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DNA methylation in the germline is among the most important factors influencing the evolution of mammalian genomes.

Yet little is known about its evolutionary rate or the fraction of the methylome that has undergone change. We compared

whole-genome, single-CpG DNA methylation profiles in sperm of seven species—human, chimpanzee, gorilla, rhesus ma-

caque, mouse, rat, and dog—to investigate epigenomic evolution. We developed a phylo-epigenetic model for DNA meth-

ylation that accommodates the correlation of states at neighboring sites and allows for inference of ancestral states. Applying

this model to the sperm methylomes, we uncovered an overall evolutionary expansion of the hypomethylated fraction of

the genome, driven both by the birth of new hypomethylated regions and by extensive widening of hypomethylated inter-

vals in ancestral species. This expansion shows strong lineage-specific aspects, most notably that hypomethylated intervals

around transcription start sites have evolved to be considerably wider in primates and dog than in rodents, whereas rodents

show evidence of a greater trend toward birth of new hypomethylated regions. Lineage-specific hypomethylated regions are

enriched near sets of genes with common developmental functions and significant overlap across lineages. Rodent-specific

and primate-specific hypomethylated regions are enriched for binding sites of similar transcription factors, suggesting that

the plasticity accommodated by certain regulatory factors is conserved, despite substantial change in the specific sites of

regulation. Overall our results reveal substantial global epigenomic change in mammalian sperm methylomes and point

to a divergence in trans-epigenetic mechanisms that govern the organization of epigenetic states at gene promoters.

[Supplemental material is available for this article.]

Mammalian DNA methylation is an epigenetic modification that
occurs primarily on cytosines in the context of CpG dinucleotide
and has wide-ranging connections to mammalian development
(Reik et al. 2001; Smith andMeissner 2013). A typical mammalian
genome contains 20–30 million CpG sites with an average meth-
ylation level between 70% and 80% in most cell types (Lister
et al. 2013; Kundaje et al. 2015). Hypomethylated regions punctu-
ate this globally high methylation profile and often coincide with
gene regulatory elements that comprise gene promoters, enhanc-
ers, and insulators (Jones 2012). Programmed changes to these
methylome features, for example altering the methylation state
through a promoter, correlate with gene expression changes dur-
ing development and differentiation (Meissner et al. 2008;
Hodges et al. 2011). These dynamics can exhibit high precision,
for example, when boundaries of hypomethylated regions shift
to uncover CpG island “shores” and allow additional regulatory el-
ements to receive signals (Irizarry et al. 2009).

DNA methylation has substantially impacted the large-scale
evolution of mammalian genomes. Spontaneous deamination el-

evates the mutation rate at methylated cytosines (Bird 1980).
Consequently, germline DNA methylation profiles have shaped
the CpG landscape of mammalian genomes (Cohen et al. 2011),
resulting in the CpG island phenomenon (Gardiner-Garden and
Frommer 1987). In germ cells, DNA methylation is necessary for
suppressing germline retroelement proliferation (Walsh et al.
1998; Bourc’his and Bestor 2004). Mounting evidence supports a
contribution of germ cell DNA methylation to the epigenomic
state of embryonic cells and the early activation of developmental
genes (Brykczynska et al. 2010; Carrell andHammoud 2010; Smith
et al. 2012; Atsem et al. 2016; Branco et al. 2016). Examination of
germline DNAmethylation is therefore of particular interest in un-
derstanding how the requirements of epigenomic regulatory pro-
gramming are balanced against the increased mutational burden
of DNA methylation.

Taking a broader view, patterns of DNA methylation and the
way they vary between species afford us a glimpse into the evolu-
tion of gene regulation. As highlighted by the seminal work of
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King and Wilson (1975) and validated in the current genomics
area, species with high genetic similarity in their protein coding
regions can show substantial phenotypic differences that may be
related to differences in gene expression and regulation (Karaman
et al. 2003; Odom et al. 2007; Bauernfeind et al. 2015). Epigenetic
divergence reflects altered protein–DNA interactions, which may
associate with changes in both the sequence of cis-regulatory ele-
ments (Heijmans et al. 2007; Lienert et al. 2011) and the binding
preference of trans-acting factors (Cheng et al. 2014). Thus, charac-
terizing epigenetic divergence is a first step toward understanding
the evolution of regulatory systems in different species.

Existing comparative analyses of mammalian methylomes
have increased our understanding of DNA methylation diver-
gence. Methylation states across multiple primate species recapit-
ulate their phylogenetic relationship (Martin et al. 2011), and
greater variation has been observed between tissues than between
species (Molaro et al. 2011; Pai et al. 2011). Regions with species-
specific DNA methylation have been reported to harbor excessive
species-specific substitutions (Hernando-Herraez et al. 2015).
However, such studies have been limited to species most closely
related to human and have focused on species-specific differen-
tially methylated regions, instead of systematically studying
methylation changes in all lineages of the phylogenetic tree
without bias.

It remains unclear how and why DNA methylation patterns
have evolved in mammalian species: Where in the genome, and
when during evolutionary history, have changes occurred?
Addressing these questions involves modeling an evolutionary
process that may be viewed as analogous to sequence evolution.
In homogeneous healthy cell populations, and over nearly the en-
tire genome, continuous methylation levels at CpG sites can be
functionally understood as having either high or lowmethylation,
and a methylome can be modeled as a sequence of binary states.
Phylogenetic modeling for molecular sequence evolution has a
rich history (Felsenstein 1981; Yang 1994; Siepel and Haussler
2004), and approaches have been applied to DNA methylation
changes in tumor growth and development (Siegmund et al.
2009; Capra and Kostka 2014). However, modeling methylome
evolution at individual CpG sites presents a unique challenge:
The majority of those sites have mutated between distant species
due to their hypermutability. Focusing on CpG sites that are fully
conserved in the relevant species dramatically reduces the portion
of the orthologous genome that can be analyzed. Solutions that ag-
gregate data, for example in predetermined windows along the ge-
nome, lower resolution while only partially solving the problem.
At the same time, it is well known thatmethylation states of neigh-
boring CpG sites are highly interdependent and a phenotypically
relevant epigenomic change tends to involvemultiple consecutive
CpG sites. Horizontal dependence provides information that may
be leveraged to overcome this challenge.

In this study, we examined whole-genome bisulfite sequenc-
ing data from the sperm genomes of seven mammalian species—
human, chimpanzee, gorilla, rhesus macaque, mouse, rat, and
dog—to investigate the evolution of germline DNA methylation.
We designed a phylo-epigenetic model that accounts for loss of
CpG sites between species by incorporating the interdependence
of methylation states at neighboring CpG sites to infer the history
of methylation divergence on each branch of the phylogenetic
tree. We were able to detect genome-wide trends and lineage-spe-
cific features of methylome evolution, identify evolutionary
events at a high resolution, and investigate the relationship with
divergence of genomic DNA, the association with other epigenetic

modifications, and the functional relevance of recently evolved
methylome features.

