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Atypical eye gaze is an established clinical sign in the diagnosis of autism spectrum

disorder (ASD). We propose a computerized diagnostic algorithm for ASD, applicable to

children and adolescents aged between 5 and 17 years using Gazefinder, a systemwhere

a set of devices to capture eye gaze patterns and stimulus movie clips are equipped

in a personal computer with a monitor. We enrolled 222 individuals aged 5–17 years

at seven research facilities in Japan. Among them, we extracted 39 individuals with

ASD without any comorbid neurodevelopmental abnormalities (ASD group), 102 typically

developing individuals (TD group), and an independent sample of 24 individuals (the

second control group). All participants underwent psychoneurological and diagnostic

assessments, including the Autism Diagnostic Observation Schedule, second edition,

and an examination with Gazefinder (2min). To enhance the predictive validity, a best-fit

diagnostic algorithm of computationally selected attributes originally extracted from

Gazefinder was proposed. The inputs were classified automatically into either ASD or

TD groups, based on the attribute values. We cross-validated the algorithm using the

leave-one-out method in the ASD and TD groups and tested the predictability in the

second control group. The best-fit algorithm showed an area under curve (AUC) of 0.84,

and the sensitivity, specificity, and accuracy were 74, 80, and 78%, respectively. The

AUC for the cross-validation was 0.74 and that for validation in the second control group

was 0.91. We confirmed that the diagnostic performance of the best-fit algorithm is

comparable to the diagnostic assessment tools for ASD.
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INTRODUCTION

Autism spectrum disorder (ASD) is a heterogeneous
neurodevelopmental disorder characterized by atypicality
in social communication, and restricted and repetitive behaviors.
A recent epidemiological study from Japan reported that the
prevalence of ASD is higher than 3% in the general population
at the age of 5 years (1). ASD affects the quality of life across the
lifespan of the affected individual (2). Various early intervention
practices have been developed, some of which are effective and
promising (3). Timely intervention is key to better outcomes (4),
for which accurate diagnostic assessment is prerequisite.

Regardless of the clinical significance of diagnosis,

professionals face challenges inherent to diagnostic assessments
of ASD. The first challenge lies in the nature of the diagnosis.

As there are no well-established biophysiological diagnostic

tests, diagnosis is made solely based on behavioral assessment of
children. However, the development of such signs in children
is not stable along the time course of diagnosis and can change
as they grow. The complexity of social engagement in children
generally increases from month to month, especially during
a younger age. Furthermore, complex social interactions are
affected by the children’s cooperativeness, which is further
influenced by physical conditions such as hunger and fatigue, as
well as their moods and tempers (5–7). Furthermore, no single
behavioral sign or trait sufficiently points toward the diagnosis.
Therefore, a single diagnostic assessment is usually insufficient
to confirm the diagnosis of ASD. To overcome this challenge,
standardized tools for diagnosing ASD have been developed,
including the Autism Diagnostic Observation Schedule, second
edition (ADOS-2) (8) and the Autism Diagnostic Interview-
Revised (9), which are widely accepted in research and clinical
settings because of their high reliability and validity. However,
the use of these tools leads to the second challenge because an
interview with these tools followed by the post-hoc assessment
takes considerable time. Moreover, interviewers need to have the
required expertise and undergo training sessions beforehand.
Unfortunately, the costs associated with the use of the above
methods have restricted the clinical availability of the tools. A
recent Australian study reported that only a small proportion
of children were assessed using these tools when parents raised
concerns over the possibility of their children having ASD, and a
“wait-and-see” approach was advised instead (10). This has likely
happened in Japan as well, where only 32% of children confirmed
to have a diagnosis of ASD at 5 years had had a history of clinical
diagnosis of ASD until the fifth birthday (1). Many children
with ASD are left undiagnosed and are not provided appropriate
interventions even at school age.

Owing to these two challenges that clinicians face in the
diagnostic assessment of ASD, models that balance the quality
and accuracy of assessment with timeliness and ease are desired
(11). To meet this demand, biological/physiological biomarkers
have been tested in several studies.

