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Abstract: We aimed to compare proximal femur geometry and biomechanics in postmenopausal
women with osteoarthritis (OA) and/or osteoporosis (OP), using quantitative computed tomography
(QCT). A retrospective analysis of QCT scans of the proximal femur of 175 postmenopausal women
was performed. Morphometric and densitometric data of the proximal femur were used to evaluate
its biomechanics. We found, 21 had a normal bone mineral density (BMD), 72 had osteopenia, and 81
were diagnosed with OP. Radiographic findings of hip OA were seen in 43.8%, 52.8%, and 39.5% of the
normal BMD, osteopenic, and OP groups, respectively (p < 0.05). OA was significantly correlated with
total hip volume (r = 0.21), intertrochanteric cortical volume (r = 0.25), and trochanteric trabecular
volume (r = 0.20). In each densitometric group, significant differences in hip geometry and BMD were
found between the OA and non-OA subgroups. Hip OA and OP often coexist. In postmenopausal
women, these diseases coexist in 40% of cases. Both OA and OP affect hip geometry and biomechanics.
OA does so regardless of densitometric status. Changes are mostly reflected in the cortical bone.
OA leads to significant changes in buckling ratio (BR) in both OP and non-OP women.
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1. Introduction

The prevalence of osteoarthritis (OA) increases with age [1–4], as does osteoporosis (OP) [5–7].
The relationship between the diseases remain unclear, with variable reports on their coexistence [8–11].

In adults, bone shape continues to be affected by periosteal apposition (modeling) and endosteal
resorption and formation (remodeling), resulting in substantial alteration of bone shape and size.
Pathological changes, i.e., OA and OP might add to the dynamics of these [12].

Bone quality could not be solely attributed to BMD (bone mineral density) [13–15]. Bone
morphology and geometry considerably add to the strength model. Separate assessment of the
cortical and trabecular bones is necessary to distinguish the differences in their age-related changes,
biomechanics, and response to pharmacological and non-pharmacological treatments. The trabecular
bone is about eight times more metabolically active than the cortical bone and is subjected to early and
rapid changes with advancing age [13,14].
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Quantitative computed tomography (QCT) allows analysis of all bone compartments, facilitating
the understanding of the three-dimensional bone structure and strength [12,16–20]. For these reasons,
increasing interest in QCT is noted in the literature recently [8,12–14,18–26].

Both OA [27] and OP [28,29] affect hip geometry and strength, yet no quantitative radiological
data are comparing these in the literature. This study was aimed to compare proximal femur geometry
and biomechanics between postmenopausal women diagnosed with OA and and/or with OP, using
QCT, and to evaluate the extent to which the two diseases coexist in this group of patients.

2. Materials and Methods

QCT- scans of the proximal femur of 175 consecutive postmenopausal women presenting with
low back (LBP) and groin pain to the emergency department or outpatient clinic were collected.

A multi-detector-row CT (computed tomography) scanner (Aquilion16, Toshiba Medical Systems
Corporation, Tokyo, Japan) at the Radiology Department was used for evaluation of both the lumbar
spine and proximal femurs. Patients were scanned with conditions adjusted to 120 kV, 250 mA,
reconstruction thickness of 0.5 mm, and spatial resolution of 0.625 × 0.625 mm. For the proximal femur
analysis, patients were placed on a supine position with the solid calibration phantom (Mindways,
Austin, TX, USA) placed beneath the patient between the hips. The region scanned extended just above
the femoral head to 3.5 cm below the lesser trochanter. The CT scanner table height was set at the level
of the greater trochanter.

Participants were categorized into subgroups due to OA (radiographic signs) and due to OP based
on BMD T-scores/or presence of osteoporotic vertebral compression fracture. Patients with chronic
endocrine diseases, taking antiresorptive drugs, and after total hip arthroplasties were excluded from
the study. The institutional review board approved the study. Informed consent was obtained from
the patients before study participation.