Results

Comparison of sperm methylomes reveals lineage-specific

features

Wegeneratedwhole-genome bisulfite sequencing (WGBS) data for
sperm cells from gorilla, dog, and rat. Sperm methylomes of hu-
man, chimpanzee, rhesus macaque, and mouse were produced in
previous WGBS studies (Molaro et al. 2011; Hammoud et al.
2014; Lu et al. 2015). For each species, the sequencing had a total
depth greater than 10× and covered the entire mappable fraction
of the corresponding reference genome (Supplemental Table S1).
In parts of our study, we usedmethylomes of embryonic stem cells
(ESC) and somatic cells (B-cell, whole blood, peripheral blood
mononuclear cells, and left ventricle) from different species for
comparison with sperm methylomes (Methods). We used
Ensembl gene annotations (Release 75) (Flicek et al. 2014) and de-
fined gene promoter as the 2-kbp region surrounding the tran-
scription start site (TSS). We identified hypomethylated regions
(HMRs) from individual methylomes using a hiddenMarkovmod-
el as previously described (Molaro et al. 2011).

All species exhibited global methylation in sperm, with ge-
nome-wide average DNA methylation levels ranging between
0.68 and 0.79 (Supplemental Table S2). The methylation levels
at single CpG sites formed a bimodal distribution (Supplemental
Fig. S1A). Sperm methylomes contained more and wider HMRs
than those in the examined ESC and somatic methylomes (Fig.
1A; Supplemental Table S2). Sperm HMRs overlapped retrotrans-
posons and pericentromeric satellites more frequently than ESC
and somatic HMRs (Supplemental Table S3; Supplemental Fig.
S1B). These observations are consistent with patterns observed in
human, chimpanzee, and mouse (Molaro et al. 2011, 2014).

To study epigenomic evolution across species, we aligned
nonhuman methylomes and HMRs to the human reference
genome at single-CpG resolution (Methods). The genomic compo-
sition of the seven-way orthologous genome is shown in
Supplemental Figure S1C. The orthologous genome contains, on
average, 17% (4.3 million) of the total CpG sites in individual spe-
cies. The majority of the CpG sites have diverged between species,
and only 0.4 million CpG sites are conserved across all species, the
majority (59.7%) of which reside in codons. We therefore do not
focus on fully conserved CpG sites, because they are limited in
number andmay be confounded by evolutionary pressures associ-
ated with protein coding regions. The number of HMRs located in
the orthologous genome ranges between 24,000 and 40,000, and
the average size ranges between 1.1 and 1.5 kbp for individual spe-
cies (Supplemental Table S4; Supplemental Fig. S1D).

For a global view of the relationships between spermmethyl-
omes, we clustered the sperm methylomes along with ESC and
somatic methylomes based on pairwise correlation of average
methylation levels in 200-bp bins (Fig. 1B; Supplemental Fig.
S1E). There was a clear separation of sperm from ESC and somatic
methylomes, consistent with tissue-specific characteristics of
methylation (Molaro et al. 2011; Pai et al. 2011). The hierarchy
in the sperm methylome cluster was largely consistent with the
knownphylogeny, except that dog andprimatesweremore similar
to each other than either was to rodents, despite a more recent
common ancestor for rodents and primates (dos Reis et al. 2012).
This may not be unexpected. Comparative genomic studies have
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reported a threefold higher neutral mutation rate in rodents com-
pared with primates (Rat Genome Sequencing Project Consortium
2004; Lindblad-Toh et al. 2011).

Methylation features are conserved at promoters

and divergent distally

All species have comparable numbers of promoterHMRs, although
rodents have many more nonpromoter HMRs than other species
(Fig. 1C). The intersection of HMRs across all species contained a

total of 15,000 regions, with an average size of 1.0 kbp. If a HMR
contains a region that is hypomethylated in all species, we call it
a conserved HMR. Conserved HMRs were located predominantly
at gene promoters and constitute on average 74% of the hypome-
thylated promoters in each species (Fig. 1C). Nonpromoter HMRs
were far less conserved across species, with conserved HMRs con-
stituting 8%–22% of the nonpromoter HMRs in each species.
The example interval in Figure 1D (Supplemental Fig. S2B) shows
the conserved presence of anHMR at the promoter in each species.
The gene within this interval, EBF2 in human, is expressed in a

Figure 1. Mammalian sperm methylome characteristics. (A) The number and average size of HMRs in native assemblies. (B) Hierarchical clustering of
aligned seven-way orthologous methylomes of multiple species and cell types. (C) The number of promoter HMRs and nonpromoter HMRs in seven-
way orthologous sperm methylomes. Dashed lines indicate the average number of conserved HMRs across species. (D) Sperm DNA methylation of seven
species in an example orthologous region. Methylome alignment is shown along with conservation tracks fromMULTIZ alignment of 100 vertebrates and
human repeat elements by RepeatMasker (Smit et al. 2013–2015). Regions in solid boxes show divergent methylation states at well-conserved elements.
See zoomed-in browser image for dashed boxes in Supplemental Figure S2A. (E) Themedian size of hypomethylated regions upstream of and downstream
from TSS in somatic (orange) and sperm (blue) methylomes of different species. HMR sizes aremeasured in their respective native genomes. Whiskers mark
the 25th and 75th percentiles of HMR sizes upstream of or downstream from TSS. Wilcoxon rank-sum tests for all pairs of species between rodent species
and nonrodent species showed significantly narrower HMRs in rodents.
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variety of somatic cells, but has low expression in testis (Uhlén
et al. 2015). This promoter HMR size varied between species, and
there were lineage-specific HMR gain and loss events more distal
to TSS. These observations are consistent with slower change at
promoters, andmore rapid evolution of enhancers, as has been ob-
served in a comparative study of histone modifications focused on
mammalian liver (Villar et al. 2015).

Taking advantage of the precision afforded by WGBS, we
compared the sizes of promoter-associated HMRs across species.
HMRs at orthologous gene promoters had similar sizes in ESC
and somatic cells across species. In sperm, in contrast, HMRs
showed substantial variation (Fig. 1E; Supplemental Fig. S1F,G).
Rodent sperm promoter HMRs are significantly shorter compared
with primates and dog (Wilcoxon rank-sum test P < 2.2 × 10−16).
Within primates, rhesus macaque had significantly shorter
HMRs than other species examined (Wilcoxon rank-sum test P <
2.2 × 10−16). Similar levels of variation were also evident at the rep-
licate level between species (Supplemental Table S2). These sperm
promoter HMR size differences indicate a global divergence in the
organization of the sperm epigenome.

