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Synopsis

To investigate the effects of signal transducer and activator of transcription 3 (STAT3) combined with cisplatin
(CDDP) on the growth of human Wilms tumour (WT) SK-NEP-1 cell subcutaneous xenografts in nude mice and the
possible mechanisms. Human WT SK-NEP-1 cells were subcutaneously transplanted to establish the BALB/c nude
mice xenograft model. Mice were randomly divided into five groups: blank control group, adenovirus control group (NC
group), STAT3 group, CDDP group and STAT3 plus CDDP group (combination group). Tumour volume and tumour weight
were observed during the therapeutic process. The expression levels of STAT3, glucose regulatory protein 78 (GRP78)
and BCL2-associated X protein (BAX) were evaluated by immunohistochemical analysis. Compared with the STAT3
group or CDDP group, the tumour weight and volume was significantly reduced in the combination group (P < 0.05). No
statistical significance was found in NC group compared with the blank control group (P > 0.05). Immunohistochemical
analysis showed that STAT3, GRP78 and BAX protein levels in the combination group were significantly higher than
those in STAT3 group and CDDP group (P < 0.05). Exogenous STAT3 and CDDP may synergistically inhibit the xenograft
tumour growth through up-regulation of BAX protein via GRP78.
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INTRODUCTION ease or relapsed tumours. Therefore, novel intervention strategies
to enhance the effectiveness of chemotherapeutic drugs and re-

duce their resistance are urgently in demand.

Wilms tumour (WT), also known as nephroblastoma, is the most
common type of paediatric malignant solid kidney tumour with
an incidence rate of approximately 1-2 per 1000000 during child-
hood. Its peak incidence age was 3 years old and 80 % was seen
under 5 years of age [1]. Currently, the comprehensive treatment
of surgery, chemotherapy and radiotherapy, has greatly improved
the prognosis of patients with WT, with a 5-year disease-free
survival rate increased to 75 % to 85 % [2]. However, because
of lack of specific clinical symptoms, approximately 39.2% of
patients had reached the clinical stage III or above at the time of
diagnosis, [3]. Resistance to chemotherapeutic drugs is a main
cause of the low efficacy with the therapy of stage III and IV dis-

Signal transducer and activator of transcription 3 (STAT3) is
a transcription factor that plays a key role in many cellular pro-
cesses including cell growth and apoptosis. Studies have found
that STAT3 gene has low expression in majority of tumour cells,
suggesting that reduced STAT3 gene expression may be involved
in tumorigenesis, [3]. STAT3 plays a pro-apoptotic role in many
tumour cells, including kidney cancer, colon cancer, lung can-
cer and pancreatic cancer whereas up-regulation of STAT3 has
no effect on normal cells [4-7]. Recent and previous studies
have found that STAT3 protein can induce cancer cell apop-
tosis upon binding to the glucose regulatory protein 78 (GRP78),
a chaperone located at the endoplasmic reticulum (ER) [8,9].

Abbreviations: BAX, BCL2-associated X protein; CDDR cisplatin; ER, endoplasmic reticulum; GRP78, glucose regulatory protein 78; HE, haematoxylin—eosin; NC group, adenovirus
control group; pfu, plaque forming unit; STAT3, signal transducer and activator of transcription 3; UPR, unfolded protein response; WT, Wilms tumor.
1 Correspondence may be addressed to either of these authors (email zilang1023@163.com or drfengpan@139.com).
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Another report has also showed that exogenous STAT3 combines
with GRP78 and induces sensitization of H9¢2 cardiomyocytes
to hypoxia/reoxygenation (H/R), thus leading to cell apoptosis
[10]. However, the function of STAT3 in Wilms tumorigenesis
remains largely unknown.

