to above, by letting zJ
zαd

� 0, αd can be obtain as

follows:

IDID + ϕdLd( )αd � ID 2YT
train − αT

mIM
T[ ],

αd � IDID + ϕdLd( )−1ID 2YT
train − αT

mIM
T[ ]. (30)

We randomly initialized all the trainable parameters at the

beginning of our model training, and then calculated αm and αd
by Eq. 29 and Eq. 30 directly in each iteration, other parameters

were optimized by Adam. The flowchart of our proposed method

is shown in Figure 1. And, the overview of our model is shown in

Table 1. As we all know, the imbalance of positive and negative

samples will lead to a bias towards broad categories, which will

lead to overfitting of the model (Li et al. (2022)). We took the

experimentally verified miRNA-disease associations as positive

samples, and the unknown miRNA-disease associations as

negative samples as (Li et al. (2022)) did. And then, we

randomly selected the same number of negative samples from

all the unknown miRNA-disease associations. In this way, we

selected a total of 10,860 samples.

3 Result

3.1 Implementation details and
performance evaluation

Our model was implemented based on PyTorch and PyG. In

this experiment, we applied 5-fold cross-validation to evaluate

the performance of our model, and we set training epochs to 15,

the learning rate to 0.001, the weight decay of GCNII’s

convolutional and fully connected layers to 0.001 and 0.0005,

respectively; set the number of hidden layers to 16, the dimension

hidden layers to 256, ϕ1 � ϕ1 � 1
512, dropout to 0.5,

hyperparameters ξ = 0.5, λ = 2, θ � 0.1, γ � 1
128, respectively.

We drew tables to show the effect of the model. In Table 2, we

can see that MKFGCNII achieves average Acc. of 92.59,Prec. of

92.91%, Recall of 91.57%, F1 score of 92.94%, AUC of 96.42%,

and 97.35% with standard deviations of 0.24, 0.72, 0.49, 0.54,

0.25, and 0.22%, respectively.

3.2 Compare with other latest methods

In order to evaluate the performance of our model in predicting

themiRNAs-diseases associations, we compared the performance of

the MKFGCNII model with six other latest models: DBMDA

(Zheng et al. (2020)), CEMDA (Liu et al. (2021)), MDPBMP(Yu

L. et al. (2022)), NIMCGCN(Li et al. (2020)), M2GMDA (Zhang

et al. (2020)), MSHGATMDA (Wang et al. (2022)) and

HGANMDA (Li et al. (2022)). We used the 5-fold cross-

validation method on the same dataset HMDD v.2.0. as they did.

The AUC values of the six models are shown in Table 3 and are

91.29, 92.03, 92.14, 92.91, 93.23, 93.45 and 93.74%, respectively. Our

MKFGCNII obtained the highest AUC value of 96.42%. From

Table 3, we can see that compared with the six models, our

MKFGCNII model has the highest AUC value and it is 2.68%

higher than the second highest HGANMDA model. There are two

main possible reasons. The first is that DLapRLS has a good effect on

predicting the relationship between two objects. And the second is

that the depth of the model is deep enough to enable the model to

fully extract various information for relationship prediction. In fact,

in this experiment, our model had a total of 19 layers, 16 hidden

layers are graph convolution layers, two graph attention layers are

added between the input layer and the hidden layer, and a fully

connected layer is added between the hidden layer and the output

layer.

TABLE 6 Top 50 miRNAs related to lung neoplasms predicted by
MKFGCNII.