The cross-speciesHMR size differences in orthologous regions
indicate that an ancestral HMRhas evolved to have different boun-
dary locations in different species. For a conservedHMR inhuman,
on average, the core region of hypomethylation shared in all spe-
cies only constituted 53% of the HMR. This proportion was 64%
for rodents. Boundary variationwas also common forHMRs specif-
ic to a lineage. Altogether, a considerable amount of cross-species
epigenomic variation took the form of adjustments in boundaries
of these putative regulatory intervals—in addition to complete
gain or loss. Subsequently, we implement a formal model to quan-
tify such boundary movements.

Despite prevalent HMR boundary variation, a subset of
orthologous HMRs had relatively conserved boundary locations
across species. We identified 250 such “ultraconserved” HMRs
(Supplemental Methods), all of which overlapped phastCons-con-
served elements for placental mammals (Siepel et al. 2005), and
92% overlapped gene transcription start sites (Supplemental
Table S5). Relative to genes with promoter HMRs in all seven spe-
cies, those with ultraconserved promoter HMRs were enriched in
multiple biological processes, including developmental process,
signaling, and regulation of multicellular organismal process
(Supplemental Table S6).

Methylation loss exceeds methylation gain across species

We compared spermHMRs across the seven species and identified
species-specific HMRs and species-specific methylated regions. For
each species, there was more species-specific hypomethylation
than methylation (Supplemental Fig. S3A; Supplemental Table
S7). This hints at a nonstationary process and prompted us to
ask whether global trends and rates of epigenomic change can be
extracted from these methylomes.

We designed a model that combines two processes: (1) the
“horizontal” process that induces autocorrelation of methylation
states along the genome within a species, and (2) the “vertical” in-
heritance of methylation states from the ancestral methylome.
The vertical process is modeled with a continuous-time Markov
process in the usual way (Felsenstein 1981). Tomodel the horizon-
tal dependency between the methylation states of two neighbor-
ing sites in the same methylome, we introduce a transition
probability to model the conditional distribution of a site’s meth-
ylation state given the state at the site’s neighbors (Supplemental

Fig. S3B). Combining these two processes, our model is a
Bayesian network that describes the probability of a site having a
particular methylation state as a function of its ancestral state
and the contemporaneous state of its previous neighbor
(Methods). The inclusion of the horizontal process allows us to
treat nonconserved CpG sites as sites with latent data to be mod-
eled using a computationally tractable set of dependencies
(Supplemental Fig. S3B).

We estimated the sperm methylome evolutionary tree
with the proposed model (Fig. 2A; Supplemental Table S8).
Branches within rodents were significantly longer than the pri-
mate lineage (Wilcoxon signed-rank test P = 6.6 × 10−9) (Supple-
mental Methods), indicating faster epigenomic evolution in
sperm of rodents than primates. The rat sperm methylome exhib-
ited faster evolution than mouse (Wilcoxon signed-rank test P =
1.6 × 10−8), which coincided with a higher nucleotide substitution
rate in rat (Rat Genome Sequencing Project Consortium 2004).
However, the methylome evolution rates were much higher at
the terminal branches than internal branches, suggesting relative-
ly fast turnover of spermHMRs inmammals.With an exponential
decay model, we estimated the half-life of HMRs to be 117 million
yr (Myr) overall, 439 Myr at gene promoters and 39 Myr for distal
HMRs (Supplemental Fig. S3C).

The inferred methylation states in ancestral species indicate
an increasing proportion of hypomethylation in the orthologous
genome along each branch of the phylogenetic tree (Fig. 2C).
We estimated that HMRs made up 7.0% of the orthologous ge-
nome in the last common ancestor of the seven species; 7.6% in
the primate common ancestor and 8.1% in the rodent common
ancestor; and 8.3%–9.2% in extant primates and 9.9%–10.2% in
extant rodents (Fig. 2C). The overall increase in the hypomethy-
lated fraction of the orthologous genome was a result of DNA
methylation loss exceeding gain along all branches of the tree,
with the dog coming closest to balancing the two (Supplemental
Fig. S3D). To examine whether the methylome evolutionary pro-
cess was stationary, we applied independent-site phylogenetic
models on discretized methylation states in 200-bp bins
(Methods). We compared a reversible model assuming stationary
evolutionary process with an unrestricted model (i.e., lacking the
reversibility assumption). The unrestricted model fit the observed
data better and estimated an evolutionary process with increasing
hypomethylation fraction (Supplemental Fig. S3E,F).

To examine whether our preceding observations are robust
to the technical aspect of using human-referenced alignment,
we performed the same analyses using mouse-referenced align-
ment (Supplemental Methods). In addition, to investigate wheth-
er sperm methylomes have similar evolutionary features at well-
conserved sequence elements as in the entire orthologous ge-
nome, we restricted analyses to CpG sites located within placen-
tal mammal conserved elements (Siepel et al. 2005). The genomic
context composition and distribution of CpG methylation levels
vary slightly for the mouse-referenced seven-way orthologous ge-
nome (Supplemental Fig. S4A,B). However, they vary substan-
tially for well-conserved elements that are mostly protein
coding sequences and important regulatory elements under strict
evolutionary constraints (Supplemental Fig. S5A,B). Nevertheless,
the results in both analyses are consistent with results presented
above. Rodents display faster evolution rates (Supplemental Figs.
S4C,D, S5C,D). Sperm methylomes have experienced expansion
of hypomethylation in the overall orthologous genome (Sup-
plemental Fig. S4E,F) and in well-conserved elements (Supple-
mental Fig. S5E,F). Methylation patterns are more conserved at
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promoter-proximal elements than distal elements (Supplemental
Fig. S5G).

Widening of hypomethylated regions has contributed

significantly to methylation loss

Loss of DNA methylation during evolution reflects an increase in
either the size or the number of HMRs. We classified methylation
loss (HMR gain) events into HMR birth events or HMR extension
events; similarly, we classified HMR loss events into HMR deaths
or HMR contractions (Fig. 2B,D; Methods). The HMR birth and
death events showed different genomic distribution from the
extensions and contractions (Fig. 2E). Distal (more than 10 kbp
away from TSS) events constitute 56% of HMR births and 40%
of deaths, in contrast to 30% of extensions and 16% of
contractions.

