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Abstract: Coagulopathy induced by major trauma is common, affecting approximately one-third
of patients after trauma. It develops independently of iatrogenic, hypothermic, and dilutive causes
(such as iatrogenic cause in case of fluid administration), which instead have a pejorative aspect on
coagulopathy. Notwithstanding the continuous research conducted over the past decade on Trauma-
Induced Coagulopathy (TIC), it remains a life-threatening condition with a significant impact on
trauma mortality. We reviewed the current evidence regarding TIC diagnosis and pathophysiological
mechanisms and summarized the different iterations of optimal TIC management strategies among
which product resuscitation, potential drug administrations, and hemostatis-focused approaches. We
have identified areas of ongoing investigation and controversy in TIC management.

Keywords: early coagulopathy of trauma; acute coagulopathy of trauma-shock; trauma-induced
coagulopathy; trauma-associated coagulopathy; major trauma; severe trauma; acute traumatic
coagulopathy

1. Introduction

Major trauma (MT) is one of the leading causes of mortality and morbidity globally
and the leading cause of death in people younger than 40 years. Annually, traumatic
injuries cause approximately 6 million deaths globally [1–3]. MT is also a frequent cause
of hospitalization, as an estimated 24 million patients are hospitalized yearly. This also
results in extensive out-of-hospital medical care for approximately 85 million patients
worldwide [1–3]. Although the problem mainly affects low- and middle-income countries,
high-income countries are also affected. For instance, in Europe major trauma is the third-
leading cause of death in the general population and the first among younger patients.
Traumatic injuries are also one of the main causes of disability, rendering major trauma a
pathology with high direct and indirect costs [1–3]. Given its impact on mortality, a quick,
efficient, and precise identification of bleeding causes, as well as of coagulopathy is of
paramount importance for surgical management [4].

MT is an event that results in a single injury or multiple injuries of such magnitude that
it constitutes a quoad vitam or quoad valetudinem (in regard to life or health) danger to the
patient. Conventionally, trauma is defined as severe when the patient’s injury severity score
(ISS) exceeds 15. ISS is an assessment system that assigns a number based on the severity
and location of the different injuries caused by trauma. This index was chosen because
it displays excellent correlations with mortality, morbidity, the need for hospitalization,
and hospital stay. ISS > 15 was selected on the basis of a proven increase in mortality. ISS
can only be calculated after the patient has undergone diagnostic investigations, mainly
in a hospital setting. To overcome this limitation, it is essential that a potential MT is
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recognized as soon as possible in the pre-hospital phase, and triage criteria for MT should
be implemented (Table 1).

Table 1. Triage criteria for severe trauma.

Physiological Criteria Anatomical Criteria Dynamic Criteria

Ejection from a vehicle Penetrating head/neck/throat/abdomen/pelvic/armpit/groin trauma Systolic blood pressure < 90 mmHg

Motorcycle crash with separation of the rider Amputations above the wrist or ankle Respiratory distress or respiratory rate of <10
or >29 breaths/min

Died in the same vehicle Chest trauma with flap/flail chest State of consciousness (GCS < 13)

CRASH intrusion >30 cm at the patient area Neurological injury with paralysis of even a single limb

Fall from height >2 m Fractures of two or more long bones

Pedestrian thrown or run over or hit at a speed >10 km/h Suspected unstable fracture ring of pelvis: Suspected unstable fracture

High-energy impact

(Speed > 65 km/h) Open or depressed skull fracture

Vehicle crash Burn >20% of the body surface or airway/face

Extrication time > 20 min

The criteria for activating the severe trauma protocol in our trauma center are presented, including physiological, anatomic, and dynamic
criteria for defining probable severe trauma (one of the following criteria is sufficient). GCS, Glasgow coma score.

Post-traumatic hemorrhage is the most frequent cause of death in victims of severe
trauma, in about 40% of cases. This is caused by two main mechanisms, but they can
intertwine and present simultaneously [4–14].

The first mechanism is bleeding caused via direct injury of blood vessels, which
involves hemorrhage that is dependent on physiological or anatomic factors. These include
the hemodynamic state of the patient, in particular systolic blood pressure, the arterial
or venous nature of the affected vessel, and the caliber of the vessel. In cases of injury of
large-caliber arterial vessels, we can witness profuse hemorrhage with shock and exitus in
an extremely short period, even before the arrival of the rescue crew.

Meanwhile, the second mechanism is secondary bleeding from the development of
trauma-induced coagulopathy (TIC), which involves secondary bleeding from a widespread
microvascular hemorrhage that is not localized to the site of the trauma. This represents
a pathological entity in its own right, and its classification and pathogenesis will be dis-
cussed later.

Approximately 30% of patients with MT develop TIC upon arrival to the emergency
department (ED). Although it was once believed that TIC begins hours or even days
after the traumatic event, it is currently clear that it begins at the moment of trauma.
Approximately 40% of trauma deaths result from bleeding, and 10% of these events appear
avoidable [4–14].