Children with WT can be treated with actinomycin D and vin-
cristine, the most classic and effective chemotherapy drugs pre-
or post-surgery. Alternatively, cisplatin (CDDP) is commonly
applied when this standard chemotherapy is ineffective. How-
ever, resistance to CDDP is still a major obstacle to the ther-
apy. Strategies that enhance the effectiveness of CDDP are still
required. Gene therapy, which targets tumour cells but has no
effect on normal cells, becomes a promising strategy for can-
cer treatment [11]. A recent study has suggested that STAT3
may be involved in colorectal sensitization-fluorouracil [12]. In
the present study, we investigated whether increased STAT3 ex-
pression could sensitize WT cells to CDDP. Our data showed
that compared with the control groups, STAT3 combined with
CDDP significantly suppressed WT cell growth in a xenograft
model. Moreover, the mechanism by which STAT?3 enhances the
sensitivity of WT cells to CDDP may be due to increased BCL2-
associated X protein (BAX) expression via GRP7S.

MATERIALS AND METHODS

The current study was approved by Research Ethics Committee
of Wenling Maternal and Child Health Care Hospital.

Materials

Human SK-NEP-1 cell line was purchased from CAS Shang-
hai Life Sciences Cell Resource Center, McCoy’s SA medium
(Gibco), FBS, penicillin—streptomycin double-antibody (Hyc-
lone), 30 female BALB/c nude mice with 4-6-week-old were
purchased from Hayes Lake animal experiments limited liabil-
ity company [licence number: SCXK (Shanghai) 2013-0004].
Matrigel (BD); STAT3 adenovirus and control adenovirus were
purchased from Shanghai Genechem; CDDP, Nanjing pharma-
ceutical; STAT3 antibody, GRP78 antibody, BAX antibody (Cell
Signaling Technology).

SK-NEP-1 cell culture and WT xenograft tumour
mouse model

SK-NEP-1 cell line was cultured in 15% FBS, 1% penicillin—
streptomycin double antibody, McCoy’s SA medium under 5 %
CO, at 37°C. Semi-adherent cells were grown in exponential
growth phase, cells are directly slight pipetting off. After centri-
fugation at 125 g for 5 min, cells were resuspended in McCoy’s
5A medium and Matrigel mixture and adjusted to a density of
1.5 x 10”/ml. With 1 ml sterile syringe vaccination, 0.2 ml SK-
NEP-1 cell suspension was subcutaneously inoculated into the
right front of nude mice. After injection, alcohol swab slightly

and press against the cell fluid leakage at the inoculation site was
required.

Animal grouping and processing

After xenograft tumour growing up to 8-10 mm in diameter,
mice were randomly divided into five groups, with six mice in
each group: blank control group, adenovirus control group (NC
group), STAT3 group, CDDP group and STAT3 plus CDDP group
(combination group) respectively. Intratumoral injection of small
amount, multi-point of 0.1 ml PBS, adenovirus (1.0 x 10! pfu)
or 1.5 g/l CDDP every second day for six times. Every third day,
tumour volume was measured with a vernier caliper and calcu-
lated [ab* x 0.5 (a: maximum tumour diameter, b: the shortest
diameter of the tumour)]. Tumour inhibition rate was calculated
as[1 — (treatment group mean tumour weight or volume/control
group mean tumour weight or volume)] x 100 %. Tumour growth
curve was killed on day 22 and tumour blocks were stripped
with sterile ophthalmic scissors and tweezers after weighing. For
haematoxylin—eosin (HE) pathological and immunohistochem-
ical analysis, tumour xenograft tissues were blocked with 4 %
paraformaldehyde for 24 h, and then treated with gradient alco-
hol dehydration (70 % alcohol soaked 2 h, 80 % alcohol soaked
3 h, 95 % alcohol soaked 40 min, anhydrous ethanol for 30 min),
transparent (xylene soaked 30 min), paraffin-embedded sections
(thickness 4.5 um) and HE staining pathological changes were
observed in tumour tissues. By using immunohistochemistry
streptavidin-perosidase (SP) method, the expression of STAT3,
GRP78 and BAX was detected, and the mean absorbance at
a wavelength of 570 nm of immunohistochemical staining was
analysed by quantitative software ImagePro Plus6.0.