Among them, atypical eye gaze patterns in children with
ASD have been tested to determine whether they can serve as
candidate markers. Recent advances in eye gaze studies rely
heavily not only on advances in technology, but also on the

fact that eye gaze patterns reflect both biological and behavioral
aspects of ASD (11). Eye gaze patterns are under genetic control
(12), and a lack of eye gaze onto human faces measured by eye-
tracking devices can be a reflection of lack of eye contact with
the examiner, a well-known behavioral diagnostic marker of ASD
(13). A recent systematic review pointed out that the effect size
resulting from the atypicality of eye gaze patterns in individuals
with ASD can have standard deviations (SDs) as large as 0.5
(14, 15). The most consistent finding in these review articles is
that individuals with ASD spend looking at the non-social stimuli
for longer durations than at the social stimuli, human faces in
particular (social paradigm); the contrast was independent of
age, sex, intelligence quotient (IQ), and other conditions. This
is consistent with the social processing theory of ASD (14).
This atypical eye gaze pattern was more specifically tested in a
preferential viewing paradigm, in which individuals, particularly
young children with ASD stare preferentially at geometric figures
than at human figures (preferential paradigm) (16, 17).

Considering the relative ease of measurement and the
biophysiological significance of eye gaze, the atypical eye gaze
patternsmeasured with automated eye-tracking devices can serve
as diagnostic markers. In preliminary attempts involving young
children, the diagnostic validity and test-retest reliability of eye
gaze measurements have been supported (16, 17). However,
to the best of our knowledge, no study has tested individuals
with ASD in a wide age range. The lack of knowledge is
particularly evident among school-aged children and adolescents.
Furthermore, previous studies have used eye-tracking devices
not specifically developed for individuals with ASD. Since some
individuals, especially of young ages, cannot cooperate in keeping
their eyes on the monitor, the quickest calibration without
any intentional cooperation of the child and minimal duration
of stimulus movies should be implemented to validate these
attempts in clinical settings. To address this, we have attempted to
establish specific eye gaze patterns as a biophysiological markers
predicting the diagnosis of ASD, using an eye-tracking system
called “Gazefinder” in a broad age range of study participants
(18, 19). Novel devices and software were designed, including a
calibration movie (5–7 s) and stimulus movies. In the stimulus
movies, two paradigms were adopted to test the diagnostic
predictability of ASD: the social paradigm and the preferential
paradigm. The application of Gazefinder to children does not
require any expertise, and it takes<2min to obtain an output (18,
19). Thus, this system is anticipated to fulfill current demands in
ASD diagnosis.

In this study, we propose a computerized diagnostic algorithm
for ASD using Gazefinder, implemented with social and
preferential paradigms in individuals aged 5–17 years. To realize
this, we conducted a multisite study to create a computerized
best-fit diagnostic algorithm with satisfactory sensitivity and
specificity, and validated it in two ways.

METHODS

Participants
Two hundred and twenty-two individuals aged between 5
and 17 years were enrolled by physicians at seven research
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sites and affiliated clinics at Hamamatsu University School
of Medicine, Hirosaki University, University of Fukui, Chiba
University, Saga University, Kanazawa University, and Tottori
University during a 6-month period beginning on 25 February
2018. The seven university clinics are located in small
or middle-sized cities and metropolitan areas throughout
Japan. All clinics play pivotal roles in providing services
for children and adolescents with developmental disabilities
in the context of child and adolescent psychiatry and/or
pediatric neurology. The reasons for enrolling the participating
individuals were as follows: (1) They were previously suspected
by psychologists, speech therapists, physicians, or school teachers
as having ASD, including “autism” and “Asperger disorder,
or (2) they self-nominated to participate in response to
the web-based advertisement and have never been suspected
to have developmental disorders such as ASD, attention-
deficit hyperactivity disorder (ADHD), and learning disabilities.
All the participating individuals and their parents were of
Japanese ethnicity.

All the legal guardians (i.e., parents in this study) of
the participants provided written informed consent, and the
participating individuals provided informed assent orally. The
study protocol was approved by the ethics committees of
the seven research sites and conformed to the tenets of the
Declaration of Helsinki.