2. Definition

Numerous definitions and terms have been proposed to identify coagulopathy result-
ing from trauma and describe the specific pathology of trauma-associated coagulopathy,
including acute traumatic coagulopathy, early coagulopathy of trauma, acute coagulopathy
of trauma shock, TIC, and trauma-associated coagulopathy [6,15–18].

TIC can be defined as a condition of endogenous hypercoagulation observed in the
immediate post-traumatic period, that is, within 1 h of trauma. It is characterized by
widespread microvascular hemorrhage opposed to events localized exclusively to the site
of trauma [6,15–18].
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3. Pathophysiology

Hemostasis is an essential physiological response to wound healing. It is a dynamic
homeostatic process balancing pro- and anti-coagulation systems and fibrinolytic and
fibrinolysis-inhibitory pathways, and it consists in the interaction between endothelial cells’
walls, platelets, and clotting factors, with the endothelium taking an active part in this
homeostatic process, together with several mediators, among which tissue factor pathway
inhibitors, endothelial protein C receptors, the endothelial glycocalyx, thrombomodulin,
nitric oxide, and tissue plasminogen activator (tPA) [19].

Despite continuing and recent advances in research into MT and the consequent
increase in knowledge in the sector, the pathophysiological mechanisms that contribute to
the development of TIC remain largely unknown. This is also associated with the multitude
of complex systems that interact with each other [18–21]. A disturbance in hemostasis is
induced by activation/dysregulation of the vascular endothelium, coagulation, natural
anticoagulants, the pro-fibrinolytic and anti-fibrinolytic systems, and inflammation [19–21].

These phenomena are compounded by a number of external factors (such as hemodi-
lution by the administration of crystalloids) and detrimental factors such as hypothermia,
hydroelectrolytic imbalance, and acidosis. These detrimental factors are likely to self-feed
and depend on both endogenous and exogenous factors [19–21].

For years, it was considered that TIC was solely attributable to the dilution of clotting
factors caused by substantial fluid administration or massive transfusion, which further
complicated the development of acidemia and hypothermia, which, together with TIC,
contribute to the formation of the “lethal triad” and thus further aggravate the clinical
picture (Figure 1).
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Classically, the factors recognized as the only triggers of TIC were hemodilution,
hypothermia, and acidemia. Although they are still recognized as TIC triggers, it has been
found that TIC develops in the early stages of trauma before any medical intervention and
the development of acidemia and hyperthermia. Thus, TIC is dependent on the first phase
during the release of mediators by hypoperfused organs and damaged tissues.
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With the increasingly greater body of research on the pathophysiological mechanisms
of TIC, they have been discovered to be far more complex than initially inferred; addition-
ally, fluid administration has been proven to contribute to the development of intracardiac
thrombus without being the main cause, indicating a multifactorial etiopathogenesis.

A distinction can therefore be made between acute traumatic coagulopathy and
coagulopathy disease induced by resuscitating maneuvers, which can coexist but possess
different mechanisms and temporal phases [19–21].

We can schematically (Figure 2) claim that TIC consists of the following variables:
a pathophysiological process linked to trauma (acute traumatic coagulopathy)
iatrogenic factors (coagulopathy induced by resuscitation maneuvers)
detrimental factors (both iatrogenic and pathophysiological)
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3.1. Acute Traumatic Hypercoagulability

Injury to the wall of a vessel as a result of trauma can expose subendothelial collagen
and activate tissue factors, which provide an adhesion platform for circulating platelets
and support the interplay between the cellular and humoral components of the hemostatic
system. This pro-coagulant activity is controlled by a counter-regulatory system of natural
anticoagulants. The summed effect of these two opposing systems may trigger the coagula-
tory response at the site of endothelial injury while preventing uncontrolled microvascular
thrombosis and tissue hypoperfusion by providing endogenous anticoagulation and fib-
rinolysis. Parts of the process are interconnected in a complex manner, with thrombin
playing a central role by being able to partake in both coagulation and anti-coagulation
pathways in addition to interacting with the inflammatory response.

3.1.1. Role of the C Protein

Several theories have been postulated regarding the pathophysiological process that
triggers TIC [22–26]. Until recently, activated C protein (APC) had been considered one of
the main players (Figure 3) [22–24]. It was believed that the APC system played the most im-
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portant role in TIC development. APC is a physiological anticoagulant able to irreversibly
inactivate factors Va and VIIIa, which are pro-coagulants. APC also enhances fibrinolysis
by inhibiting plasminogen activator inhibitor-1 (PAI-1) and serves a cytoprotective function
via anti-apoptotic and anti-inflammatory mechanisms [22,23].
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In the PROMMTT study, TIC at arrival to the emergency ward was associated with
the depletion of the pro-coagulatory factors I, II, V, VII. VIII, IX, and X and with protein C
system activation [24–26]. This apparent contradiction is not inexplicable considering the
complexity of the response to trauma, encompassing the involvement of several dynamic
physiological systems and the release of a multitude of co-interacting mediators.