Statistical methods

Data were analysed using the statistical software package
(SPSS19.0). All data are expressed as mean + S.D. (x + S.D.).
ImagePro Plus 6.0 software and GraphPad Prism 5 software were
used for statistical analysis. Comparison between the two groups
was analysed using ¢ test, ANOVA and student-Newman-Keuls
(SNK) method. P value <0.05 was considered to be statistically
significant.

RESULTS

Tumorigenesis in nude mice

On the first day of nude mice inoculated with SK-NEP-1 cells,
soya bean sample size vesicles were observed and then disap-
peared on the next day. At 18-20th day, a grain of rice-like
tumour mass was observed. One week after establishment of
subcutaneous xenografts in nude mice, the tumour mass grow
significantly fast and substantially uniform in diameter up to 8—
9 mm, suggesting that successful subcutaneous xenograft model
in nude mice was established.
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Figure 1 Tumour volume after different treatment time in each
group. Compared with the blank control group

*P <0.05; compared with the NC group, #P <0.05; compared with
CDDP group, 2P < 0.05; compared with STAT3 group, 4P < 0.05.

Tumour volume was inhibited in combination group,
STAT3 group and CDDP group

Infection or necrosis was examined in the tumour inoculation
sites. Tumour volumes in blank control group and NC group
were significantly increased post-treatment compared with pre-
treatment (1 328. 47 +328. 76) mm® compared with (249.
00 +37. 01) mm?, (1 218. 08 +307. 06) mm? compared with
(244.75 + 37. 64) mm? respectively. Although increased tumour
volumes were found post-treatment in the blank control group and
NC group, there was no significant difference (P > 0.05). Com-
pared with the blank control group, the tumour volumes were sig-
nificantly decreased in STAT3 group [624.21 4+ 54.21 compared
with 1421.57 +241.06 mm®], CDDP group [603.72 +82.41
compared with 1421.57 +241.06 mm?] and combination group
[376.18 + 68.91 compared with 1421.57 +241.06 mm?] respect-
ively. Moreover, compared with STAT3 group and CDDP group,
tumour volume in the combination group decreased more signi-
ficantly (P < 0.05). However, no significant difference was found
in the tumour volume between STAT3 group and CDDP group
(P > 0.05). Therefore, STAT3 or CDDP used alone have inhib-
itory effect on tumorigenesis and the combination of STAT3
and CDDP showed more significant inhibitory effect (Figure 1,
P <0.05).

Tumour weights and inhibitory rate in different
groups

Xenograft tumours were irregular small round balls, with the top
layer covered with pseudo fibrous capsule, and the surrounding
tissue boundaries were very clear, and the cut surface showed fish-
shaped with angiogenesis. Tumour weights in tumour-bearing
mice were 0. 13 + 0. 02 g in STAT3 plus CDDP group, 0. 21 0.
06 g in STAT3 group, 0. 16 £ 0. 04 g in CDDP group, 0. 37 +0.
06 g in NC control group and 0. 38 0. 08 g in blank control
group. No significant difference in tumour weights was found
between NC control group and blank control group. However,
STAT3 plus CDDP combination group showed increased inhib-
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itory rate compared with that of STAT3 group or CDDP group,
the differences were statistically significant (P < 0.05, Table 1).

Pathological changes in tumour blocks

HE staining showed that in NC control group and blank control
group, tumour necrosis area was very rare, and swarms of small
round cells forming a sheet of diffuse distribution can be seen
in primitive blastema tissue area with an increased nucleus cyto-
plasm ratio. After CDDP, STAT3 or combination treatment, cells
were seen with common highly specific chromatin condensation,
mitotic and apoptotic bodies (Figure 2).

