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Regulatory T cells (Tregs) are key immunosuppressive cells that promote tumor growth by
hindering the effector immune response. Tregs utilize multiple suppressive mechanisms to
inhibit pro-inflammatory responses within the tumor microenvironment (TME) by inhibition
of effector function and immune cell migration, secretion of inhibitory cytokines, metabolic
disruption and promotion of metastasis. In turn, Tregs are being targeted in the clinic either
alone or in combination with other immunotherapies, in efforts to overcome the
immunosuppressive TME and increase anti-tumor effects. However, it is now
appreciated that Tregs not only suppress cells intratumorally via direct engagement, but
also serve as key interactors in the peritumor, stroma, vasculature and lymphatics to limit
anti-tumor immune responses prior to tumor infiltration. We will review the suppressive
mechanisms that Tregs utilize to alter immune and non-immune cells outside and within the
TME and discuss how these mechanisms collectively allow Tregs to create and promote a
physical and biological barrier, resulting in an immune-excluded or limited
tumor microenvironment.
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INTRODUCTION

Regulatory T cells (Tregs) are suppressive CD4
+ T cells that are characterized, and largely regulated,

by expression of the master transcription factor, forkhead box protein 3 (FoxP3) (1). Tregs are critical
in the maintenance of peripheral tolerance to prevent autoimmune disease. During pathogenic
insults, Tregs prevent overt immune activation in efforts to limit tissue damage. Tregs are also found
in tumors with the ratio of Tregs to T cells positively correlating with poor prognosis and response to
immunotherapy (2, 3). Strikingly, Treg depletion in murine tumor models results in complete tumor
clearance, however these mice ultimately succumb to lethal systemic autoimmune disease (4–7).
The drastic effect of Tregs on tumor growth has sparked interest in elucidating Treg function within
the tumor microenvironment (TME) in efforts to selectively target tumor-infiltrating Tregs while
sparing peripheral Tregs (8).

Immunotherapies designed to target intratumoral Tregs have focused on key surface markers
that are highly expressed and contribute to their suppressive functions, such as CTLA-4, CD25,
org June 2021 | Volume 12 | Article 7027261
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TIGIT, 4-1BB, OX-40, CCR4, and CCR8. Targeting these
markers therapeutically has had some clinical success. The first
FDA-approved immunotherapy utilized a blocking monoclonal
antibody specific for cytotoxic T-lymphocyte-associated protein
4 (CTLA-4 or CD152) (ipilimumab), which preserves T cell
activation via preventing CTLA-4 binding to CD28 thus allowing
for CD28 engagement of CD80/86 (9). Currently, the complete
mechanism for ipilimumab is not fully elucidated but may also
involve depletion of Tregs via antibody-dependent cell-mediated
cytotoxicity (ADCC) (10). Despite ipilimumab prolonging
patient survival and increasing the five-year survival rate, 10-
15% of patients experience Grade 3-4 immune-related adverse
events, thus investigation of additional Treg-targeting strategies
are warranted (11). Monoclonal antibodies against CD25, OX-40
and GITR have produced favorable anti-tumor effects, which
were dependent on ADCC mediated Treg-depletion (12). Studies
to uncover both novel molecules enriched on tumor infiltrating
Tregs or mechanisms of suppression unique to the TME are
warranted to improve targeted immunotherapy while
limiting toxicity.

Tregs are found throughout the TME and can even exert
suppressive function at a distance, forming physical, metabolic,
and trafficking ‘barriers’ to exclude pro-inflammatory cells from
the TME. These barriers can be both ‘physical’, by limiting the
ability of effector T cells to enter into the tumor, and ‘functional’,
by limiting the activity of effector cells already within the TME.
Together, these barriers create an immune-excluded TME with
studies showing that decreased CD8+ T cells, specifically, within
the vicinity of tumor cells correlates with poor outcomes (13).
The primary ‘barriers’ constructed by Tregs that prevent the
infiltration of pro-inflammatory cells include poor activation of
T cells in the periphery, disorganized vasculature, prevention of
the formation of lymphatic structures in the TME and a stroma
that hinders the migration of cells into and around the tumor bed
(14, 15). These barriers of immune exclusion that Tregs erect will
be discussed herein, starting with the tumor core and working
outward through the peri-tumor to the stroma, ending with
lymphatic structures and the periphery (Figure 1). Investigation
of the pro-tumorigenic effects of Tregs in the whole tumor (non-
micro) environment is necessary to elucidate novel therapeutic
strategies to dismantle pro-tumor Tregs while maintaining
peripheral tolerance.
TREGS AS ANTI-INFLAMMATORY
INTRATUMORAL BARRIERS