Measurement
Clinical Evaluation, Screening, and Diagnosis
The initial clinical evaluation by a board-certified psychiatrist
or pediatrician included face-to-face behavioral assessment and
collection of the developmental history, physical morbidity, and
history of medication. This clinical evaluation was followed by
screening for ASD using the Pervasive Developmental Disorders
Autism Society Japan Rating Scale [PARS, a questionnaire for
parents, 57 items (20)], the Strength and Difficulty Questionnaire
[SDQ, a questionnaire for parents, 25 items (21)], and the
Social Responsiveness Scale in Japanese, second version [SRS-2,
a questionnaire for parents, 65 items (22)]. ADHD was screened
using the ADHD Rating Scale [ADHD-RS, a questionnaire
for parents, 18 items (23)]. General cognitive ability was
assessed as indexed by the IQ with the Wechsler Intelligence
Scale for Children-fourth edition (WISC-IV) for 215 (97%)
individuals, or with the Tanaka-Binet test (Japanese version
of the Stanford-Binet Test) for four individuals (2%), or as
indexed by developmental quotient (DQ) with the Kyoto Scale
of Psychological Development by trained clinical psychologists
for three individuals (1%), depending on the participants’ mental
age. An IQ or DQ lower than 70 was defined as general cognitive
delay. An IQ of lower than 70 in WISC-IV is an indication of
2 SD below the population average. The comparability of the
IQs derived from the Tanaka-Binet test was tested with the IQ
derived from WISC-III, the prior version of WISC-IV (24), and
the comparability of the DQs derived from the Kyoto Scale of
Psychological Development was tested with the Tanaka-Binet
IQ (25).

After the screening tests and assessment of general cognitive
abilities, individuals exhibiting positive results to any one of the

three screening tests for ASD (PARS, SDQ, SRS-2) were assessed
to have a diagnosis of ASD using the ADOS-2 (a semi-structured,
play-based observational assessment tool involving interaction
with the child and observation of the activities proposed to
the child, 11–16 diagnostic algorithm items depending on
module) (8), or the Autism Diagnostic Interview-Revised-
Japanese Version (ADI-R-JV, a semi-structured interview for
parents, 93 items) (9) conducted by trained clinical researchers.
In addition, all the participants were assessed to have a diagnosis
of ADHD using Conners 3 Japanese version (Conners 3, a
questionnaire for parents, 108 items) (26). We did not use both
ADOS-2 and ADI-R-JV in our study because of the limited
availability of examiners for these tools who had established
research reliability with the developers of the instruments.
Among 102 individuals with a positive screening result, 81
individuals were assessed only with ADOS-2, nine individuals
were assessed only with ADI-R-JV, and 12 individuals were
assessed with both ADOS-2 and ADI-R-JV. The remaining 120
individuals were not assessed with ADOS-2 or ADI-R-JV because
of negative results in the screening tests.

Apparatus
Gazefinder, a system in which a set of devices to capture eye
gaze patterns and stimulating movie clips are equipped in a
personal computer (PC) with a 19-inch monitor (1280 × 1024
pixels), manufactured by JVC Kenwood Co. Ltd. (Yokohama,
Japan), was chosen to measure eye gaze patterns. The technical
features of this system have been described in previous studies
(18, 19, 27, 28). In brief, corneal reflection techniques enable
the device to calculate eye gaze positions on the PC monitor
as (X, Y) coordinates in pixel units, at a frequency of 50Hz
(i.e., 3,000 eye gaze positions detected per minute). Using the
device, the (X, Y) coordinates provide information regarding
where a participating child exactly looked at in the movie clip
every 1/50 s when the movie clips were shown to the child on
the monitor. The participants were asked to sit in front of the
monitor to retain the distance between the face and the monitor
at approximately 60 cm. Before the diagnostic measurement of
the eye gaze patterns, the calibration of the eye gaze position
started automatically and took 5–7 s to complete. The calibration
was judged as successful if the child looked at no less than
three of the five regions of the calibration movie clip. Otherwise,
the calibration movie clip restarted. This movie clip contains a
black background with a circular region covered with animated
animals, moving from the center to the four corners of the
monitor consecutively. After the calibration, 12 short movie clips
were automatically presented as experimental stimuli in a fixed
order. Between the movie clips, we inserted short attention-
grabbing movie clips (2.0 s) to set the eye gaze position at
the center of the monitor, prior to the stimuli presentation
appearing next. This insertion also canceled out the post-images
of the movie clip shown previously. The total time of the movie
sequence was 95 s, including time for non-stimulus movie clips.