Immunohistochemical assay of associated proteins
Immunohistochemical assay showed that in the combination
group, expressions of STAT3, GRP78 and BAX were 0.26 £ 0.04,
0.2440.02, 0.23 +0.01, which were significantly higher than
those in the STAT3 or CDDP treatment groups, the differences
were statistically significant (P <0.05). However, no statist-
ically significant difference was found between CDDP group
and STAT3 group [(0.12 +0.02) compared with (0.11 40.02),
P > 0.05, Figure 3 and Table 2].

DISCUSSION

Although 5-year survival rate has increased to above 90 % in WT,
drug resistance remains the main challenge for effective treatment
of stage III and IV disease or relapsed tumours. CDDP is one of
the commonly used chemotherapy drugs in solid tumours, but
drug resistance limits its application. Hence, exploring strategies
that could increase the sensitivity of cancer cells to CDDP is
of significant importance. Since 1990s, gene therapy targeted
to tumour cells with no effect on normal cells, has been a hot
topic [11]. Combination of gene therapy and chemotherapy had
been showed to increase the efficacy of therapy [12]. In vivo
tumorigenicity experiment is the most intuitive and simple animal
model which provides insight into the pathogenesis, diagnosis
and treatment of WT [13]. Using the xenograft model, we found
that overexpression of STAT3 significantly suppressed WT cell
growth in vivo. In agreement with previous study [12], we also
found that CDDP treatment effectively inhibited the growth of
tumour-bearing mice tumour blocks. Moreover, combination of
CDDP and STAT3 has more pronounced effect on tumour growth
inhibition.

Previous literatures reported that STAT3 binds to the N-
terminal domain of chaperone GRP78 and induces cell apoptosis
[14,15]. GRP78, also known as the immune immunoglobulin
heavy chain binding protein (BIP), is a heat shock protein 70
(HSP70) family member that mainly locates at the ER. GRP78
has showed to be highly expressed in tumour tissues, and in-
volved in tumour cell invasion and migration. It has been showed
that binding of STAT3 and GRP78 induce unfolded protein
accumulation within the ER, leading to activation of unfolded
protein response (UPR) that may induce apoptosis. Once the
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Table 1 Tumour weight and tumour inhibitory rate on intervention for
day 22 in nude mice

Compared with the blank control group, *P < 0.05; compared with the NC
control group, #*P < 0.05; compared with CDDP group, 2P < 0.05; compared
with STAT3 group, 4P < 0.05.

Group Tumour weight (g) Tumour inhibitory rate (%)
Blank control group 0.38+0.08 -

NC control group 0.37+0.06 7.68

CDDP group 0.16+0.04™# 60.05™#

STAT3 group 0.21+0.06™# 48.68™#

Combination group 0.13+0.02"#2A 67.84*#0A

Table 2 Quantitative expressions of STAT3, BAX and GRP78 of GRP78 in xenograft tumour tissues
Compared with the control group, *P < 0.05; compared with the control group adenovirus, #P < 0.05; compared with
CDDP group, 4P <0.05; compared with STAT3 group, Ap -0.05.

Group Blank control group NC control group CDDP group STAT3 group Combination group

STAT3 0.134+0.01 0.1440.01 0.16+0.01 0.1740.01 0.26+0.0424
GRP78  0.11+0.02 0.1340.01 0.12+0.02 0.1440.02 0.24+0.0244
BAX 0.154+0.03 0.154+0.03 0.1840.03 0.2240.03 0.2340.01*#

Blank NC group STATS3 group CDDP group Combination group

Figure 2 HE staining in subcutaneous xenografts in nude mice (x400)
CDDR cisplatin; NC group, adenovirus control group; STAT3, signal transducer and activator of transcription 3.

STAT3

BAX

Figure 3 Expressions of STAT3, BAX and GRP78 in xenograft tumour tissues by immunohistochemical staining (x400)
CDDR cisplatin; NC group, adenovirus control group; STAT3, signal transducer and activator of transcription 3; BAX,
BCL2-associated X protein; GRP78, glucose regulatory protein 78.
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