Only a small proportion (<10%) of
the orthologous genome was hypome-
thylated. However, HMR extensions
comprise 21%–74% of total HMR gains
(Fig. 2D; Supplemental Table S9), which
correspond to >20-fold more than ex-
pected if HMR gains were to randomly
occur in the genome (Supplemental Fig.
S6; Methods). Among HMR loss events,
deaths occurred more frequently than
expected (Supplemental Fig. S6). These
observations suggest that existing HMRs
may facilitate the evolutionary forma-
tion of a new HMR in the adjacent re-
gion; meanwhile, loss of HMR is more
likely to occur as methylation through
an entire ancestral HMR rather than
only a fraction of it.

We found two forms of evidence in
line with our hypothesis that once estab-
lished, a typical HMR can gradually
evolve to span a larger genomic region.
First, we compared the HMR sizes be-
tween older and younger groups, and
found positive correlation between the
age and the size of HMRs (Fig. 3A), with
faster expansion at promoter HMRs
than nonpromoter HMRs. Second, we
found that HMRs in the orthologous ge-
nome were consistently larger in size
within each genomic context group
than those in species-specific genomic re-
gions (Fig. 3B). An alternative hypothesis
may state that HMRs randomly arise in
the genome with substantial variation
in size, but wider HMRs are more likely
to survive through evolution. Although
this alternative hypothesis may also ex-
plain the size–age correlation of HMRs,
it offers no explanation to the substantial
cross-species size variation of conserved
HMRs. Therefore, we find progressive
extension a more likely hypothesis.
Together, these observations suggest
that recently appearing epigenomic fea-
tures encompass smaller genomic inter-

vals than more ancient features. Of note, such a global trend
wouldhaveprogressed independently andmayhavedifferent rates
along parallel evolutionary lineages.

Sequence signatures driven by sperm methylome divergence

BecausemethylatedCpGs experience elevatedmutation rates driv-
enbydeamination,wepredicted that observed/expected (o/e) ratio
ofCpGfrequency ina region is related to the lengthof timea region
has beenmethylated. To test this prediction,wemeasuredCpG fre-
quency in human HMRs separated into six different age groups
based on estimated ancestral methylation states. As predicted,
older HMRs had higher CpG o/e ratios compared to younger
HMRs (Fig. 4A). In addition, older HMRs displayed lower levels of
DNAmethylation than younger HMRs, suggesting that conserved
elements are subject to more stringent epigenetic regulation and

Figure 2. Methylation loss exceedsmethylation gain during evolution. (A) Phylogenetic tree represent-
ing consensus divergence time (Hedges et al. 2015) genome evolution and spermmethylome evolution.
Unit branch length represents 1 million yr, one substitution/site, and onemethylation state change/CpG
site, respectively. (B) Schematic segmentation of the orthologous genome according to the history of
methylation evolution and annotation of methylation mutation events. (C) Fraction of orthologous ge-
nome hypomethylated in extant and ancestral species, estimated by the interdependent-site phylo-epi-
genetic model. (D) Total size of different types of methylation evolution events on individual branches.
(E) The distribution of distances frommethylome evolution events to closest TSS in the seven-way orthol-
ogous genome. The color legend is as shown in D.
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maintenance, whereas younger elements may be involved inmore
dynamic interactions. These findings remained unchanged after
we controlled for DNAmethylation level (Supplemental Fig. S7A).

The relationship between germline methylation history and
CpG decay through a genomic interval suggests we might use
CpG o/e ratios to polarize the promoter HMR size divergence ob-
served in Figure 1D. The substantial number of promoter HMRs
that are much wider in human than in mouse may have arisen
from a general widening along the human lineage or a narrowing
along the mouse lineage. Figure 4B illustrates a method for distin-
guishing these possibilities. We selected gene promoters that were
hypomethylated in sperm and ESC of both human and mouse,
with a wider sperm HMR than ESC HMR in both species and
with a wider sperm HMR in human than in mouse. The mouse
CpG o/e ratios on opposite sides of positions orthologous to hu-
man spermHMRboundaries (sections i versus ii) showedno signif-
icant difference (Fig. 4C), suggesting that both sides in the mouse
genome shared a common methylation history during evolution.
Meanwhile, regions corresponding to rodent-lineage-specific
sperm HMR loss showed higher CpG o/e ratios than the methylat-
ed genomic background level (Wilcoxon rank-sum test P = 1.3 ×
10−4) (Supplemental Fig. S7B), which suggests that ancestral
CpGs have not had enough evolutionary time to decay following
recent increases inmethylation. In contrast, therewas a significant
drop of human CpG o/e ratios (Wilcoxon rank-sum test P = 1.3 ×
10−31) crossing the mouse sperm HMR boundaries from section
iii to ii. Although regions on both sides were hypomethylated in
present-day human sperm, the outer side (section ii) must have be-

come hypomethylated later than the inner side (section iii). Dog
spermmethylome also showedwider promoter HMRs thanmouse
(Fig. 1D), and we observed similar profiles of CpG o/e ratios in the
dog–mouse comparison (Supplemental Fig. S7C). These observa-
tions suggest that although sperm promoter HMR sizes may have
increased on parallel lineages, the changes likely occurred at differ-
ent rates, and that ancestral promoter HMR size in spermwas clos-
er to that in rodents, with both dog and primates evolving wider
intervals of hypomethylation around promoters in sperm.

Methylation divergence is associated with histone modification

and sequence divergence

To examine whether sperm DNA methylation divergence is ac-
companied by histone modification divergence, we analyzed
H3K4me3 and H3K27me3 ChIP-seq data from round spermatids
of human and mouse (Lesch et al. 2016) and H3K4me1 ChIP-seq
data from human and mouse sperm (Hammoud et al. 2014; Jung
et al. 2017). Lineage-specific sperm HMR births and extensions
in human andmouse were associated with lineage-specific enrich-
ment of histone modifications (Fig. 5A; Supplemental Fig. S8A,B).
In both human and mouse, promoter HMRs showing species-spe-
cific widening in sperm, especially those showing the samewiden-
ing in ESC, were enriched with bivalent histone marks in round
spermatid (Supplemental Table S10). The association between
divergent DNA methylation and divergent histone modification
in sperm indicates that sperm DNA methylation is an integral
part of the germline epigenome evolution.