The frequency and organization of Tregs within the TME is
diverse in cancer patients; however, high Treg infiltration often
correlates with poor prognosis in many cancer types (16–18).
The origin of these Tregs – either thymically (tTregs) or
peripherally-derived (pTregs) – is still being debated (19). T cell
receptor (TCR) sequencing studies in carcinogen-induced
murine models and in human melanoma, gastrointestinal and
ovarian cancers have shown distinct TCR sequences between
intratumoral Tregs and FOXP3

– conventional CD4+ T cells (20–22).
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A study using a genetically-driven prostate cancer murine model
showed that intratumoral Tregs were thymically-derived, had less
diverse TCRs, and had TCRs specific for the prostate tissue (23).
Conversely, a recent study in breast cancer patients showed 65%
TCR overlap of intratumoral Tregs with activated conventional
CD4+ T cells (24). Overall, Treg conversion in the periphery
and upon entry into the TME may be a rare event and may only
be observed with the use of TCR transgenic mice or human
tumors of specific tissue origins. However, having a TME that
contains pTregs and/or tTregs may provide diverse functions
(stability, effector and cytokine profile) that may provide a
therapeutic opportunity to dedifferentiate Tregs to an unstable,
non-immunosuppressive state (ex-Tregs) (25).

Tumors create an immunosuppressive environment that
attracts Tregs and also support their anti-tumor function.
Tumors secrete the CC chemokine ligand 22 (CCL22) and
CCL17, which recruit Tregs to the tumor via Treg expression of
the CC chemokine receptor 4 (CCR4) (26). Use of
mogamulizumab (anti-CCR4) in patients with cutaneous T cell
lymphoma or solid tumors, reduced the levels of circulating or
intratumoral CCR4+ Tregs, respectively, but did not induce potent
antitumor effects (27, 28). Combination of mogamulizumab with
nivolumab (anti-PD1) in phase I clinical studies was tolerable
and increased intratumoral CD8+ T cells and decreased Tregs in
patients with solid tumors, making this therapeutic combination
an effective option (29). Under hypoxic conditions, tumors secret
CCL28 which recruits Tregs via CCR10 (30). Additionally,
tumors secrete CCL5 which recruits Tregs via CCR5 and pre-
clinical studies with CCR5 inhibitors have decreased Treg tumor
infiltration and tumor growth (31, 32).

Conventionally, Tregs have higher affinity to self-antigen
compared to other T cells which allows for suppression of
autoreactive T cells and prevention of autoimmune disease.
Tumors express self-antigens that are over expressed,
inappropriately expressed, or mutated and preferentially
promotes the activation and sequestration of Tregs as seen by
the expansion of a few Treg clones specific for tumor antigens in
cancer patients (33–35). A study using non-TCR transgenic mice
showed that the TCRs of intratumoral Tregs are also found on
Tregs from tumor draining lymph nodes (dLN), suggesting that
Tregs are activated in the dLN, clonally expand, and migrate to
the tumor where they accumulate (36). Although these data
strongly suggest that Tregs recognize specific tumor antigens,
albeit lower diversity compared to activated intratumoral
conventional CD4+ cells, not all Tregs in the TME have tumor
antigen-specific TCRs.

The high proliferation index of cancer cells creates a high
energy demand, which forces the tumor to switch from oxidative
phosphorylation to glycolysis (referred to as the Warburg effect),
which generates a lactic acid-rich, glucose-poor, and hypoxic TME
(37). Uptake of glucose by intratumoral Tregs promotes instability
and loss of suppressive function. Instead, intratumoral Tregs