Proximal femur analysis was performed using the QCT Pro Bone Investigational Toolkit (BIT,
Mindways, Austin, TX, USA) [30]. All volumetric bone mineral density (vBMD) measurements and
structural characteristics were extracted from our QCT Pro BIT database. The software separated the
cortical bone based on a fixed threshold of 350 mg/cm3 for all CT scans. The narrow femoral neck
(FN) region was found automatically as a perpendicular plane to the FN axis where the approximate
diameter ratio (superior-inferior and anterior-posterior) was 1.4, producing the lowest cross-sectional
area (CSA) of the FN. The produced cross-section was then divided automatically into 16 sectors
(defined by equal angles of 22.5◦) with the origin at the center of the mass. For all sectors, vBMD was
assessed separately for trabecular and cortical compartments. FN angle, width, overall CSA, volume,
and mass, hip axis length, cross-sectional moment of inertia (CSMI), section modulus (Z), and buckling
ratio (BR) were measured using BIT.

The Z is a measure for withstanding bending stress. QCT Pro evaluates section modulus
along the strongest (Zmax—from the geometric center to periosteal surface) and weakest axis
(Zmin—corresponding periosteal distance along orthogonal to Zmax axis), which combined reflect
the ability to withstand torsion. CSMI is a derivative of section modulus, and measures the mass
distribution relative to the geometric center reflecting how effective a cross-section is at resisting
bending and torsion—depending on the axis chosen for calculation. Both Z and CSMI assume
homogenous distribution of cortical bone, however differences in porosity and mineralization lead to
varied voxel density. To address this, each voxel’s area is multiplied by the ratio of measured cortical
density to physiologic bone density to produce density-weighted Z and CSMI (DW-Z, DW-CSMI).

The BR reflects strength against compressive stress leading to sudden sideways deflection of the
structural member. BR is a measure of cortical instability consequential of excessive cortical thinning.
BR relates the cortical thickness to the width of the femoral neck.

Apart from the structural characteristics, we also evaluated density measures of the proximal
femurs, taking note of any signs of hip joint OA. The OA and sub-OA subgroups were defined based
on the hip joint CT assessment of cartilage destruction, and the presence of osteophytes. Lumbar spine
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scans were evaluated to identify vertebral compression fractures. Diagnosis of OP was based on the
QCT BMD criteria of the T score values using the National Health and Nutrition Examination Survey
(NHANES) DXA for hip QCT [19].

All of the analyses were carried out using TIBCO Software Inc. (2017) Statistica (data analysis
software system), version 13.1. Descriptive statistics of all variables were calculated. Normally
distributed quantitative variables were compared using the Student t-test; and non-normally distributed
categorical variables were compared using the U-Mann Whitney test and Kruskall–Wallis test.
Correlations between variables were calculated using Spearman’s Rank Correlation Coefficient.
The statistical level of significance was set at p = 0.05.

3. Results

3.1. Participants’ Baseline Characteristics

In the 175 postmenopausal women included in this study, the mean age was 68.8 years (standard
deviation (SD) 11.26 years, standard error (SE) 0.85 years), mean weight was 64.4 kg (SD 14.9 kg,
SE 4.87 kg), and mean height was 159 cm (SD 6 cm, SE 0.45 cm). Among the women, 12% had a normal
BMD, 41.1% met the densitometric criteria of osteopenia, and 46.9% were diagnosed with OP. Data on
patients’ baseline characteristics are summarized in Table S1.

Radiographic signs of hip OA were seen in 43.8%, 52.8%, and 39.5% in the normal BMD, osteopenic,
and OP groups (p < 0.05).

Nearly one-half (79 women −45%) of women had radiographic signs of at least unilateral hip
OA, whereas 45 (25.7%) sustained at least one vertebral compression fracture in the lumbar spine,
with 20 women (25.3%) having OA as a coexisting disease. Overall, 70 (40%) women had decreased
BMD (either osteopenia or OP) combined with radiographic hip OA, with 32 women (18.3% overall,
45.7% of the OA group) being osteoporotic.

Spearman’s rank correlation coefficient showed a weak, yet significant association between hip
OA and history of hip fracture (not site-matched), and the moderate association between densitometric
status and history of vertebral fractures (r = 0.16, p < 0.05 and r = 0.28, p < 0.05, respectively).

3.2. Morphological and Densitometric Findings

A number of morphological and densitometric measures proved to be significantly different
between the OA and non-OA subgroups (Table S2). FN characteristics (angle, width, and height) were
not different between the OA and non-OA subgroups, regardless of densitometric status. However,
the FN volume was significantly different in the patients with a decrease in overall BMD.