3.1.2. Role of the Neurohumoral System

Trauma activates the neurohumoral system, leading to increased secretion of inflam-
matory cytokines and hormones, such as adrenaline and vasopressin. This increased
secretion leads to the activation of endothelial cells, resulting in the release of tPA and
Weibel–Palade bodies [25]. These factors bind to the endothelium, induce the release of
von Willebrand factor, and encourage platelet recruitment [27–36].

In addition, the release of tPA and high amounts of plasmin contribute to the catabolism
of fibrinogen. This catecholamine increase also damages the endothelium and causes glyco-
calyx degradation. The process, termed endotheliopathy, may also contribute to capillary
leakage following trauma. Specifically, this process induces degradation of the endothe-
lium and the consequent release of glycosaminoglycans such as heparin into circulation
and thus activates the phenomenon most properly known as self-heparinization [27–29].
Endotheliopathy is present in about 5% of trauma patients and is associated with a high
ISS (Figure 4).

Deceased adult patients of trauma have been reported to have presented high levels
of adrenaline and syndecan-1. Some studies found high adrenaline levels and glycocalyx
damage to be associated with endothelial damage, hyperfibrinolysis, and hypocoagulopa-
thy. Syndecan-1 is an indicator for glycocalyx degradation, and elevated syndecan-1 is
associated with an increase in inflammation and endothelial damage [29–33]. Recently
both adrenaline and syndecan-1 were proven to be independent predictors of <24-h, 7-day,
and 28-day mortality, even after adjustment for ISS [29–33].

Various pathophysiological mechanisms determine whether severe TIC leads to hy-
pofibrinogenemia. In the early phases of trauma TIC induced hypofibrinogenemia is
frequently observed. It has been demonstrated that fibrinogen concentrations are less than
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2 g/L in approximately 15–20% of patients with TIC, and these low levels were linked to
poor outcomes. However, fibrinogen levels may also increase with age [34–36].
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3.1.3. Role of Platelets

Platelets produce a number of proteins involved in coagulation and fibrinolysis. The
mechanisms by which the contradictory activities of secreted platelet proteins affect TIC
are unclear. Precise data on platelet function in traumatic patients are scarce: platelet
sample handling and specific assays availability are complicating factors in researching the
subject [37–39].

Studies reported adenosine diphosphate (ADP), arachidonic acid, collagen, and throm-
bin receptor activating peptide to impair platelet aggregation, suggesting a prevalence of
platelet dysfunction of up to 45.5% in patients with trauma on admission and to 91.1% dur-
ing their stay in the intensive care unit [37–41]. The thrombin receptor pathway has been
proposed to play an important role in platelet dysfunction in trauma [42–45]. However, the
mechanisms and implications of these findings are unclear. Anemia, whether caused by
hemorrhage or dilution, can also affect platelet adhesion. The available evidence suggests
endotheliopathy and anemia to be triggers of platelets dysfunction in trauma.

Some cohorts of massively transfused trauma patients report that measuring platelet
count at admission may be used as an outcome predictor, as their platelet count was
inversely correlated with injury severity, morbidity, and mortality [37–45].

3.2. Coagulopathy Associated with Resuscitation Maneuvers

In post-trauma patients, aggressive resuscitation, as previously recommended, with
crystalloid dilutes clotting factors and causes metabolic acidosis (hyperchloremic in the
case of 0.9% NaCl administration) and interstitial edema. This also caused by microcircula-
tion impairment and impaired oxygen tissue supply [46–48]. Colloids cause proteins to
move from the blood to the interstitial space, therefore reducing plasma concentration of
clotting factors, in particular of factor VII and von Willebrand factor, inhibiting platelet
function, and reducing the interaction between factor XIII and fibrin polymers. It has been
documented how administering crystalloids in trauma patients worsens TIC, acidemia,
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and hypothermia, therefore inducing a reduction in thrombin coagulatory activity; it is,
therefore, recommended to limit the use of crystalloids in order to reduce coagulation
factors dilution effects [48–59]. The effects of hypothermia, to which hemorrhage and
hypoperfusion contribute, will be discussed more extensively [48,49,51,55–58].

Finally, acidemia in patients after trauma, which occurs widely, depends on three
factors: the use of crystalloids in resuscitation maneuvers, hypoperfusion, and the use of
saline solution. In fact, hypoperfusion causes cells to switch from an aerobic mechanism to
an anaerobic mechanism, resulting in the production of lactates and a consequent reduc-
tion of pH. Saline solution (0.9% NaCl) contains a higher concentration of chlorine than
the body under physiological conditions, which could induce hyperchloremic metabolic
acidemia [49–54].