Figure 3. Older andmore conserved sperm HMRs arewider. (A) Mean sizes of promoter and nonpromoter HMRs in the seven-way orthologous genome
of human and mouse sperm, grouped by estimated HMR emergence time in mammalian evolution. Error bars indicate standard errors of the mean.
Significant Wilcoxon rank-sum test P-values are shown. The Boreoeutheria group contains HMRs conserved in all seven species, representing HMRs formed
before and during the speciation of Boreoeutheria. Other groups represent HMRs formed during the speciation of respective lineages. (B) Distribution of
HMR sizes in native genome assemblies, grouped by genomic context and conservation level.
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The sequence conservation levels (Pollard et al. 2010) were
substantially higher in lineage-specific HMRs than their flanking
regions, suggesting that regulatory elements may be conserved at
the sequence level, but diverged at the epigenetic level. Moreover,
all groups of lineage-specific spermHMRs showed a sizable (>30%)
overlap with human Roadmap somatic HMRs, which are poten-
tially active regulatory elements in human somatic tissues (Supple-
mental Table S11; Kundaje et al. 2015). Overlapping with human
somatic HMRs considerably increased the sequence conservation
level in lineage-specific sperm HMRs (Supplemental Fig. S7D). Ro-
dent lineage-specificHMRs not overlapping human somatic HMRs
remained at higher sequence conservation level than neighboring
regions (Supplemental Fig. S7D), suggesting conserved regulatory
regions between human and mouse yet to be observed. These ob-
servations are consistent with exaptation of existing elements as a
major source for species to evolve new regulatory interactions (Vil-
lar et al. 2015).

To examine whether lineage-specific HMRs are associated
with lineage-specific substitutions, we computed the relative se-
quence substitution rate (RSSR) in orthologous regions between
two parallel lineages and compared the RSSR in lineage-specific
HMRs against randomly sampled regions from the background
orthologous genome (Methods). We studied four pairs of sister
or parallel lineages and observed that lineage-specific HMR births
were associated with significantly elevated sequence substitution
rates on the same lineage (Fig. 5B). After excluding CpG sites,
the differences in relative substitution rates remained significant
(Supplemental Table S12). These observations, further extending
previous results, reveal a local link between sequence substitutions
and evolution of new epigenetic features.

Lineage-specific changes involve common transcription factors

and developmental genes

DNA hypomethylation reflects cis-regulatory interactions (Bird
2002; Hodges et al. 2011; dos Santos et al. 2015).We tested wheth-

er certain transcription factors were enriched in lineage-specific
promoter HMR extensions and lineage-specific nonpromoter
HMR gains in human and mouse (Fig. 6A; Methods). At lineage-
specific nonpromoter HMRs, a number of transcriptional activa-
tors were enriched on both lineages, such as EP300; activator pro-
tein 1 (AP-1) subunits FOS, FOSL1, and JUN; and AP-1 interacting
factor MAFK. In addition, chromatin-looping factors including
CTCF and cohesin components RAD21 and SMC3 were overrepre-
sented on both lineages. Of the CTCF binding sites found in re-
cently evolved lineage-specific nonpromoter sperm HMRs, 33%
and 43% of the sites were also lineage-specific hypomethylated
in the ESCs of human andmouse. These observations suggest a de-
gree of evolutionary plasticity for these factors in their roles asso-
ciated with 3D organization of the genome and long-range
promoter-enhancer interaction; considering results presented
above, this plasticity seems to be increasing the number of regions
involved in these functions.

Lineage-specific promoter HMR extensions on both lineages
showed enriched binding sites of EP300 and RNA polymerase II,
whereas extensions on the human lineage showed enrichment
ofmany transcriptional activators that are also enriched in human
lineage-specific nonpromoter HMR gains. Genes with primate lin-
eage-specific promoter HMR extension showed enrichment in
developmental process and nervous systemprocess (Supplemental
Fig. S9A; Supplemental Table S13). About 12% of primate lineage-
specific HMR gains in human sperm were also hypomethylated in
human ESC and as much as 82.5% overlap with ENCODE tran-
scription factor binding sites, DNase I hypersensitive sites (Thur-
man et al. 2012), or Roadmap somatic HMRs. This suggests that
recently evolved spermHMRs likely can take on roles of regulatory
elements in developmental stages beyond germ cell development.

Despite being lineage specific, HMR births on these two par-
allel lineages sometimes occurred in each other’s neighborhood in
the orthologous genome (Supplemental Fig. S9B), and they shared
a sizeable list of common associated genes (Jaccard index = 0.41,
Fisher’s exact test P < 2.2 × 10−16) (Methods). These commongenes

Figure 4. Sequence signatures driven by sperm methylome evolution. (A) CpG enrichment (observed/expected ratio of CpG occurrences) and regional
average DNAmethylation level in human HMRs in seven-way orthologous genome grouped by estimated hypomethylation age. (B) Two opposite scenar-
ios explaining the evolution path to different promoter HMR sizes in two extant species and the expected CpG enrichment schematic profile in the extant
species as a result of methylation-induced CpG decay. (C ) Human and mouse CpG enrichment profile at hypomethylated orthologous gene promoters,
where human sperm HMRs are wider than mouse. Profiles show CpG enrichment in 2-bp windows by distance to indicated HMR boundaries. Smoothed
lines were generated with local polynomial regression fitting (LOESS).
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were enriched for functions in embryonic developmental process-
es, including mesoderm and ectoderm development and nervous
system development (Fig. 6B). Meanwhile, analysis of associated
genes that were specific to one species did not yield any enrich-
ment of biological processes. Together, these results suggest that
independently evolving features of the sperm epigenome are in-
volved in regulating common genes that are important for embry-
onic development. This may be viewed as a form of convergent
evolution: Regulatory features are emerging independently for
the same genes.

Discussion

We used high-resolution whole-genome DNA methylation
profiles and quantitatively measured the divergence among the
sperm methylomes of seven mammals with a newly developed
phylo-epigenetic model. Several key findings emerged from our
analysis. There is a global trend toward expansion of the hypome-
thylated fraction of the genome on all phylogenetic lineages.
Hypomethylated intervals around transcription start sites have
evolved to be substantially wider in primates and dog than in ro-
dents. Genomic intervals with lineage-specific hypomethylation
are associated with common developmental processes and are of-

ten close to sets of genes with significant overlap. Analysis of tran-
scription factor binding data indicates that regions of rodent-
specific and primate-specific hypomethylation are enriched for
binding sites of orthologous transcription factors.