Patients’ physical characteristics were mostly correlated with hip axis length and total hip volume
(r = 0.36 and r = 0.46, respectively—p < 0.05), mostly reflected in the volume of the intertrochanteric
region (r = 0.43, p < 0.05). Weight was overall less correlated with hip characteristics but was mostly
correlated with cortical indices, such as total hip and intertrochanteric cortical volumes (r = 0.36 and
r = 0.38, respectively; p < 0.05). Hip BMD measurements did not reach those levels of association.

FN morphology expressed in angle, width, and length was mostly correlated with total hip and
trochanteric cortical volumes (r = 0.55 and r = 0.57, respectively; p < 0.05). Morphological indices of
FN were mostly insignificantly correlated with BMD measurements. Those that reached a level of
statistical significance had weak correlations.

3.3. Biomechanical Findings

Collective biomechanical data of patients’ subgroups (OA vs. non-OA) are presented in Figure 1.
The gradual increase in BR with decreasing BMD can be noted from our data. There was a decrease in
Z, CSMI, and CSA across the groups (separately cortical and whole bone).
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Figure 1. Differences between cross-sectional area (CSA) and biomechanical characteristics, 
depending on densitometric status—separate graphs for patients with (1b) and without (1a) 
osteoarthritis (OA). Please refer to “Methods”. Cross-sectional moment of inertia (CSMI). 

In the normal BMD group, all indices, except cortical CSMI, were significantly different between 
the OA and non-OA subgroups. In the osteopenia and OP groups, the differences reach statistical 
significance in all measurements (Figure 2). 
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Figure 2. Differences between cross-sectional area (CSA) and biomechanical characteristics, 
depending on the presence of osteoarthritis (OA)—separate graphs for patients with normal BMD 
(2a), osteopenia (2b), and osteoporosis (2c). Please refer to “Methods”. 

3.4. Sectors 

Figure 1. Differences between cross-sectional area (CSA) and biomechanical characteristics, depending
on densitometric status—separate graphs for patients with (1b) and without (1a) osteoarthritis (OA).
Please refer to “Methods”. Cross-sectional moment of inertia (CSMI).

In the normal BMD group, all indices, except cortical CSMI, were significantly different between
the OA and non-OA subgroups. In the osteopenia and OP groups, the differences reach statistical
significance in all measurements (Figure 2).
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3.4. Sectors

Each sector was characterized by its perimeter, average cortical BMD, average trabecular BMD,
average cortical thickness, normalized to BMD cortical thickness, the average distance from the center
of mass to the cortex, and average distance from the geometric center to the cortex (Figure 3).
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Figure 3. The narrow femoral neck region was found automatically as a perpendicular plane to 
femoral neck axis where the approximate diameter ratio (superior-inferior and anterior-posterior) 
was 1.4—producing the lowest cross-sectional area of the femoral neck. Note marked boundaries of 
16 sectors (from the most top, clockwise—figure 3c). Figure 3a - a cross-section of patient with normal 
BMD, in figure 3b analogous region in a patient with osteoporosis. Note the diminished cortical 
thickness in postero-superior region with decreased BMD. S—superior, A—anterior, red dot—
geometric center, yellow dot—center of mass. 

In the supero-posterior region (13th–16th sectors), there were no significant differences between 
the normal BMD and osteopenic groups in the average trabecular BMD. In the posterior overlapping 
region (10th–14th sectors), there were no significant differences between the osteopenic and OP 

Figure 3. The narrow femoral neck region was found automatically as a perpendicular plane to
femoral neck axis where the approximate diameter ratio (superior-inferior and anterior-posterior)
was 1.4—producing the lowest cross-sectional area of the femoral neck. Note marked boundaries of
16 sectors (from the most top, clockwise—Figure 3c). Figure 3a - a cross-section of patient with normal
BMD, in Figure 3b analogous region in a patient with osteoporosis. Note the diminished cortical
thickness in postero-superior region with decreased BMD. S—superior, A—anterior, red dot—geometric
center, yellow dot—center of mass.
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In the supero-posterior region (13th–16th sectors), there were no significant differences between
the normal BMD and osteopenic groups in the average trabecular BMD. In the posterior overlapping
region (10th–14th sectors), there were no significant differences between the osteopenic and OP groups
in the average cortical BMD. All other measurements of the abovementioned characteristics were
statistically significant among the normal BMD, osteopenic, and OP groups.