3.3. Detrimental Factors Exacerbating Trauma Coagulopathy

Early trauma induced coagulopathy has been recently recognized as the result of the
combination of bleeding-induced shock, tissue injury-related thrombin–thrombomodulin
complex generation, and the activation of anticoagulant and fibrinolytic pathways; it is
therefore a multifactorial primary condition.

3.3.1. Acidosis

Acidosis is a frequent and early event in patients after trauma that results from
inadequate tissue oxygenation, which then activates anaerobic metabolism. Acidosis itself
causes plasma protein dysfunction and leads to the rapid degradation of fibrinogen, and
almost all stages of clotting are compromised in this setting. At pH less than 7.4, we observe:

• Changes of platelet shapes and structure;
• Reductions of clotting factor activity;
• Compromised thrombin production;
• Reductions of the fibrinogen concentration;
• Increased fibrinogen degradation (caused by increased fibrinolysis and increased

factor XIII levels) without effects on fibrinogen production;
• Increased pro-inflammatory responses by platelet-mediated neutrophils;
• Bicarbonate administration to correct acidosis does not correlate with reversal of

TIC [49–54].

3.3.2. Hypothermia

After trauma heat loss, reduced heat production, and fluid administration can induce
hypothermia. Clinically significant reductions of platelet function and coagulation factor
activity start at temperatures less than 36 ◦C and worsen dramatically at temperatures
less than 33 ◦C. Hypothermia influences several key stages of the coagulation process,
including the following:

• Negatively affects platelet function;
• Reduces the enzyme activity of clotting factors;
• Induces the activation of fibrinolysis;

The effects are reversible with the normalization of body temperature, which repre-
sents a first-level goal to be achieved, both through the use of thermal blankets, by other
means of physically warming the patient, or the administration of hot liquids (40 ◦C).

Overall, the other two components of the lethal triad act on clotting in all phases.
In particular, hypothermia extensively inhibits the early stages of the process, whereas
acidosis extensively inhibits the propagation and thrombin generation phase. Regarding
fibrinogen metabolism, hypothermia inhibits fibrinogen synthesis and acidosis accelerates
its degradation. Regarding the response to therapy, we can note some differences in this
case. Specifically, the effects of hypothermia are corrected when the body temperature is
restored at least 36 ◦C, whereas the effects of acidosis cannot be immediately corrected
with the normalization of pH [48,49,51,55–58].
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3.3.3. Shock

There is agreement that shock is an independent risk factor for TIC even though the
true frequency of shock in patients after trauma is unknown. Systolic blood pressure has
been used in several studies as the parameter of choice to diagnose hypoperfusion. Trau-
matic brain Injury (TBI) decreases the precision of using blood pressure as a determinant for
hypoperfusion. The systolic blood pressure goals differ depending on the areas involved in
MT. In cases of head trauma, systolic pressure must reach 110 mmHg, whereas a value of
90 mmHg is desired when trauma occurs in other regions [22,59–63]. Despite the different
kinds of injuries, shock and its effect on the sympathoadrenal system, the endothelium
(including the glycocalyx), and hemostatic cells in blood circulation determine the pheno-
typic features that characterize the clinical conditions of patients with acute critical illness.
Catecholamine-induced endothelial damage causes endothelial degradation, which results
in glycocalyx shedding, which is the breakdown of tight junctions bringing about capillary
leakage, and a pro-coagulant microvasculature that further reduces oxygen delivery be-
cause of increased tissue pressure and microvascular thrombosis, creating a vicious circle
that ultimately leads to organ failure. Severe trauma, burn injury, and endotoxemia induce
similar early genetic responses, indicating that the body response to various acute critical
conditions accompanied by shock is relatively homogenous and most likely evolutionarily
adapted [64–72].

3.3.4. TBI

TIC related to TBI usually occurs within minutes of head injury [18,73] it can be
inferred that it is triggered by substances released, following brain damage, at the systemic
level through the damaged blood–brain barrier (BBB). BBB is a semipermeable barrier con-
sisting of cells (endothelial, smooth muscle, astrocytes, etc.) and an extracellular matrix [74]
responsible for the (active and passive) control of fluids and macromolecules. Head trauma
also increases the permeability of the BBB through secondary ischemic and inflammatory
lesions. [75,76] Such lesions are mediated by intracellular signals of endothelial cell junction
proteins, such as claudins [77–79] and junctional adhesion molecules. [80,81] The increase
in permeability of the BBB causes fluid leakage with consequent cerebral edema. Cerebral
edema in turn contributes to the release of substances involved in the triggering of systemic
coagulopathy.

Among these substances it seems that brain-derived cellular microvesicles (BDMV)
may play a role both as a diffusion factor and as a causal factor [72,73,82–84]. A study has
shown in mouse models their rapid release into the circulation associated with a state of
systemic hypercoagulability which rapidly evolves into consumption coagulopathy [85].

Their procoagulant power may be due to an abundant expression of the abundant
tissue factor and phosphatidylserine [85].