Movie Clips as Stimuli
Figure 1A presents the 12 movie clips used as stimuli. The social
paradigm represented in three movie clips were as follows: a
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FIGURE 1 | Movie clips implemented with Gazefinder, and the AOIs. (A) The 12 movie clips. (B) 100 AOIs embedded in 12 movie clips.
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still face of a young amateur actress (“Still,” 4.5 s), two children
drawing pictures cooperatively (“Drawing,” 7.0 s), and a teacher
teaching a math class in a classroom (“Classroom,” 11.0 s). The
preferential paradigm was represented in nine movie clips, in
which the visual field on the monitor was divided into two or four
regions of equal size, with human figures or objects in parallel.
The preferential paradigm movie clips consisted of one movie
clip of four graphical patterns (“Pattern,” 7.0 s), and of eight
movie clips with human figures with geometric patterns aligned
side by side (“Pref A,” 5.0 s, “Pref B,” 4.5 s; “Pref C,” 5.0 s, “Pref
D,” 4.5 s, “Pref E1,” 5.0 s, “Pref E2,” 4.5 s, “Pref F1,” 6.0 s, “Pref
F2,” 5.5 s). The duration of these movie clips was set identical to
that used in our previous studies. The remainingmovie clips were
kept as short as possible while preserving their context.

The rationale for creating the movie clips was as follows. As
for the social paradigm, there is sufficient evidence to support the
fact that a decreased gaze fixation on human faces, especially on
eye regions on the monitor is associated with a diagnosis of ASD,
regardless of age or IQ (14, 29). We have previously reported that
fixation onto the eye region decreases in individuals with ASD at
ages of 10 years and older (18). In addition, a decreased amount
of gaze fixation onto human figures in social scenes has been
reported consistently in individuals with ASD (14). Furthermore,
it has been suggested that the quantity of the social content (e.g.,
the number of human figures presented in the scene) as well
as its quality (e.g., human interaction) is related to the amount
of reduction in gaze fixation in individuals with ASD (14, 15).
Thus, the duration of gaze fixation is measured to contribute to
the likelihood of ASD diagnosis, probably in accordance with the
number of human figures (2 in “Drawing” and 8 in “Classroom”).
Therefore, we presented two children drawing pictures while
interacting in the movie clip “Drawing”. As for the preferential
paradigm, we have previously confirmed that human figures were
more preferentially looked at than non-social figures in typically
developing individuals compared to individuals with ASD (18).
To control the spatial preference (e.g., adherence to the right
half of the visual field) that may be present in some participants
with ASD (30), two sets of movie clips were duplicated (“Pref
E1” vs. “Pref E2,” “Pref F1” vs. “Pref F2”), but the allocation of
the targets (human figures) were exchanged horizontally, and
inserted as different movie clips. In the other four sets of movies,
the appearance of the side (left or right) of the target (human
figures) was balanced.

Quantification of Eye Gaze Patterns
Through the sequence of the 12 movie clips, we defined 100
areas of interest (AOIs) in circles or squares on each move clip,
specified with x and y axes on the monitor (Figure 1B). We
calculated two types of eye gaze indices: the AOI rate score and
the AOI count score. The AOI rate score was defined as the
percentage of gaze fixation time allocated to each AOI divided
by the duration of each movie clip. The AOI rate score was
between 0.0 and 1.0 and represents the focus on the object in
a dose-response manner (i.e., the higher the AOI rate score,
the more intensively the child focused on the object). The AOI
count score was a representation of the presence (or absence)
of a fixed gaze over each AOI, regardless of the duration of the

eye gaze. The possible AOI count score was 0 or 1 and reflects
the presence of eye gaze on the AOI, irrespective of possible
distractions occurring due to the child focusing on another AOI
because of knowledge-driven prediction (31). This is likely to
emerge among older individuals. This distraction also occurs
when a human agent on themonitor acts as if she/he looked at the
individual in front of the monitor (32). As such, we expected that
the AOI count score would bemore suitable for older individuals.
We calculated both the AOI rate scores and AOI count scores
separately for all 100 AOIs. In addition, we also calculated two
different methods for AOI rate scores applied to the 100 AOIs.
The first is to calculate the AOI rate scores of the first 1.0 s
and the other is to calculate the AOI rate scores of the first
2.0 s. The intention for this was to generate more attributes with
diagnostic value. Specifically, young individuals with ASD have
been reported to pay less attention to faces during the initial
viewing period (33). As a result, 300 sets of calculation for AOI
rate scores and 100 sets of calculation for AOI count scores
were applied.