upregulate pathways involved in lactic acid metabolism, and
lactate uptake is required for maintenance of suppressive
function of intratumoral, but not peripheral, Tregs (38).
Mechanistically, Foxp3 promotes glycolysis via binding to the
June 2021 | Volume 12 | Article 702726
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FIGURE 1 | Overview of suppressive mechanisms used by Tregs to create barriers to immune infiltration into tumors. Panel (A) Within the TME, Tregs utilize inhibitory
receptors (TIM-3, TIGIT, PD1, and LAG-3), inhibitory cytokines (TGFb, IL-10, and IL-35), DC modulation (via CTLA-4 and LAG-3), and metabolic disruption (via CD39/
CD73) to suppress the anti-tumor T cell response. (B) Treg-derived TGFb induces cancer-associated fibroblast (CAF) development that increases extracellular matrix
(ECM) production and deposition within the peritumoral space (stroma) to inhibit effector T cell migration. (C) Tregs block entry of effector T cells through preventing proper
cytokine signals that promote high endothelial venule (HEV) formation as well as production of inhibitory IL-10 and VEGF to promote dysregulated angiogenesis. (D) In the
periphery and secondary lymphoid organs (SLO), Tregs can modulate DC maturity and induce apoptosis to prevent proper effector T cell activation.
Frontiers in Immunology | www.frontiersin.org June 2021 | Volume 12 | Article 7027263
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promoter of Myc and inducing expression (39). Deletion of
hypoxia-inducible factor 2a (HIF-2a) from murine Tregs

destabilized Tregs and prevented growth of MC38 colon
adenocarcinoma (40). Collectively, consumption of glucose and
oxygen by the proliferating tumor constructs a favorable metabolic
landscape for Tregs to stably thrive in the TME.

Once in the tumor, Tregs suppress the anti-tumor response
through contact-dependent and contact-independent
mechanisms. Contact-dependent mechanisms utilizing CTLA-
4, lymphocyte-activation gene 3 (LAG-3), and T cell
immunoglobulin and ITIM domain (TIGIT) prevent activation
and maturation of dendritic cells (DCs) thus preventing an
effective anti-tumor T cell response (Figure 1A). CTLA-4 on
Tregs binds CD80 molecules on DCs to induce transendocytosis
and downregulation of CD80 expression and production of
the inhibitory molecule indoleamine 2,3-dioxygenase (IDO)
(41–44). While the intracellular domain of CTLA-4 is not
thought to have a signaling function, it is important for the
regulation of endocytosis and trafficking (45, 46). Specifically, a
mouse model of Treg-specific CTLA-4 deletion resulted in fatal
lymphoproliferative and autoimmune diseases while drastically
limiting tumor progression, illustrating the importance of
CTLA-4 in mediating Treg function through transendocytosis
of CD80 and CD86 (44, 47, 48). LAG-3 binding to major
histocompatibility complex class II on DCs reduces the
expression levels of the costimulatory molecule CD86 and IL-
12 cytokine production (49). TIGIT ligation of CD155 on DCs
increased production of IL-10 and lowered IL-2, supporting an
immunosuppressive environment (50, 51). While programmed
cell death 1 (PD1) and T-cell immunoglobulin and mucin-
domain containing-3 (TIM-3) are highly expressed on Tregs

and important for suppressive function, the mechanisms are
unknown (52, 53).

Contact-independent mechanisms of Tregs include the
secretion of the inhibitory cytokines IL-10, IL-35, and
transforming growth factor-b (TGFb), which suppress the
activity of effector cells (Figure 1A). IL-10 suppresses via
inhibition of CD28 tyrosine phosphorylation and induction of
CD8+ T cell exhaustion via upregulation of B lymphocyte-
induced maturation protein-1 (BLIMP1) (54, 55). IL-35 limits
the proliferation and memory formation, and promotes
exhaustion in CD8+ T cells similarly to IL-10 by expression of
BLIMP1 and downstream inhibitory receptors (54, 56). TGFb
decreases effector function via inhibiting the transcription of
proinflammatory cytokines (interferon gamma [IFNg]) and
granzyme B, and T helper cell transcription factors (T-box
transcription factor and GATA binding protein 3), although
the precise mechanism of action remains unknown (57–60).
While these activities represent the general role of TGFb, it is
important to understand that different isoforms may have
differing functions based on the expression pattern in various
cancers (61–63). Thus, secretion of these cytokines by Tregs acts
as a functional ‘barrier’ that prevents the function and expansion
of surrounding effector T cells.