Spearman’s rank correlation coefficient showed no significant association between age and
cortical/trabecular BMD in the 10th–12th sectors of the femoral neck (infero-posterior part). At the same
time, significant correlations with average cortical thickness were found across all sectors. The highest
correlations were produced by adjacent sectors of the super-posterior/superior region [i.e., 15th, 16th,
1st, and 2nd sectors (r =−0.20 to r =−0.22, p < 0.05)]. Intersector correlations were the strongest between
adjacent sectors (of the same region), in terms of average cortical thickness (up to r = 0.84–0.85 for the
8th, 9th, and 10th sectors), average trabecular BMD (up to r = 0.7–0.76 for the 4th, 5th, and 6th sectors),
and average cortical BMD (up to r = 0.85 for the 15th and 16th sectors). Among the individual sectors,
the average trabecular BMD of the 10th sector was least significantly correlated with measurements of
other sectors. Most commonly, inverse intersector correlations between average trabecular and cortical
BMD were noted across all sectors.

4. Discussion

In this study, we retrospectively investigated the coexistence of OP and hip OA in postmenopausal
women, and their quantitative effect on proximal femur geometry and biomechanics. Associations
between proximal femur three-dimensional architecture, cortical bone geometry and strength were
presented in previous studies [15,31]. Yet, there are no reports comparing OA and OP.

In this studied cohort, we showed the prevalence of OP in the group with radiographically proven
hip OA (45.7%); of these, >25% sustained a vertebral compression fracture. If we include osteopenia,
the conditions coexist in 70 of 79 women with OA, which is higher compared to that reported in large
prospective population-based cohorts (20.7–28%).

Our research focused on postmenopausal Caucasian women. Borggrefe et al. [12] investigated a
large cohort of older men, which were categorized according to the history of hip fracture. QCT-derived
measures of the femoral neck region showed more correlation between vBMD and Z or BR (Z − r =

0.47 vs. rnormal = 0.13, rosteopenia = 0.39, rosteoporosis = 0.64; rnormal was not statistically significant; BR −
r = −0.79 vs. rnormal = −0.81, rosteopenia = −0.72, rosteoporosis = −0.64). Both groups were older than the
women in our study, regardless of the densitometric status (mean 73.3–77.1 years vs. 63.1–71.8 years).
This discrepancy implies that gender-dependent proximal femur geometry contributes significantly to
the ability to withstand stress. Indeed, Yates et al. found in their hip structural analysis (HSA)-based
study, significant gender differences in hip structural geometry [32].

Furthermore, the differences increased with age. The differences were seen in CSA (cross-sectional
area), outer diameter, cortical thickness, Z, and BR in both the femoral neck and intertrochanteric
regions. The findings were subsequently confirmed in a large QCT-based prospective population
study [33]. There is a recognized tendency of femoral neck expansion [8,12,32]. Periosteal apposition
leads to an increasing CSA of the femoral neck with age. The endosteal expansion resulting in widening
of the endosteal cavity can impact the stability of the femoral implant. In our group, cortical CSA of the
femoral neck decreased with decreasing BMD. Total hip volume (cortical and trabecular bone volumes
combined) differed between non-OP and OP women (266.1 cm3 vs. 198.7 cm3), but the difference was
non-significant. When comparing their hip compartments, both groups showed significant difference.
Overall, we observed, contrary to previous reports [8,12,32] that the OP group was characterized by
smaller volumes of different hip regions (total hip, femoral neck, greater trochanter, intertrochanteric
zone, and Ward’s triangle). This could be partially attributed to the less robust physical characteristics
(both weight and height). Indeed, these were mostly correlated with hip axis length and total hip
volume and mostly reflected in the volume of the intertrochanteric region [15]. Weight was overall



J. Clin. Med. 2019, 8, 669 7 of 10

weakly but significantly correlated with hip characteristics, mostly with cortical indices such as total
hip and intertrochanteric cortical volumes.

The differences in the presence of OA in each densitometric group showed significantly higher
volumes in the cortical compartments in most regions in women with OA. The differences were not
conspicuous in trabecular compartments or overall. The presence of osteophytes contributing to the
increased in cortical volume might explain these observations. Volumetric data were reflected in
the biomechanical measurements for all densitometric groups. The OA affected hips showed better
mechanical strength. The angle, width, and height of the femoral neck did not show any differences
between OA and non-OA subgroups, regardless of the densitometric status. The femoral neck is an
area that usually does not encompass osteophytosis.