Analysis
Strategy for Creating and Validating the Diagnostic

Algorithm

Selection of Participants
We selected participants to generate a training dataset to realize
the computerized diagnostic algorithm, and an independent
dataset for the validation. We first excluded 57 participants
from the following analyses because they had a diagnosis of
ADHD (N = 29), general cognitive delay (N = 24), or a clinical
diagnosis of epilepsy (N = 4). The intention was to minimize
the neurophysiological heterogeneity of the subjects included in
the dataset, except for the difference between ASD and typical
development (TD). The remaining 165 participants were divided
into three groups: ASD, TD, and the second control group. The
ASD group (N = 39) consisted of individuals with a diagnosis
of ASD confirmed with ADOS-2 or ADI-R and with a negative
screening result for ADHD. The TD group (N = 102) consisted
of individuals fulfilling negative screening results for both ASD
and ADHD. The ASD and TD groups were primarily used as
the source of the best-fit computerized diagnostic algorithm and
the training and test datasets to check the validity of the best-
fit diagnostic algorithm. The second control group consisted of
two types of individuals: (1) those with a diagnosis of ASD with
a positive screening result for ADHD, and (2) those without a
confirmed diagnosis of ASD but with a positive screening result
for ASD (the screening result for ADHD can be either positive or
negative). The second control group served as an independent
sample to validate the diagnostic predictability of the best-fit
diagnostic algorithm.

We further divided the ASD and TD groups according to
age. Although the social paradigm was assumed to be age-
independent (14), the preferential paradigm was reported to
distinguish ASD from TD individuals, particularly when the
subjects were 10 years and older (18). Considering these, both
the ASD and TD groups were divided into younger (<10 years)
and older (10 years and older) groups, respectively. We set the
age of 10 as the breaking point as in the previous study (18) and
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because of the statistical reason that 10 was the median age of the
individuals in the ASD and TD groups.

Extracting Indices (Candidate Attributes)
We calculated the 300 sets of AOI rate scores and 100 sets of
AOI count scores for all participating individuals. To extract
indices to be included in the best-estimate diagnostic algorithm,
the mean values for both AOI rate scores and AOI count
scores were compared between the ASD and TD groups for the
younger and older age bands. When we found indices that were
significantly (p < 0.05) associated with the ASD diagnosis or
had an effect size (Cohen’s d) of 0.5 or larger, we retained these
as candidate attributes, the indices to be included in the next
step. To this end, we extracted four sets of candidate attributes
based on the AOI rate scores and count scores of the younger
and older individuals. To minimize unnecessary weights and to
avoid overfitting resulting from choosing multiple AOIs out of
one region on a movie clip, we chose only one attribute with
the largest effect size out of the candidate attributes that were

calculated on the same AOI. This rule also applies to the three
AOI rate scores that share the same AOI (the AOI rate scores
calculated from the first 1.0 s, from the first 2.0 s, and from the
beginning to the end of the movie clip). In addition, to avoid
including chance findings with large effect size, we dropped
candidate attributes that were extracted from the AOIs with gaze
fixation percentage of <20%, which corresponds roughly to a
duration of 1.0 s or longer for most movie clips.

Creating the Best-Fit Diagnostic Algorithm
We first created four diagnostic algorithms, Algo #1 (the
AOI rate scores for the younger individuals), #2 (the AOI
rate scores for the older individuals), #3 (the AOI count
scores for the younger individuals), and #4 (the AOI count
scores for the older individuals), based on the four sets of
candidate attributes combined (Figure 2). For each algorithm,
the candidate attributes were either divided by the standard
deviation, or dichotomized to 0 or 1 and summed, followed
by a division by the number of the candidate attributes. These

FIGURE 2 | Strategy for creating the best-fit algorithm.
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values were fit for a sigmoid function that only took a value
between 0 and 1. The next step was to merge Algo #1 and #2
to estimate the final AOI rate score, and to merge Algo #3 and
#4 to estimate the final AOI count score. To merge two sigmoid
functions, coefficients were estimated automatically to maximize
the predictability of ASD diagnosis.