Tregs in the TME also suppress anti-tumor immunity through
metabolic disruption via CD25/IL-2, CD39/CD73, and IDO
Frontiers in Immunology | www.frontiersin.org 4
(Figure 1A). IL-2 is required for effector T cell differentiation
and fate upon immune activation and is critical for the
development, regulation, proliferation and maintenance of
Tregs (64). Tregs express high levels of the IL-2 receptor, CD25,
which also deprives surrounding effector T cells of IL-2 (65). Treg

expression of the ectonucleotidases CD39 and CD73 convert
ATP and ADP into adenosine, which suppresses effector T cells
via the adenosine receptor 2A (66, 67). Interestingly, Treg ligation
of CD80/CD86 on dendritic cells (DCs) via CTLA-4, increases
the production of IDO (47) (Figure 1A). IDO metabolizes the
essential amino acid tryptophan, limiting its availability, into
different suppressive metabolites including kynurenine which
inhibits T cell proliferation (43, 68). Despite promising findings
in murine models and human in vitro studies, a Phase III clinical
study with the IDO1 inhibitor epacadostat in combination with
pembrolizumab (anti-PD1) in melanoma was disappointing
(69). The lack of epacadostat efficacy in the clinic may be due
to low initial levels of tryptophan and kynurenine in the TME,
the presence of other enzymes able to catabolize tryptophan such
as IDO2 and tryptophan 2,3-dioxygenase (TDO2), inefficient
inhibition of IDO1, or adaptive resistance.

Through the expression of inhibitory receptors, inhibitory
cytokines and metabolic disruptors, Tregs impose a terminal
functional barrier within the TME to inhibit the infiltrated
effector cells. However, Tregs also reside on the perimeter where
the tumor meets the stroma (peritumor) and act as a functional
and physical barrier to tumor immune infiltration.
TREGS AS PERITUMORAL ANTI-
INFLAMMATORY BARRIERS

The non-tumor cells within the TME make up the stromal
compartment and include different lineages of fibroblasts that
secrete various types and amounts of extracellular matrix (ECM)
proteins that influence T cells migration. Among these proteins
are fibronectin (FN) and collagen (COL), with COL being more
abundant in the tumor stroma and having increased stiffness
which impedes T cell motility (70). Tregs are found in the stroma
of various tumors types and correlates with poor outcome (71–
74) (Figure 1B). Using 3D in vitro culture of Tregs in a COL gel
matrices, Treg markers were shown to be upregulated in high-
density, compared to a low density, COL matrix, and also
associated with decreased cytolytic activity (75). However, the
interplay between Tregs and COL needs to be further defined. In a
model of radiation-induced pulmonary fibrosis, Tregs promoted
epithelium-to-mesenchymal transition (EMT) via b-catenin
(76). In support of this, ectopic expression of Foxp3 by murine
non-small cell lung cancer cells promoted EMT and tumor
metastasis (77). Further studies to determine the direct role of
Tregs in COL deposition and EMT are warranted.

IDO induces Treg differentiation through the generation of
tryptophan metabolites and subsequent aryl hydrocarbon receptor
signaling (78, 79). IDO inhibits effector T cell activity and it has been
shown in gastric cancer cell lines to be associated with ECM, COL
metabolic and catabolic processes. Specifically IDO1 and COL12A1
June 2021 | Volume 12 | Article 702726
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synergistically promoted cell migration in vitro (80). In a B16
melanoma model, the IDO1 inhibitor LW106 decreased tumor-
associated stromal cells and COL deposition, and increased
infiltration of effector cells. Additionally, LW106 decreased Tregs

and delayed tumor growth, suggesting a potential role for Tregs in
LW106 efficacy, however the direct impact of LW106 on Treg

differentiation was undefined (81).
Fibroblasts isolated from tissue of invasive breast cancer

patients had increased growth and invasion rate when treated
with TGFb, which was hypothesized to foster tumor invasion.
Head and neck cancer patient-derived xenografts showed
upregulation of TGFb signaling in patients that progressed
with cetuximab, an epidermal growth factor receptor inhibitor,
compared to sensitive patients (82). This latter study showed
elevated TGFb1 signaling in cancer-associated fibroblasts (CAFs)
in cetuximab progressors (83). In a model of pancreatic cancer,
CAFs were found to express lower levels of Col and Fn1 mRNA
when Tregs were deleted, which was accompanied by an increase
in effector CD4+ and CD8+ T cell infiltration, and was proposed
to result from the loss of Tgfb1 produced by Tregs (84). It is
hypothesized that Treg production of TGFb1 promotes fibroblast
differentiation into CAFs (Figure 1B).