Rank miRNA Evidence Rank miRNA Evidence

1 hsa-mir-34a dbDEMC 26 hsa-mir-
130a

dbDEMC

2 hsa-mir-486 dbDEMC 27 hsa-mir-
487a

dbDEMC

3 hsa-mir-
125b

dbDEMC 28 hsa-mir-151 Unconfirmed

4 hsa-mir-93 dbDEMC 29 hsa-mir-7 dbDEMC

5 hsa-mir-155 dbDEMC 30 hsa-mir-
199a

dbDEMC

6 hsa-mir-30e dbDEMC 31 hsa-mir-497 dbDEMC

7 hsa-mir-100 dbDEMC 32 hsa-mir-708 dbDEMC

8 hsa-mir-27b dbDEMC 33 hsa-mir-30d dbDEMC

9 hsa-mir-145 dbDEMC 34 hsa-mir-
125a

dbDEMC

10 hsa-mir-1 dbDEMC 35 hsa-mir-
200b

dbDEMC

11 hsa-let-7g dbDEMC 36 hsa-mir-658 dbDEMC

12 hsa-mir-16 dbDEMC 37 hsa-mir-488 dbDEMC

13 hsa-mir-424 dbDEMC 38 hsa-mir-
135b

dbDEMC

14 hsa-mir-205 dbDEMC 39 hsa-mir-223 dbDEMC

15 hsa-let-7b dbDEMC 40 hsa-mir-
499a

Unconfirmed

16 hsa-mir-21 dbDEMC 41 hsa-mir-144 dbDEMC

17 hsa-mir-196a dbDEMC 42 hsa-mir-
135a

dbDEMC

18 hsa-mir-
520d

dbDEMC 43 hsa-mir-15a dbDEMC

19 hsa-mir-
193b

dbDEMC 44 hsa-mir-
451a

dbDEMC

20 hsa-mir-181a dbDEMC 45 hsa-mir-20b dbDEMC

21 hsa-let-7d dbDEMC 46 hsa-mir-
378a

Unconfirmed

22 hsa-mir-186 dbDEMC 47 hsa-mir-30a dbDEMC

23 hsa-mir-668 dbDEMC 48 hsa-mir-17 dbDEMC

24 hsa-mir-27a dbDEMC 49 hsa-mir-34c dbDEMC

25 hsa-mir-148a dbDEMC 50 hsa-mir-218 dbDEMC
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3.3 Influence of hidden layers

In this experiment, we observed the effect of model depth on

improving model performance by adjusting the number of hidden

layers. The hidden layers were set to 2, 4, and 8 respectively. As

mentioned above, a graph attention layer was added between the

input layer and the hidden layer, and a fully connected layer was

added between the hidden layer and the output layer. The

comparison results are shown in Table 4. All experiments were

performed with 5-fold cross-validation and trained with the same

epoch. Finally, the average value of each evaluation was used as

comparison. From Table 4, we can see that as the number of hidden

layers increases, the model performance gets better, and the model

performance has stabilizedwhen the number of hidden layer reaches

8, which demonstrates the impact of model depth on model

performance. It also proved that the GCNII module can not only

solve the over-smoothing problem to a large extent, but also improve

the model performance by increasing the number of hidden layers,

which makes the performance of the MKFGCNII model better than

the other models.

3.4 Other parameters evaluation

In this experiment, we set the number of hidden layer to 16 and

investigated the effect of other parameters of the model on model

performance. Firstly, we evaluated the effect of iterations N which

controls the times of updates of learnable parameters. FromFigure 2A

we can see that the AUPR values under different numbers of

iterations. It shows that the AUPR values tends to stabilize when

the number of iterations is 5. Thus, we evaluated the remaining

parameters by iterating 10 times under 5-fold cross-validation.

The ϕm and ϕd represent the weights of graph regular terms

in DLapRLS, and are important parameters of our model. Ten

candidate values of {2–9, 2–8, . . ., 1} were selected for ϕm and ϕd.

Figure 3A shows the AUPR values for different ϕm and ϕd
models. It can be seen that when ϕm and ϕd are small, the

AUPR values higher. Our model obtains best AUPR with ϕm =

2–9 and ϕd = 2–8, respectively.

Different θ will generate different weights of miRNA and

disease kernels. From Figure 3B we can see that the AUPR of our

model is stable between 1
16 and 1, then rapidly declines between

1 and 8. Thus, we set θ = 0.1 for our model. Different γ will

generate different miRNA and disease kernels, which will affect

the model performance. Figure 3B shows the effect of changes in

γ on the AUPR of our model. It can be observed that AUPR

gradually increases as γ decreases which means that smaller γ has

a better effect on the predictive performance. Therefore, we set

γ � 1
128 for our model.

λ and α are the hyperparameters of module GCNII. Setting

the hyperparameter of λ in GCNII module is to ensure the decay

of the weight matrix adaptively increases when we stack more

layers in GCNII module (Chen et al. (2020)). And, α means that

the final representation of each node retains at least a proportion

of α from the input layer, no matter how many layers we stack in

module GCNII. It can be seen in Figure 4D that the AUPR of our

model is stable when λ and α change between 1
8 to 32 and between

1
32 to 8. We set 2 and 1

2 for λ and α for our model, respectively.

In the GCNII module of this experiment, the input features

pass through a layer of GAT for inductive learning first and then

enter the hidden layer. After passing through the 16 hidden

layers, the output features are output through a layer of full

connection, which means that in this experiment, the GCNII

module contains two layers of full connection and 16 layers of

graph convolution. Each graph convolutional layer has the same

dimension. We used nhidden and the dimension of last layer

denote the dimensions of the hidden layer vector and the output

layer vector, respectively. 4(e) show the AUPR values for

different nhidden and the dimension of last layer models. It

can be seen that the values of AUPR is relatively high when

nhidden takes 32, 128, 256 and 512, and the AUPR values become

stable when the dimension of last layer is greater than 4. So, we set

nhidden and the dimension of last layer to 256 and 64,

respectively.

Finally, we evaluated the dropout values of our model. Ten

candidate values of {0, 0.1, . . ., 0.9} were selected for dropout. It

can be seen in Figure 3B that the AUPR of our model is stable

when dropout varies from 0 to 0.8. Thus, we set dropout = 0.5 for

our model.