Infusion of purified BDMV resulted in the initiation of a hypercoagulable state in
non-trauma mice.

Some studies claim to have detected the fibrinolysis by-product D-Dimer along with
other fibrinogen degradation products before detecting an alteration in prothrombin time
(PT) and partial thromboplastin time (PTT), which reached their peaks approximately
3–6 h post TBI; some studies suggested these timeframes to be consistent with an early
transition from a hypercoagulable to a hypocoagulable state [25,86–91]. However, many
steps are required to fully understand the role of head trauma in activating TIC, particularly
concerning its role in determining changes in fibrinolysis and platelet function. Regarding
the changes of fibrinolysis inhibitors, few cases have been reported. Concerning platelet
function, patients with TBI appear to have moderately low counts, but often, they are
activated, permitting pro-coagulant activity [25,88–97].

3.3.5. Age, Male Sex and Comorbidities

Coagulopathy is modified by trauma-related factors such as age, sex, and comorbidi-
ties including diabetes and hypertension. Significantly different sympathoadrenal and
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endothelial responses to MT in older and younger patients have been reported. Patient age
also appears to significantly influence TIC, including the degree of endotheliopathy. This is
congruent to the established correlation between old age and progressive disruption and
dysfunction of the endothelium, with the greatest severity of disruption reported in smok-
ers and patients with diabetes, atherosclerosis, or hypertension. Together with age, gender
as well has a significant influence over the endogenous trauma-shock response; both age
and male sex are independent predictors of multiple-organ failure, a complication closely
related to endotheliopathy in major trauma patients [72,98–103]. Previously reported
comorbidities can lead to worse outcomes, probably also because of endotheliopathy.

3.3.6. Other Factors

In addition to the aforementioned factors, the severity of coagulation disorders is
influenced by environmental factors and the resulting therapeutic factors such as the
genetic background, inflammation, and premedication, especially with oral anticoagulant
use [101–103]. Concerning the involvement of anatomical regions, associations were
found between TIC and the involvement of the abdominal region [93,101–103]. A recent
study reported that a higher number of involved regions was correlated with the early
development of TIC [93]. Some authors have highlighted the role of some biomarkers, in
particular troponin and ultra-sensitive troponin, in highlighting worse outcomes, also due
to bleeding, of trauma patients. Their early rise is in fact correlated with worse outcomes
and ultra-sensitive troponin could play a role in stratifying even better patients at higher
risk. Further studies will be needed to possibly better define a role of these biomarkers in
early highlighting coagulopathy related to severe trauma [104–107].

Overall the pathophysiological mechanisms of trauma-induced coagulopathy are
therefore multi-layered and complex (Figure 5).
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4. Specials Clinical Forms of TIC

In addition to the aforementioned forms and severity of coagulopathy hyperfibrinol-
ysis, hypocoagulation, then hypercoagulation (hypofibrinolysis)—some other forms are
worthy of discussion [108–120].

4.1. Early Primary Hyperfibrinolysis

A limited number of patients experience rapid activation during the early manifesta-
tion process of coagulopathy and an uncontrollable pattern of fibrinolysis. This clinical
picture is termed early primary hyperfibrinolysis. Hyperfibrinolysis is present in approx-
imately 2.5–7% of all traumatized patients. Early diagnosis of this form presents many
difficulties. Viscoelastic tests (see below) highlight only some cases, whereas occult hyper-
fibrinolysis appears to be more common. This condition may be associated with greater
morality, with some authors suggesting rates of 60–80%.

Early administration of anti-fibrinolytics is required as demonstrated by the CRASH
two study. The administration of tranexamic acid (TXA) within the first 3 h in patients with
active bleeding or those at risk of bleeding is strongly recommended (recommendation
class 1A) according to the 2016 and 2019 European guidelines [9,101,121,122].

4.2. Late Hypercoagulability

Late coagulopathy has been observed as the hemostatic reaction following trauma,
which normalized throughout recovery in uncomplicated patients, whereas patients with
severe injuries may experience complications of massive coagulopathy. Recovery from
coagulopathy and the return to normal clotting values may be delayed in such patients after
severe trauma. A massive physiological response follows trauma, leading to a multitude of
changes in the neurohumoral system, the natural pro- and anti-coagulation systems, and
other previously reported systems. Distinguishing adaptive from maladaptive systemic
inflammatory response to injury remains difficult.

From a clinical point of view, the identification of organ dysfunction could be a reliable
indicator of maladaptive systemic inflammation. Multi-organ dysfunction syndrome is
present in almost 30% of severely injured patients; it is associated with worse outcomes
and a high mortality rate. It is important to remember that late hypercoagulopathy after
trauma correlates with an increased risk of venous thromboembolism.