Collectively, these findings suggest a role for stromal Tregs in
the promotion of COL and CAF formation, EMT and metastasis
which creates a ‘rigid’ barrier to tumor immune infiltration.
Ultimately, Tregs support an immunosuppressive stroma, and
favor metastasis and disease progression. However, the
mechanisms Tregs utilize to execute these pro-tumor effects and
the therapeutic strategies to selectively inhibit these stromal Tregs,
remain obscure.
TREGS AS BARRIERS TO TUMOR
INFILTRATION BY AUGMENTING
TUMOR ANGIOGENESIS

Blood supply into the TME is critical for the survival and growth
of tumors, and angiogenesis positively correlates with disease
progression (85). Metabolically active tumors utilize conserved
angiogenic mechanisms found in wound healing to mediate
growth of new blood vessels. Hallmarks of tumor vasculature
includes disorganized and immature vessels that lack vessel
hierarchy and have increased permeability (86). Additionally,
lymphatic vessels in the TME are dilated and leaky, which results
in the accumulation of fluid and waste products. However,
functional lymphatics exist at the tumor margin and are
sufficient to mediate metastasis (87). The consequences of
these features include metastasis and poor delivery of cancer
therapies, but of interest is the inability for tumor infiltration of
anti-tumor immune cells.

Tumor angiogenesis is driven by high levels of pro-angiogenic
molecules, such as members of the vascular endothelial growth
factor (VEGF), platelet-derived growth factor (PDGF-B) and
TGFb families, as well as hypoxia (86) (Figure 1C). VEGF-A is
produced upon binding of the hypoxia-inducible factor 1 (HIF-1)
a and b heterodimer to the VEGF promoter (88). VEGF-A
Frontiers in Immunology | www.frontiersin.org 5
produced by intratumoral CCR10+ Tregs in a CCL28-expressing
murine ovarian tumor model, increased angiogenesis and tumor
growth (30). Similarly, Helios+ Tregs in a lymphoblastic leukemia
model induced angiogenesis via the VEGF-VEGFR2 pathway
(89). VEGF-C also utilizes VEGFR2 and VEGFR3 to induce
lymphangiogenesis (90). Although Tregs do not produce VEGF-C,
the lymphatic system represents another avenue in which Tregs

prevent proper effector T cell tumor infiltration.
Another feature of tumor-associated vessels is the ability to

communicate with the immune milieu. Endothelial cells induce
Fas ligand (FasL) expression upon exposure to prostaglandin E2
(PGE2), hypoxia and Treg-produced VEGF and IL-10 to mediate
T cell apoptosis (91, 92). Endothelial FasL preferentially kills
CD8+ T cells, while sparing Tregs due to Treg expression of the
anti-apoptotic gene, FADD-like IL-1b-converting enzyme (92)
(Figure 1C). A feed-forward loop may exist in which VEGF-A
and IL-10-producing Tregs in the TME promotes CD8+ T cell
exclusion yet favors Treg infiltration, which further adds to the
VEGF-A and IL-10 pools.

Targeting Tregs through inhibition of the VEGF pathway may
be advantageous as Tregs not only produce, but also respond to,
VEGF through expression of VEGFR2 and its co-receptor
Neuropilin-1 (NRP1), the latter of which is highly expressed
on murine and intratumoral human Tregs (93–95) (Figure 1C).
Strikingly, a NRP1 antagonist increased CD8+ T cell infiltration
and decreased tumor growth in a murine model (96, 97). The
addition of a VEGF blocking antibody to a model of adoptive cell
therapy led to increased tumor infiltration of transferred cells
and a reduction in tumor growth (98). Use of the
immunomodulatory drug thalidomide in chronic lymphocytic
leukemia decreased NRP1 expression on Tregs, which may
contribute to the reported antiangiogenic properties (99).
However, efficacy of these therapies may vary depending on
the organization and location of the blood vessels within and
around the tumor bed. For example, location of the vasculature
within the tumor, either throughout the tumor mass (tumor
vessels) or within the stroma (stromal vessels), dictated the
efficacy of VEGFR2-blocking antibodies, with only the former
producing a significant anti-tumor response (100). In this study,
stromal vessels mediated extravasation of immune cells directly
to the stroma where they were trapped in the dense architecture
surrounding the tumor mass, whereas tumor vessels mediated
extravasation of immune cells directly to the tumor. The
difference in therapeutic response may be attributed to the
spatial distribution of vessels and Tregs and/or that this is
simply reflective of a more immune-impacted tumor, which is
known to be a positive prognostic indicator (101–103).
Collectively, this may explain the seemingly paradoxical
findings that Tregs may in certain circumstances appear to be a
positive prognostic factor of survival