DNA hypomethylation reveals cell-type- and species-specific
distribution of active or poised regulatory elements (Lister et al.
2009; Stadler et al. 2011; The ENCODE Project Consortium
2012). Evolution and divergence of DNA methylation patterns re-
flect the evolution of regulatory elements. We found that the frac-
tion of DNA hypomethylation in the orthologous genome has
been expanding, with frequent HMR births and HMR extensions
on all lineages of the phylogenetic tree, and provided evidence
for progressive widening of HMRs at both promoters and potential
distal enhancers. These results suggest a mode by which new reg-
ulatory elements may evolve to increase specificity of transcrip-
tional regulation and are in line with the findings from a recent
theoretical study of transcription factor binding site evolution
(Tuğrul et al. 2015). Specifically, in promoters and enhancers,
which harbor clusters of binding sites, the additive effect of tran-
scription factor binding on gene expression and cooperative bind-
ing of transcription factors can accelerate emergence of new
transcription factor binding sites. In contrast, evolution of an iso-
lated binding site would typically be much slower. Considering

Figure 5. Sperm DNA methylation divergence is accompanied by sperm histone modification and DNA sequence divergence. (A) Mouse- and human-
specific sperm HMRs and HMR extensions show species-specific H3K4me3 and H3K27me3 enrichment. (B) Lineage-specific HMRs are associated with rel-
atively more sequence substitutions. For each pair of parallel lineages, expected distribution of RSSR is shown as a gray histogram, and fit is shown with
normal distribution (black curve). The yellow areamarks 90% confidence interval for mean RSSR. Upper (lower) tail of the distribution indicates significantly
more substitutions in the numerator (denominator) lineage. Each lollipop marks the observed RSSR in HMRs specific to the indicated lineage, with one-
sided P-value shown on top.
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models of regulatory elements, such as the “enhanceosome” and
“billboard” models for transcriptional enhancers (Arnosti and
Kulkarni 2005), our phylo-epigenetic model provides a phyloge-
netic tool for elements that lack the degree of sequence conserva-
tion often required to infer function.

Our analyses of DNA sequence and methylation divergence
revealed principal features of the relationship between genomic
and epigenomic evolution. We observed methylome evolution
rate differences between lineages, similar to those observed in ge-
nomic evolution, reflecting a genetic component underlying epi-
genetic divergence. Sequence divergence has been associated
with gain and loss of some regulatory elements (Schmidt et al.
2010). Linking DNA sequence divergence with DNA methylation
changes, Hernando-Herraez et al. (2015) have shown within mul-
tiple primate species that species-specificmethylation is associated
with elevated species-specific nucleotide substitutions. We add to
this picture by showing that lineage-specific hypomethylation is
associated with increased sequence substitutions compared with
the parallel sister lineage in the phylogenetic tree. Interestingly,
in the seven-way orthologous genome, sequences in lineage-spe-
cific sperm HMRs are usually more conserved than flanking re-
gions, perhaps reflecting a functional exaptation of ancestral

sequence and repurposing of ancestral regulatory elements in spe-
cies-specific and cell-type–specific ways.

Germline DNA methylation patterns have shaped the mam-
malian genomic distribution of CpG dinucleotides. In human
germline cells across many generations, the promoter HMRs alter-
nate between a wider size in sperm cells and a narrower size in
ESCs,whichhas left distinctive signatures of deamination-induced
CpG depletion in the human genome (Molaro et al. 2011). In this
study, we add further support to this theory by delineating the oc-
currence time during evolution of human spermHMRs and show-
ing that CpGenrichment inHMRs is strongly correlatedwithHMR
age. In addition, CpG enrichment around promoter HMR bound-
aries in primates, rodents, and dog offers additional support to our
inference of parallel promoter HMR extension in primates and dog
by phylo-epigenetic modeling. Moorjani et al. (2016) reported a
more clock-like behavior of CpG transitions compared with other
substitutions. Understanding germline methylation patterns as
well as their evolutionary history in different species would enable
better calibration of divergence time by such a CpG-based molec-
ular clock.

Several factors in the mature sperm of human and mouse,
such as histone retention and modification, CTCF binding, and

Figure 6. HMRs gained on parallel lineages are associated with similar transcription factors and developmental genes. (A) Enrichment of transcription
factor binding sites in HMR birth and extension regions on the human lineage andmouse lineage. (∗) Factors enriched in both lineages. (B) Lineage-specific
HMRs are associated with gene sets with significant overlap and that are enriched in developmental processes.
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microRNAs, have been proposed to have regulatory importance in
embryonic development (Carone et al. 2014; Hammoud et al.
2014; Rodgers et al. 2015; Teperek et al. 2016). For example,
Lesch et al. (2016) reported that epigenetically poising develop-
mental regulator genes with bivalent histone modifications
(H3K4me3 and H3K27me3) at gene promoters was a conserved
phenomenon in mammalian sperm, and differences in gene pois-
ing in sperm were correlated with differential developmental
expression between species. However, of all epigenetic modifi-
cations, DNAmethylation is the only epigeneticmarkwith known
mechanisms of stable transmission across cell divisions (Henikoff
and Greally 2016). Althoughmost DNAmethylation marks are re-
moved during two waves of epigenetic reprogramming, regulatory
elements that can escape demethylation have been observed in
both zygotic and primordial germ cell reprogramming (Borgel
et al. 2010; Hackett et al. 2013; Wang et al. 2014). In mouse, oo-
cyte-derived methylation is involved in regulating trophoblast de-
velopment (Branco et al. 2016), and paternal age-related sperm
DNAmethylation changes are associated with transcriptional dys-
regulation of developmental genes in the offspring (Milekic et al.
2015). We have observed lineage-specific HMRs associated with
conserved developmental processes and even proximal to the
same genes. Meanwhile, these lineage-specific regions are en-
riched with binding sites of chromatin-looping factors and en-
hancer binding factors. These observations suggest that the
plasticity accommodated by certain regulatory factors is con-
served, despite substantial turnover in the specific sites of regula-
tion. Such plasticity may reflect or permit greater divergence
between species in how the associated genes are regulated even
in the context of developmental programs that are deeply con-
served within mammals.

In parallel with emergence of species-specific regulatory ele-
ments, divergence in the organization of gene promoters may be
of equal significance in mammalian evolution. The striking differ-
ences in sperm promoter HMR sizes between species indicate a
global divergence in epigenetic regulation and chromatin organi-
zation of orthologous genes including key developmental genes.
We observed binding sites of repressive factors EZH2 (a subunit
of polycomb repressive complex 2, PRC2) and SIN3A to be en-
riched respectively in human and mouse lineage promoter HMR
extension regions. Although the data from somatic cells does not
necessarily imply binding at the same sites in male germ cells,
those two repressor complexes have been found indispensable
for proper repression of soma-specific genes through chromatin
remodeling during germ cell development (Gallagher et al. 2013;
Mu et al. 2014). Inmouse ESC, it has been observed that both com-
plexes interact with TET1 but at distinct gene promoters (Williams
et al. 2011; Neri et al. 2013). The binding profile of TET1 spreads
wider at bivalent gene promoters (Neri et al. 2013), possibly due
to association with PRC2, which has a proposed mechanism for
spreading at bivalent promoters (Margueron et al. 2009). In con-
trast, TET1 binding is much narrower when it co-binds with
SIN3A, which has a narrower binding profile as well (Neri et al.
2013). We also observed lineage-specific enrichment of histone
modifications in lineage-specific HMR extensions, indicating
that the breadth of sperm histone marks differs between species.
Broad H3K4me3 domains at gene promoters have been connected
with increased RNA polymerase II pausing, transcriptional consis-
tency, and cell identity (Benayoun et al. 2014). Although mature
sperm are usually assumed to be transcriptionally inactive, the
presence of RNA polymerase II has been detected in the nuclei of
mature mouse sperm (Lin et al. 2013). Considering these results,