5. Diagnosis
5.1. Clinical Features

Although blood loss is sometimes noticeable, neither visual evaluation nor physio-
logical parameters are effective guides to understand the degree of hemorrhage. Trauma
dynamics is an important tool for identifying patients at risk of significant bleeding. For
instance, a threshold of 6 m (20 ft) defines the critical fall height associated with major
trauma according to the American College of Surgeons. Additional critical mechanisms
include the high-energy deceleration effect and gunshot wounds. The dynamics of trauma
combined with severity, the patient’s clinical presentation, and the response to the initial
resuscitation maneuvers should further lead to the decision to begin initial hemorrhage
control as described in ATLS. An American study by Mutschler et al. analyzed the accuracy
of this classification reporting that over 90% of all patients cannot be classified following
the ATLS criteria of hypovolemic shock. This system is composed of four classes of patients
depending on their vital parameters and state of consciousness [17,121,123–126].

The same group studied the effectiveness of the ATLS classification criteria and
reported that it may underestimate sensory alterations in hypovolemic shock and overesti-
mate the degree of tachycardia associated with hypotension. A three-class scheme with
three kinds of response to initial volemic resuscitation was proposed. The first class consists
of patients who respond with stable normalization of vital parameters. The second class,
comprising transient responders after initial stabilization and volemic filling, subsequently
present with unstable vital parameters of consciousness. The third class consists of non-
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responders to volemic filling. The second and third classes are candidates for immediate
surgical management of bleeding [17,124–128].

5.2. Laboratory Tests

TIC is diagnosed on the basis of laboratory abnormalities that do not necessarily
correspond to distinct clinical phenotypes. Despite coagulation research progress and
achievements, an established and verified test to predict and identify clinically relevant
acquired coagulopathy is lacking. Current literature on TIC is mostly based on abnormal-
ities of PT, aPTT, plasma fibrinogen concentration, and platelet count, either alone or in
combination.

The early identification of coagulopathy in patients with trauma is important, as
this can lead to better management and overall improvement in outcomes. The most
commonly used tests are traditional clotting tests (aPTT and PT), along with the platelet
count and fibrin monitoring. Originally, TIC was defined as an increase in clotting plasma
variables such as the aPTT, PT, and international normalized ratio. Emerging evidence
suggests that whole-blood viscoelastic tests, such as thromboelastography or rotational
thromboelastometry, may better identify coagulopathy and the stage, type, and location
of TIC. High ISSs are associated with increases in the severity of TIC and risk of poor
outcomes.

Three stages of TIC can be proposed corresponding to more serious clinical frame-
works and worse outcomes hyperfibrinolysis, hypocoagulation, then hypercoagulation
(hypofibrinolysis). Viscoelastic tests can provide partial results in minutes. They also have
the advantage of being able to diagnose, quantify, and classify fibrinolysis, thus allowing
the use of anti-fibrinolytic and blood-resistant drugs such as concentrated fibrinogen.

Viscoelastic tests have also been revealed to prevent inappropriate hemotransfusion
and hemostatic infusion of blood derivatives to non-coagulopathic patients [17,121,123–128].
In addition, the severity of TIC may vary with ongoing treatment, and viscoelastic tests
are able to record these changes. Current hematochemical tests (PT, aPTT, fibrinogen,
platelets), despite having the advantage of being universally available, require a long time
for analysis. In addition, PT and aPTT are only useful for analysis in the early stages
of clot formation, and they do not provide a complete view of actual pro-coagulant and
anticoagulant activity, in particular on platelets, as well as hyperfibrinolytic activity.

The use instead of viscoelastic tests, such as thromboelastography and thromboelas-
tometry, could remedy these problems, as they more quickly provide a more complete
view of the entire clot process, giving a reflected view of the homeostatic process in vivo,
including pertinent information regarding the analysis of platelets and fibrinogen, which
not provided by routine hematochemical testing [17,121,123–128].

6. Outcomes

This section synthetically summarizes (because we discussed this topic elsewhere
in the text) that patients who develop TIC have worse prognoses regardless of the initial
severity. Among the worst complications they face include a higher need for hemotrans-
fusion, a higher rate of hospitalization, a higher rate of hospitalization in intensive care,
and a higher mortality rate. We can therefore observe that these patients have worse
clinical outcomes and require more hospital and pre-hospital resources. As demonstrated
with other pathologies as well, the lack of early recognition and treatment aggravates the
outcome [129–134].

7. Hints for Therapy

Hypovolemic resuscitation, hypothermia prevention, and early clotting support are,
together with damage control surgery, the cornerstones of damage control resuscitation
(DCR). The convention of DCR largely arose following the discovery of the lethal triad of
hypothermia, acidosis, and coagulopathy with the goal of avoiding the initiation of this
cycle or reversing its progression. DCR is the strategy by which we attempt to correct
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the early conditions that promote bleeding and compromise hemostasis and to limit the
damage caused by hypoperfusion [135–141].