In summary, Tregs support pro-tumor angiogenesis in the TME
via secretion of VEGF-A and IL-10, and expression of NRP1
(Figure 1C). Studies to further assess the impact of Tregs on the
efficacy of VEGF/VEGFR inhibition/blockage and anti-NRP1, and
the reorganization of the immune landscape of the TME post-
therapy, will be critical to improving therapeutic response.
June 2021 | Volume 12 | Article 702726
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TREGS AS BARRIERS TO IMMUNE
CELL EGRESS IN THE STROMA
AND PERIPHERY

Tregs are also found within tumor-associated tertiary lymphoid
structures (TLS), in which case the positive prognostic value of
mature TLS now predicts worse outcomes and relapse in many
cancer types (104–106). Tregs in TLS of a lung adenocarcinoma
model prevented an anti-tumor response, and Treg depletion
resulted in increased proliferation and tumor infiltration of
effector T cells (107). Similarly, CD8+ T cells and natural killer
(NK) cells secrete IFNg, tumor necrosis factor (TNF-a) and
lymphotoxin a3, which induce neogenesis of high endothelial
venules (HEV) that resemble lymph node (LN)-like vasculature
and mediate T cell infiltration (108) (Figure 1C). A study
showed that HEV formed when Tregs were depleted, and
attributed HEV formation to increased TNF-a from T cells
(109, 110) (Figure 1C). However, a study of colorectal cancer
patients showed a positive correlation of TNF-a expression with
positive LN stage and tumor recurrence (111). These studies
illustrate the divergent role of lymphatics in the TME, thus more
research is needed to understand the intricacies of TLS and HEV
formation to therapeutically exploit their anti-tumoral role.

Tregs utilize unique mechanisms in the draining secondary
lymphoid tissues to prevent recruitment to the TME. Tregs found
in the peritumoral LN of a pancreatic ductal carcinoma model
expressed CTLA-4, and CTLA-4/CD80 ligation with DCs
inhibited conventional CD4+ T cell tumor infiltration (112).
Although the mechanism is unclear, Treg : DC interaction
decreases CD80/CD86 expression on DCs and induces
production of IDO to suppress effector function (43, 47, 68)
(Figure 1D). Similarly, Tregs utilize perforin to directly kill DCs
in tumor-draining LN (113) (Figure 1D). Altogether, Treg

suppression of DCs prevents effector T cell activation and
lymphatic egress to the tumor site, thus promoting impaired
anti-tumor immunity.

Collectively, Tregs in the stroma and periphery prevent tumor
infiltration of immune cells by suppressing HEV formation,
interfering with T cell activation by APCs and suppressing the
production of proinflammatory cytokines by effector T cells. The
anti-tumor effects seen with immunotherapies that block Treg-
mediated suppression of the T cell/APC synapse and ultimately
increase proinflammatory cytokines, may concurrently promote
HEV formation and restructuring of the stroma, therefore the
need for complimentary spatial and functional Treg studies
is pertinent.
CONCLUSIONS

Tregs have diverse mechanisms to maintain tumor immune
exclusion by affecting immune and non-immune cells, inside
and outside of the tumor mass. Foundational studies
interrogating intratumoral Tregs along with mechanisms of
action for cancer immunotherapies have highlighted the
impact intratumoral Tregs have on suppressing the anti-tumor
Frontiers in Immunology | www.frontiersin.org 6
response. However, mechanistic details of how to overcome these
barriers are incomplete, leading to the following key questions:

(1) What is the extent of Treg and stromal cell interactions, and
how do these interactions impact the composition of the
stroma? Initial findings suggest that Tregs and stromal cells
work together to prevent tumor immune infiltration via
induction of CAFs by Treg-derived TGFb. CAFs increase
deposition of COL and FN and maintain Treg suppressive
functions. However, it is unclear if CAFs and Tregs need to
directly interact for this feedback loop to occur and if other
signaling events are needed to establish this suppressive
peritumoral barrier. If this is a contact-dependent
mechanism, it may be advantageous to develop therapeutics
(i.e. blocking antibodies or inhibitors) that prevent the
interaction of these two cell types within the stroma.