it is possible that divergent recruitment of trans-acting factors dur-
ing germ cell development contributes to different sizes of promot-
er HMRs between species and has further influence in zygotic gene
activation and embryo development. It remains to be examined
whether the occupation of these chromatin-modifying and tran-
scription complexes differ between species in the context of
germ cell development and how they are associated with promoter
methylation patterns in different species.

In conclusion, we characterized evolutionary changes in
mammalian spermmethylomes at high spatial and temporal reso-
lution. Our analyses reveal the global trend and lineage-specific
features of expanding DNA hypomethylation during evolution
and provide insights to how evolution of the epigenomemay con-
tribute to species-specific fine-tuning of conserved mammalian
developmental programs.

Methods

Whole-genome bisulfite sequencing data sets

We collected sperm samples from one gorilla individual, two
rat individuals, and three dog individuals and generated whole-ge-
nome bisulfite sequencing (WGBS) data sets. See Supplemental
Methods for details of sample collection, library preparation, and
sequencing.

Public WGBS data used in this study include human
and chimpanzee sperm (Gene Expression Omnibus accession
GSE49624 and GSE30340) (Hammoud et al. 2014; Molaro et al.
2011), human H1 ESC (GSE16256) (Lister et al. 2013), human
H9 ESC (GSE19418) (Laurent et al. 2010), human and chimpanzee
B-cell (GSE31971) (Hodges et al. 2011), gorilla whole blood (NCBI
SRA accession SRP059313) (Hernando-Herraez et al. 2015), rhesus
macaque sperm (GSE60166) (Lu et al. 2015), rhesus macaque
PBMC (GSE34129) (Tung et al. 2012), rat left ventricle (European
Nucleotide Archive accession number ERP002215) (Johnson
et al. 2014), mouse sperm (GSE49624) (Hammoud et al. 2014),
mouse B-cell (SRP029721) (Kieffer-Kwon et al. 2013), mouse ESC
(GSE30206) (Stadler et al. 2011), and the dog kidney epithelial
cell line MDCK (GSE48527) (Carmona et al. 2014).

Mapping and annotation

Reads fromwhole-genome bisulfite sequencingweremappedwith
the RMAP software (Smith et al. 2009) to respective reference ge-
nome of each species: hg19, panTro4, gorGor3, rheMac3, mm10,
rn5, and canFam3. Subsequent analyses on duplicate removal,
bisulfite conversion rates, methylation levels, and HMRs were car-
ried out with tools from the MethPipe package (Song et al. 2013).
Mapping statistics are provided in Supplemental Table S1. We did
not observe significant non-CpG methylation in any species and
focused our analyses on CpG methylation. We used Ensembl
gene annotations (Release 75) (Flicek et al. 2014) for species in-
volved in this study. Coordinates of rhesus macaque gene annota-
tion were converted to assembly rheMac3 from rheMac2 with
liftOver from the Genome Browser tool suite (Kent et al. 2002).

Methylome alignment

Weproducedmultiplemethylome alignment bymapping nonhu-
man CpG positions andmethylation levels to the human genome
assembly hg19, using the 100 vertebrate MULTIZ alignment
(hg19) downloaded from UCSC Genome Browser (Rosenbloom
et al. 2015). We used UCSC Genome Browser binary utility
mafSpeciesSubset to filter out sequence records from species other
than the seven species of interest. Next, we fused together adjacent
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alignments blocks that were separated by species not included
in this study, using Galaxy script maf_thread_for_species.py
(https://github.com/bxlab/bx-python/blob/master/scripts/maf_
thread_for_species.py) (Giardine et al. 2005; Blankenberg et al.
2010; Goecks et al. 2010). Then we parsed the locations of CpG
sites in each species and the corresponding coordinates in the
human reference genome from alignment blocks that contain
sequences from all seven species. We assessed whether using the
latest human genome assembly GRCh38 would significantly im-
pact the methylome alignment. Although GRCh38 has improved
coverage at centromere sequences and increased diversity with al-
ternate loci, sequences in genomic regions conserved with other
mammalian species are highly consistent with the older assembly
GRCh37/hg19. Only 4596 (0.067%) CpGs in the seven-species
alignment blocks under the new assembly (alternate loci and un-
placed sequences excluded) were absent from the old assembly,
1308 (0.019%) were non-CpG sites in the old assembly, and 78
(0.001%) had insertion/deletion or nonunique mapping, whereas
the rest of CpG sites had one-to-onemapping between the two ver-
sions of human reference genome assemblies.

To define the seven-way orthologous genome, we excluded
any regions that are >1 kbp in size and contain no CpGs or have
zero read coverage in at least one species; we considered the result-
ing set of genomic regions, covering 370 million bases, as the re-
gions conserved across all seven species. We chose 1 kbp as the
minimum CpG desert size because the correlation of methylation
levels at neighboring CpG sites drops to background level at dis-
tance >1 kbp.

To map HMRs from the native genome assembly to the hu-
man reference genome, we kept track of HMRmembership of indi-
vidual CpGs and then merged consecutive CpGs that belonged to
the sameHMR in the original native genome andwere not separat-
ed by CpG deserts into a HMR. We filtered out HMRs with fewer
than five CpG sites.