International guidelines state that the management of bleeding trauma should follow
the principle that the normalization of coagulation parameters improves outcome. It is
reasonable to suspect TIC to affect severely injured patients, and therefore a “best guess”
treatment should be initiated; during resuscitation a goal-driven approach is considered
optimal.

Coagulation support measures should be initiated immediately at admission, and it
remains of paramount importance to rapidly assess the type and degree of coagulopathy
in the individual patient along with identifying the most prominent causative factors in
order to correctly treat the patient in a goal-driven fashion.

Early monitoring of coagulation is essential to detect trauma-induced coagulopathy
and define the main causes. Early therapeutic intervention improves coagulation, reduces
the need for red blood cell (RBC), fresh frozen plasma (FFP), and platelet transfusion,
decreases the incidence of post-traumatic multi-organ failure, shortens the length of hospital
stay, and potentially improves survival. The success of early intervention determines the
best coagulation management to reduce transfusions and improve outcomes, including
reductions of the risk of mortality [8,9,141–147].

Briefly, we will emphasize some aspects of management for the ED treatment of
patients with TIC following the European guideline on the management of major bleeding
and coagulopathy following trauma fifth edition published in 2019 (Figure 6) [124].

The first step in the EW is the clinical assessment of the extent of the hemorrhage. a
combination of patient physiology, anatomical injury pattern, mechanism of injury and
patient response to initial resuscitation can help estimating the severity of the bleeding.
(4R,1C).

At the same time, adequate techniques to monitor and promote coagulation should
be executed (R23/1B). A blood gas analysis should be performed as soon as possible to
obtain hemoglobin (Hb), lactate and base deficit (BE), indicative parameters for shock
and the magnitude of hemorrhage with coexisting coagulopathy (R8–9/1B). Blood sample
should be collected for standard clotting parameters (prothrombin time, platelet count,
and fibrinogen concentration) and/or point-of-care PT/international normalized ratio
(INR) (R10/1C) and/or functional viscoelastic testing assays (R10/1C). The 2019 updated
European trauma guideline, for the first time, considers standard clotting parameters and
viscoelastic testing results as equivalent in the acute assessment of the bleeding trauma
patient. Functional assessment of initiation and speed of clot formation, fibrinolytic activity
and the functional levels of fibrinogen and platelets can be determined in whole blood by
means of viscoelastic tests resulting in accelerate and tailored therapies.

Ongoing this first step, in trauma patients who are bleeding or who are at risk of
significant hemorrhage tranexamic acid is to be administered as early as possible at a
loading dose of 1 g infused over 10 min, followed by an intravenous (IV) infusion of 1 g
over 8 h; administration should be started within 3 h after injury; TXA should not be given
more than 3 h after injury (R22/1A).

Immediate bleeding control procedure is recommended in patients with an obvious
bleeding source and those with hemorrhagic shock and a suspected source of bleed-
ing (R5/1C) according to the classical damage control procedures (R18/1B) with clo-
sure/stabilization of the pelvic ring (R19/1B) and abdominal packing (R20/1B); angio-
graphic embolization may be an option if available. Some clinical studies point out and the
European Guidelines recommend performing immediate bleeding control procedure on
patients with gunshot wounds and a suspected source of bleeding [122,148–151].
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Immediate further imaging investigation such as: focused assessment with sonog-
raphy in trauma (FAST) ultra- sound for the detection of free fluid in patients with torso
trauma (R7–1C) and contrast-enhanced whole-body CT (WBCT) for the detection and
identification of type of injury and potential source of bleeding. (R7–1B) is recommended
in patients without a need for immediate bleeding control and an unidentified source of
bleeding (R7–1B).

From a practical point of view if one of the following: blood lactate level ≥ 5 mmol/L;
arterial base excess (BE) < −6 mmol/L; blood hemoglobin (Hb) concentration ≤ 9 g/dL,
systolic blood pressure (SBP) ≤ 90 mmHg is present a predefined massive transfusion
protocol MT should be started [152].

Concentrated red blood cells must be transfused to achieve a hemoglobin target of
7–9 g/dL.

Early management of patients with expected massive hemorrhage should follow one
of these two strategies [8,9,139–147]: the empirical use of fresh frozen plasma (FFP) and
packed red blood cell concentrates (pRBC) at a predefined ratio of at least 1:2 (R24/1C)
or, alternatively, the use of fibrinogen concentrate and pRBC (R24/1C). Fibrinogen is the
substrate for blood to clot and the first coagulation factor which reaches critical thresholds
during acute and critical bleeding [17]. Administration of 2 g of fibrinogen to mimic the
expected 1:1 ratio corresponding to the first four units of RBC and potentially correct
hypofibrinogenemia, if present, has been proposed for initial coagulation support, while
waiting for the results of viscoelastic or laboratory tests [152]. Endogenous fibrinogen has
been shown experimentally not to be suppressed by fibrinogen administration. Moreover,
recent studies have demonstrated a positive trend for survival and saving allogenic blood
products when the fibrinogen concentrate approach was followed [153].