TABLE 7 Top 50miRNAs related to pancreatic neoplasms predicted by
MKFGCNII.

Rank miRNA Evidence Rank miRNA Evidence

1 hsa-mir-34a dbDEMC 26 hsa-mir-130a dbDEMC

2 hsa-mir-486 Unconfirmed 27 hsa-mir-487a dbDEMC

3 hsa-mir-125b dbDEMC 28 hsa-mir-151 dbDEMC

4 hsa-mir-93 dbDEMC 29 hsa-mir-7 dbDEMC

5 hsa-mir-155 dbDEMC 30 hsa-mir-199a dbDEMC

6 hsa-mir-30e dbDEMC 31 hsa-mir-497 dbDEMC

7 hsa-mir-100 dbDEMC 32 hsa-mir-708 dbDEMC

8 hsa-mir-27b dbDEMC 33 hsa-mir-30d dbDEMC

9 hsa-mir-145 dbDEMC 34 hsa-mir-125a dbDEMC

10 hsa-mir-1 dbDEMC 35 hsa-mir-200b dbDEMC

11 hsa-let-7g dbDEMC 36 hsa-mir-658 dbDEMC

12 hsa-mir-16 dbDEMC 37 hsa-mir-488 dbDEMC

13 hsa-mir-424 dbDEMC 38 hsa-mir-135b dbDEMC

14 hsa-mir-205 dbDEMC 39 hsa-mir-223 dbDEMC

15 hsa-let-7b dbDEMC 40 hsa-mir-499a Unconfirmed

16 hsa-mir-21 dbDEMC 41 hsa-mir-144 dbDEMC

17 hsa-mir-196a dbDEMC 42 hsa-mir-135a dbDEMC

18 hsa-mir-520d Unconfirmed 43 hsa-mir-15a dbDEMC

19 hsa-mir-193b dbDEMC 44 hsa-mir-451a dbDEMC

20 hsa-mir-181a dbDEMC 45 hsa-mir-20b dbDEMC

21 hsa-let-7d dbDEMC 46 hsa-mir-378a Unconfirmed

22 hsa-mir-186 dbDEMC 47 hsa-mir-30a dbDEMC

23 hsa-mir-668 dbDEMC 48 hsa-mir-17 dbDEMC

24 hsa-mir-27a dbDEMC 49 hsa-mir-34c miRCancer

25 hsa-mir-148a dbDEMC 50 hsa-mir-218 dbDEMC
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4 Case studies

To further demonstrate the performance of the

MKFGCNII model in predicting the potential associations

between miRNAs and specific diseases, Esophageal

neoplasms, Lung Neoplasms, and Pancreatic Neoplasms

were selected for verification. Specifically, we firstly deleted

the edges between disease-specific nodes and all miRNAs

from the miRNA-disease heterogeneous graph. Then we took

the remaining edges containing miRNA nodes and disease

nodes as the training set, and the deleted edges were taken as

test set. Finally, we sorted the results of the test set and

verified it by the dbDEMC (Yang et al. (2010)) and

miRCancer (Xie et al. (2013)) datasets. We used dbDEMC

as the first verification database, and when a predictive

association were not found in the dbDEMC database, we

would confirm it in the miRCancer databases. When a

predictive association was not validated in both datasets

above, we denoted it as Unconfirmed in Tables 5–7. So

there is only one database will be provided in the Evidence

column of Tables 5–7, although we used the two datasets

above for validation. In addition, case studies of the full

dataset are placed in the supporting materials.

4.1 Esophageal neoplasms

Esophageal neoplasms is a common type of digestive tract

neoplasms with high malignancy and poor prognosis. Five-

year survival for malignant esophageal neoplasms is only

about 13 ~18%, even with advanced treatment (Milano and

Krishnadath (2008)). The pathogenesis of esophageal tumors

is diverse, and it is normally believed to be the result of

environment-genetic-gene interaction. But there is no

unified and exact conclusion yet. Therefore, further

research on the pathogenesis of esophageal tumors is of

great significance for its early screening, diagnosis,

prevention and prognosis. From Table 5, we can find that a

total of 48 of the top 50 miRNAs related to esophageal

neoplasms were confirmed in the dbDEMC and miRCancer

datasets. For the remaining two miRNAs, we can find their

variants associated with esophageal neoplasms in the

dbDEMC and miRCancer database. Specifically, the 10th

ranked miRNA, hsa-mir-142, its variants hsa-mir-142-3p

and hsa-mir-142-5p were found to be associated with

esophageal neoplasms in the dbDEMC and miRCancer

database. The 45th ranked miRNA, hsa-mir-299, its

variants hsa-mir-299-3p and hsa-mir-299-5p were also

found to be associated with esophageal neoplasms in the

dbDEMC and miRCancer database.