(2)What are the mechanisms that retain Tregs in the stoma? CAFs
support physical barriers that hinder effector T cells
propagation in the stroma, where Tregs are abundant.
Human TH2-like Tregs (GATA3+CCR4+) have the highest
chemotaxis, viability and suppressive function, and are
enriched in melanoma and colorectal cancer (114). GATA3
has been shown to bind to the promoter/enhancer of the IL-7
receptor and lL-7 signaling in Tregs is critical for development,
expansion and peripheral homeostasis (115, 116).
Additionally TGFb promotes IL-7 receptor expression
(117). One may then hypothesize that since CAFs produce
IL-7, CAFs may support the proliferation of TH2-like Tregs in
the stroma, thus maintaining an immunosuppressive stroma.
Additionally, CAFs from hepatocellular carcinoma induce
IDO in regulatory DCs, which promotes Treg proliferation
(118). Collectively, these factors may provide a stromal
environment favorable to Tregs, a notion strengthened by
the observation that Treg-rich adenocarcinomas expressed
higher TGFb and VEGF which may reinforce Treg

suppressive function and stability, respectively (119). These
observations support the need for further investigation into
the effects of anti-TGFb and VEGF therapies on the stromal
compartment and distribution of Tregs throughout. However,
anti-VEGF therapy in this context may be detrimental if the
stroma is heavily vascularized.

(3) Do Tregs utilize a common pathway to promote angiogenesis
and lymphangiogenesis , and can this pathway be
therapeutically inhibited to normalize tumor vascularization
and increase immune infiltration? Peritumoral and
intratumoral vasculature and lymphatics greatly dictates
tumor infiltration of effector cells, however, specific
mechanisms Tregs use to alter these structures is incomplete.
Anti-angiogenic molecules in the clinic, such as sunitinib
(receptor tyrosine kinase inhibitor) and bevacizumab (anti-
VEGF), prevent the accumulation and function of Tregs by
reducing their proliferative capacity and production of IL-10
and TGFb, respectively (120, 121). As a VEGF co-receptor,
NRP1 is a promising therapeutic as Treg-restricted deletion of
NRP1 not only results in loss of suppressive function but also
a gain of effector function via the expression of T-bet and
June 2021 | Volume 12 | Article 702726
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production of IFNg (95). The high expression of NRP1 by
human tumoral Tregs in contrast to peripheral Tregs makes the
VEGF/NRP1 axis a promising therapeutic target in order to
normalize the vasculature and enhance effector T cell
responses (122).

(4) Do Tregs utilize one suppressive mechanism preferentially to
create multiple barriers to effective T cell infiltration, and if so,
can this be targeted therapeutically to curtail multiple barriers
of immune exclusion simultaneously? Tregs suppress the anti-
tumor immune response through numerous mechanisms
however, there are some recurring elements that when
targeted could ameliorate multiple barriers (123). Of
particular interest are IDO and NRP1. IDO inhibition may
recruit peripheral effector T cells and reinvigorate
intratumoral effector T cells, allowing for effective immune
infiltration and anti-tumor activity, respectively. IDO
inhibition in the peritumoral stroma may lower COL
deposition which would increase the tumor infiltration of
effector T cells. NRP1 blockade may lower the suppressive
function of intratumoral Tregs and suppress angiogenesis.
Targeting IDO and/or NRP1 may promote tumor
infiltration and generate a less suppressive TME.

In summary, future studies must utilize mechanistic and
spatial approaches to dissect the suppressive mechanisms
Frontiers in Immunology | www.frontiersin.org 7
employed by Tregs at various locations in the TME. These
spatially-mapped functional studies will aid in the development
of novel immunotherapies that aim to dismantle the Treg-
induced physical, metabolic and trafficking barriers within
the TME.
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