Simultaneously to reduce the blood loss, permissive hypotension is recommended
with systolic target pressures 80–90 mm Hg (mean target pressure 50–60 mm Hg) in
the absence of traumatic brain injury (TBI) until control of bleeding has been achieved
(R12/1C). In the presence of TBI, a mean arterial pressure (MAP) ≥ 80 mm Hg is suggested
to maintain an adequate cerebral perfusion pressure (R12/1C).

Isotonic balanced crystalloids should be given to achieve the perfusion target (R15/1A),
associated with vasopressors in case of life-threatening hypotension and shock (R14/1C).

Heat lost must be avoided and technique to warm the patient should be employed
(R17/1C). Calcium levels must be maintained within the reference ranges, especially in
settings where a massive transfusion is needed (R30/1C).

After these first steps the patient has to be rechecked and if still bleeding these
blind strategies should be replaced by a targeted and tailored strategy, guided either by
conventional standard coagulation parameters or by the results from functional viscoelastic
testing assays (R25/1B).

If functional viscoelastic testing is not available, the threshold for fibrinogen supple-
mentation is ≤1.5 g/L with the Clauss method (R28/1C). The suggested initial dose of
concentrated fibrinogen is 3–4 g or 50 mg/kg. Any repetition must be conducted using
laboratory tests. The platelet concentrates should be transfused with a target of >50 ×
109/L (R29/1C), or >100 × 109/L in cases of persisting hemorrhage or traumatic injury to
the brain (R29/2C).

In this second phase, FFP transfusion should be based on PT and aPTT (>1.5 of normal)
value and/or viscoelastic patterns (R26/1C). The administration of FFP in the absence of
massive bleeding (R26/1B) or to correct hypofibrinogenemia is not advised (R26/1C).

Coagulation factor concentrates (PPC) has proven better than FFP in rapidly reversing
vitamin K antagonists, as there is evidence of decreased hematoma formation in head
trauma patients. PCC is therefore the preferred choice for vitamin k antagonists effect
reversal. PCC are, for the first time, allowed by European updated Guidelines in case
of lack of coagulation factors diagnosed by standard coagulation or, better, viscoelastic
patterns (R26/1C).
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The identification and management of patients pre-treated with anticoagulant agents,
especially direct anticoagulant, continues to pose a major challenge despite accumulating
experience and awareness [12,14–17,44,59,74,101–103,122,154–159]. Idarucizumab is indi-
cated as an antidote for the thrombin inhibitor dabigatran (5 g intravenously (R35/1B). In
case of severe and life-threatening hemorrhage under preinjury factor-Xa inhibition, the
recommended treatment is combined TXA 15 mg/kg (or 1 g) and PCC (25–50 units/kg)
(R34/2C). The European Medicines Agency (EMA) supported the approval of factor-Xa
antidote andexanet alfa and the agent became available in most European countries [160].

Platelet concentrates administration is recommended in case of documented platelet
dysfunction and/or in patients with persistent bleeding previously treated with platelet
inhibitors (R36/2C); this is to be considered in particular in patients with intracranial
hemorrhage in need for an acute neurosurgical intervention (R36/2B) with the possible
additional use of desmopressin (R36/2C).

8. Management of Patients with Severe Trauma in the ED

Briefly, we will emphasize some aspects of management for the ED treatment of
patients with TIC.

The findings of this review highlighted the need for protocols for the management
of coagulopathy regarding diagnostics and therapeutic pathways in patients with severe
trauma in line with the most up-to-date guidelines. The usefulness of protocols for massive
hemotransfusion and the need for bedside clotting analyzers have also been demonstrated.
The European guidelines currently recommend to directly transfer patients to an appropriate
trauma center for treatment and to follow a restricted volume replacement strategy during
initial resuscitation [1–3,5–11,101,121,122,151,154,161–170]. Blood product optimal use proce-
dures continue to evolve, and their development should be goal directed. Despite greater
awareness and experience, the identification and management of patients under the effects of
anti-coagulant agents remains a major challenge [12,14–17,59,74,101–103,122,154–159,162].

9. Conclusions

• TIC is a dynamic sequence coagulation disorder from hyperfibrinolysis, hypercoagu-
lation to its final stage hypocoagulation. The early hypocoagulable state is not related
to dilution nor to iatrogenic or hypothermic causes.

• TIC is present in approximately one-third of patients who report MT
• The physiopathology of TIC is complex and features several contributing causes. The

role of protein C has been less emphasized
• The diagnosis and management of TIC often encompasses standard coagulation test

and functional viscoelastic assays.
• Early initiation of antifibrinolytic therapy and balanced resuscitation of coagulation

disorder is the mainstay of TIC
• TIC is related to worse outcomes, among which increased rates of transfusion, infec-

tion, thromboembolism, acute lung injury, multi-organ failure, and death.
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