4.2 Lung neoplasms

Lung neoplasms is one of the common malignant tumors

which occurred in 2.2 million people and resulted in

1.8 million deaths in 2020 (Sung et al. (2021)). In most

countries the 5-year survival rate is less than 20%. As

miRNAs take part in development, cell proliferation and

apoptosis, their deregulation has been concerned with

cancer initiation and progression, implying that miRNAs

possibly act as neoplasms suppressor genes or oncogenes in

various types of lung cancers (Lynam-Lennon et al. (2009)).

For excample, (Nadal et al. (2014)), found that miR-370 was

upregulated in patients with recurrent tumors, resulting in

poor survival in patients with lung adenocarcinoma. Table 6

shows 47 of the top 50 miRNAs related to lung neoplasms in

the prediction results of our model. Although 3 miRNAs:

hsa-mir-151, hsa-mir-499a and hsa-mir-378a were not

validated, their variants, hsa-mir-151-3p, hsa-mir-151-5p,

hsa-mir-499a-3p, hsa-mir-499a-5p, hsa-mir-378a-3p, hsa-

mir-378a-5p were found to be associated with lung

neoplasms by searching the dbDEMC and miRCancer

database.

4.3 Pancreatic neoplasms

There are many types of pancreatic tumors, which are

difficult to diagnose. Although the incidence rate is low, it has

a high degree of malignancy, poor prognosis and short

survival time for patients. According to statistics,

pancreatic cancer ranks seventh in male malignant tumor

incidence, 11th in females, and sixth in malignant tumor-

related mortality in China. Researches in the past 2 decades

have shown that miRNA and pancreatic tumors are

associated. For example, (Rawat et al. (2019)), described

the roles of miRNA’s in pancreatic cancer which included

diagnosis, prognosis and therapeutic intervention. Thus, we

chose pancreatic neoplasms as the third case study for the

MKFGCNII model. Table 7 shows that 46 of the top

50 miRNAs associated with pancreatic neoplasms were

confirmed in the prediction results of our model. The

remaining four miRNAs which have not been verified are

hsa-mir-486, hsa-mir-520d, hsa-mir-499a and hsa-mir-378a.

But the ariants hsa-mir-486-3p and hsa-mir-486-5p of hsa-

mir-486 were found to be associated with pancreatic

neoplasms in the dbDEMC database. The same situation

also appeared for hsa-mir-520d, hsa-mir-499a and hsa-mir-

378a. That is, both -3p and -5p variants of these miRNAs are

associated with pancreatic neoplasms in the dbDEMC

database.
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5 Discussion and conclusion

Since the first miRNA was discovered by (Lee R. et al. (1993))

in 1993, thousands of miRNAs have been identified in humans,

and more and more studies show that it plays a critical role in the

generation and development of human diseases. In the past

2 decades, a large amount of miRNA-related data have been

generated through various biological experiments. On this basis,

the association of miRNA-disease databases, such as dbDEMC

and miRCancer, has also been established. Using these databases

and computational methods can not only reduce the cost and

cycle time of traditional biological experiments, but also lead

researchers to research into certain miRNA-disease associations.

In this paper, we proposed an miRNA–disease association

prediction method based on multiple kernel fusion on GCNII

to predict the potential associations between miRNAs and

diseases, called the MKFGCNII model. The model applied

GCNII module, which can solve the over-smoothing problem

to a large extent, to extract embedding information layer by layer.

Then it generated miRNA kernal and disease kernal for each

layer and fused all this kernel matrices based on a weighting

method. Finally, Dual Graph Regularized Least Squares

(DLapRLS) was used to predict the predict miRNA–disease

associations. Based on the GCNII model’s ability to solve

over-smoothing, we superimposed the hidden layer of the

model to 16 layers, adding two graph attention layers before

the hidden layer and one fully connection layer after the hidden

layer. All these layers provided DLapRLS with enough kernels for

prediction, thereby improving the performance of the

MKFGCNII model.

However, the MKFGCNII model still has some

disadvantages, which will be investigated and discussed in the

future. The correlation matrix between miRNAs and diseases is

sparse, which causes the model predictions to be biased towards

negative class samples. Second, the dimension of the hidden layer

is fixed which should be further studied. In addition, the current

miRNA-disease association analyses can be divided into two

categories: single-relationship analysis and multi-relationship

analysis. Single-relationship analysis, which is to analyze

whether there is an association between miRNA and disease,

obtains high accuracy yet fails in predicting the category of the

association; while multi-relationship analysis, which is to analyze

which kind of association exists between miRNA and disease, is

able to predict the category of the association but with low

accuracy. Neither is perfect. Therefore, we believe that being

able to predict the category of miRNA-disease association with

high accuracy will be one of the future development directions.

We will work on this direction in future research.
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