Phylo-epigenetic model considering CpG-site interdependence

We constructed a phylo-epigenetic evolution model Θ = {τ, π, Q, F,
G}, where τ is a phylogenetic tree with known phylogeny and un-
known branch lengths; π is the distribution of methylation states
at the first site in the last common ancestor (LCA; root of the phy-
logenetic tree); F is the transition probability matrix for methyla-
tion states between neighboring CpG sites in the LCA; Q is a
continuous-time Markov chain transition rate matrix for the evo-
lution of methylation state at a single site; G is a transition proba-
bility matrix for neighboring CpG sites in descendant species. The
methylome of the LCA is modeled by a two-state discrete-time
Markov chain with model parameters (π,F). Evolution of the first
site in the genome is modeled with continuous-time Markov pro-
cess Q along the phylogenetic tree τ, as in the standard indepen-
dent-site phylogenetic model. The main component of our
phylo-epigenetic model is the combination of the horizontal in-
ter-CpG dependence process described byG and the vertical inher-
itance process described by Q and divergence time. Consider a
parent–child pair of species (u,v) with branch length ℓuv, and let
the methylation state at the site i of v be vi. Suppose the methyla-
tion states of vi’s parent site and its previous site are given. We
define the conditional distribution of vi given vi− 1 and ui as

Pr(vi|ui, vi−1) =
Gvi−1vi exp (Qℓuv)uivi∑

x[{0, 1} Gvi−1x exp (Qℓuv)uix
This modeling strategy achieves a balance between computational
tractability and incorporation of dependence relations between
neighboring CpGwithin and across species (for discussion of alter-
native models, see Supplemental Methods). The input data can be

binary methylation states, continuous methylation probabilities
at individual CpG sites in extant species, and missing data at sites
in an extant species when its orthologous sites have observed data
in other species. See Supplemental Methods for details about the
model and parameter estimation methods. In brief, we used a
Monte Carlo Expectation Maximization (MCEM) algorithm (Wei
and Tanner 1990), where the posterior distribution ofmethylation
states at unobserved CpG sites is approximated by Gibbs sampling
in the E-step. In-house software can be downloaded from https
://github.com/smithlabcode/Epiphyte.

Model selection between reversible and unrestricted evolution

processes

We used Akaike information criterion (AIC) to compare two inde-
pendent-site phylogenetic models, with and without the assump-
tion of reversible evolutionary process. We discretized average
methylation probabilities (cutoff 0.5) to determine the methyla-
tion states in 200-bp bins in the seven-way orthologous genome.
Only bins with nonzero CpG coverage in all species are included
to form complete observation at extant species. The reversible
model and the unrestricted model were estimated with R package
RPHAST (Supplemental Table S8; Hubisz et al. 2011).

Types of methylome evolution events

We inferred HMRs in ancestral species using the proposed inter-
dependent-site phylo-epigenetic model. Methylome evolution
events—HMR gain in the form of birth and extension and HMR
loss in the form of death and contraction—along each branch of
the phylogenetic tree were determined by comparison of HMRs
in the corresponding parent and child species. We filtered out
events of size <50 bp or located at the boundaries of seven-way
orthologous genome fragments.

To examine the enrichment of de novo (birth or death)
and secondary (extension or contraction) methylome evolution
events on each phylogenetic tree branch, we computed the dis-
tances between HMR gains to the closest ancestral HMRs, and
between HMR losses to the closest descendant HMRs. We formed
the expected distance distribution by randomly shuffling HMR
gain events within all methylated regions in the ancestral methyl-
ome and HMR loss events within ancestral HMRs, using BEDTools
(Quinlan and Hall 2010). The enrichment of different types of
HMR gain and loss events was measured with the ratio between
the observed and expected distance distribution (Supplemental
Fig. S6).

CpG enrichment at promoter HMRs

In the human-referenced seven-way orthologous methylome
alignment, we filtered for human and mouse sperm HMRs such
that both their intersection and union contain exactly one gene
transcription start site (TSS). We obtained human promoter
HMR extension regions relative to the mouse promoter HMRs
with minimum length of 200 bp. The two boundaries of such an
extension region correspond to a human HMR boundary and a
mouse HMR boundary. We masked out regions that are not align-
able between human and mouse according to their pairwise se-
quence alignment. We used a sliding 2-bp window with 1-bp
step size around the human HMR boundary of the extended
HMR, themouse HMR boundary containedwithin awider human
HMR, and around TSS along the human genome to measure GC
content and CpG occurrences, and produced a meta plot for
CpGenrichment relative to the boundaries and TSS. Tomake these
measurements in the mouse genome, wemapped humanmethyl-
omes to mouse mm10 genome assembly through the mouse-
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referencedMULTIZ alignment of 60 species and followed the same
analysis procedures. We performed the same analysis for dog–
mouse comparison using mouse-referenced and dog-referenced
methylome alignments.

Relative sequence substitution rate

Weused 15-way eutherianmammals Enredo-Pecan-Ortheus (EPO)
multiple alignments corresponding to the Release 75 of Ensembl
(Herrero et al. 2016), and we extracted the alignment of the seven
species in this study and the ancestral species in the corresponding
phylogeny. Sequence substitutions were annotated to individual
lineages by comparing the ancestral sequence and the descendant
sequence. We only considered alignment columns that have no
insertion or deletion in all seven species. Relative sequence substi-
tution rate (RSSR) in orthologous regions between two sister line-
ages is defined as the ratio of the total number of substitutions
on one lineage to the total number of substitutions on the other
lineage. To form the background distribution of RSSR, we random-
ly sampled regions from the seven-way orthologous genome.
The sampled region size was chosen to match the smaller size of
the total aligned bases in lineage-specific HMRs between the two
lineages. We independently sampled 5000 times and created the
sampling distribution of RSSR for each pairs of sister lineages.
The significance (one-sided P-value) of observed RSSRs in line-
age-specific HMRs was calculated using a normal distribution fit
to the empirical sampling results.

Enrichment of transcription factor binding sites

We used ENCODE transcription factor binding sites for human
and mouse (Gerstein et al. 2012; The ENCODE Project
Consortium 2012; Wang et al. 2013) and mouse EZH2 binding
sites from studies by Ku et al. (2008) and Peng et al. (2009). To eval-
uate enrichment of the binding sites of each TF in, for example,
human lineage-specific HMRs, we used Fisher’s exact test on the
contingency table of binding site counts: (factor, other factors) ×
(lineage-specific HMRs, other human HMRs). See Supplemental
Methods for more details.

Gene ontology analyses

For genes with promoter HMR extensions in the primate lineage,
we used GOrilla (Eden et al. 2009) to identify enriched biological
processes at a false discovery rate of 0.05 and removed ontology
term redundancy with REVIGO (Supek et al. 2011). For genes clos-
est to lineage-specific HMR gains that are common between paral-
lel lineages, we used the PANTHER overrepresentation test (Mi
et al. 2016) to find overrepresented biological processes with
<0.05 Bonferroni corrected P-value. More details can be found in
Supplemental Methods.

Data access

The whole-genome bisulfite sequencing data from this study have
been submitted to the NCBI Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/) under accession number
GSE79566. Methylome alignment, inference of ancestral methyl-
ation states, and HMRs are provided in UCSC Genome Browser
Track Data Hubs (Raney et al. 2014) as part of the public hub
DNA Methylation (Song et al. 2013). Custom analysis scripts are
available as Supplemental Scripts.
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