Although the superior-posterior region undergoes gradual cortical thinning, the infero-posterior
region of the femoral neck cross-section is least likely to be affected by age-related changes. This is
in accordance with previous observations of femoral neck fractures, in which the decline in cortical
thickness and density of the superior half of the femoral neck averaged to 3.3% per year and 1.2% per
year, respectively, which is in contrast to losses of 0.9% per year and 0.4% per year, respectively, in the
inferior femoral neck [23,34]. When comparing the normal BMD and osteopenic groups, there were
significant differences in the average trabecular BMD in the superior-posterior region, which is a
tendency not seen between the osteopenic and OP group. Thus, initially, the bone stock seemed to
deplete significantly in the trabecular compartment, whereas cortical thinning was more noticeable with
decreasing BMD. This observation was mentioned only once recently by Khoo et al. [8], who reported a
quadratic vs. linear loss of volumetric BMD in the cortical and trabecular compartments, respectively.

QCT relative to DXA (dual-energy X-ray absorptiometry) allows analysis of all bone compartments.
It is more sensitive in detecting diminished BMD, since the measurement is not affected by obesity,
degenerative changes, joint space narrowing, calcifications and osteophytes [35–38]. It facilitates
the understanding of the three-dimensional bone structure, which can be helpful in preoperative
planning [39–41], and therapy monitoring—either medical or implant-focused.

Diagnosis of OA could not exclude the diagnosis of OP, especially in the elderly. OP in OA
patients requires medical attention. Proximal femur or vertebral compression fracture could be the
eventual consequence of low bone mineral density, adding to overall morbidity and mortality in
these patients. Untreated OP patients undergoing THA (total hip arthroplasty)have higher intra- and
post-operative risks, such as those of intraoperative fracture, periprosthetic osteolysis with implant
migration, and postoperative periprosthetic fracture [42]. Postoperative antiresorptive medication
reduce the risk of revision surgery by almost 60% [42]. A novel local osteo-enhancement procedure
could serve as a preventive measure against proximal femur fracture [43].

The present study has several limitations. First, our analysis was based on QCT findings,
which have recognized technical limitations particularly concerning partial volume effects in the
cortical regions, which are caused by the limited spatial resolution, and overall beam hardening
artifacts, which can influence the measurements [44]. Second, the study included Caucasian women;
thus, the results cannot be fully extrapolated to other populations. Despite its insufficiencies, the study
has its strengths. It was conducted with a cohort of considerable size. Secondly, it raises an issue
generally neglected in studies on OA and OP, wherein patients presenting with specific complaints
(in our case LBP and groin pain) may prompt the treating physician to consider that the symptoms
could be caused by osteoporotic vertebral fractures (a consequence of OP), which requires prompt
medical attention, both general and, if OA patients are to referred to joint arthroplasty, implant oriented.

5. Conclusions

Hip OA and OP often coexist. In postmenopausal women, these diseases may coexist in 40% of
cases. Both OA and OP differently affect hip geometry and biomechanics. OA does so regardless of
densitometric status, yet the discrepancy increased with a decline in bone stock. Changes are mostly
reflected in the cortical bone—total hip cortical BMD and volume, intertrochanteric cortical BMD and
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volume, and CSA, especially. Sectoral analysis showed cortical thinning in the superior-posterior
region of FN in women with OP, while osteopenia initially leads to trabecular loss in the same region.
In terms of biomechanics, OA leads to significantly notable decrease in BR of both OP and non-OP
women, and significant increase in Z and CSMI. QCT clearly shows the density and the architecture
of the proximal femur from a broader perspective to researchers as well as orthopedic surgeons and
practicing clinicians.

Supplementary Materials: The following are available online at http://www.mdpi.com/2077-0383/8/5/669/s1.
Table S1: Patients’ baseline characteristics. Mean values of selected morphometric and densitometric characteristics
in BMD-based groups, Table S2: Results (p-values) of U Mann-Whitney test comparing different densitometric
groups with regard to presence of radiographic signs of hip osteoarthritis.
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