Next, we finalized the best-fit diagnostic algorithm using the
two separately estimated algorithm-based scores: the final AOI
rate score and the final AOI count score. Before merging the two
scores, we chose one algorithm score of a better fit in the younger
and older participants separately, to maximize the predictive
validity. The fit was assessed with the area under the receiver
operating characteristic (ROC) curve (AUC) for each set of
comparisons. We then made the selected estimated scores merge
smoothly as a continuum along the age range of the participants
of 5–17 years (the best-fit algorithm). To merge the two sigmoid
functions, coefficients were again estimated automatically to
maximize the predictability of the ASD diagnosis. The best-fit
algorithm score was made to take values between 0 and 1. In
the following analyses, a value of 0.5 or higher of the best-fit
algorithm score was assumed as an indicator of the individual
under investigation having ASD.

Evaluation of the Diagnostic Performance (Cross-Validation)
We evaluated the general classification performance of the best-
fit algorithm using the leave-one-out (LOO) method (34). We
repeated the procedures described above, including extraction of
candidate attributes and formulation of four separate algorithms
to be merged into a single best-fit diagnostic algorithm, without
the inclusion of one specific individual (LOO algorithm). The
removed individual was tested for ASD based on the LOO

algorithm. This procedure was iterated for all participating
individuals (N = 141; cross-validation). We then drew the ROC
curves and calculated AUCs for both the best-fit diagnostic
algorithm, and votes of the 141 LOO algorithms were used to
interpret whether the validity of the best-fit algorithm might
have been compromised. To simplify the interpretation, we also
calculated the sensitivity, specificity, and accuracy for the best-fit
algorithm and for the votes of 141 LOO algorithms separately.
The point where the sensitivity and specificity were extracted was
set at the Youden J index (i.e., sensitivity + specificity – 1) was
maximized (35).

Evaluation of the Diagnostic Performance in an

Independent Sample
Using the second control group (N = 24), we checked the
diagnostic validity of the best-fit algorithm independently. Since
this group consisted of individuals with ASD with a positive
screening result for ADHD (N = 17) and individuals with
no diagnosis of ASD but with a positive screening result for
ASD (N = 7), we applied the best-fit algorithm and checked
whether the diagnosis predicted with the best-fit algorithm
score complied with the real diagnosis using AUC, sensitivity,
specificity, and accuracy.

Statistics
All statistical analyses were conducted using Stata version
15.1 and R version 3.6.2. To calculate AUC values with 95%
confidence intervals, ROC-kit 0.91 was used for resampling. For
comparison of two continuous variables, we carried out either the
t-test or the Kruskal-Wallis test, depending on the distribution.
To avoid missing any potential candidate attributes at the early
stage of the analyses, we set 0.05 as the significance level.

TABLE 1 | Characteristics of the participants.

TD ASD Second

control

Statistics*

Number of subjects 102 39 24

Age in years, mean (SD) 9.5

(4.0)

10.3

(4.0)

10.4

(3.6)

F (2,162) = 0.86, p = 0.42

Male sex, number (%) 43

(42%)

30

(77%)

15

(63%)

χ
2
(2)=14.6, p = 0.001

IQ/DQ, mean (SD) 104.1

(13.6)

94.5

(12.3)

98.7

(14.4)

F (2,162) = 7.64, p < 0.001

TD>ASD

ASD screening [PARS total], mean (SD) 0.8

(1.1)

7.8

(5.2)

8.0

(7.0)

F (2,162) = 70.6, p < 0.001

TD<ASD, TD<Second control

ADHD screening [ADHD-RS inattention], mean (SD) 3.3 (3.5) 7.9 (4.8) 11.7 (6.7) F (2,162) = 42.1, p < 0.001

TD<ASD, TD<Second control

ASD<Second control

ADHD screening [ADHD-RS hyperactivity], mean (SD) 1.9

(3.0)

5.2

(4.4)

7.9

(6.2)

F (2,162) = 26.6, p < 0.001

TD<ASD, TD<Second control

ASD<Second control

Diagnosed as having ASD, number (%) 0

(0%)

39

(100%)

17

(71%)

χ
2
(2)= 142.9,

p < 0.001

Overall gaze fixation percentage, mean (SD) 92.1

(7.3)

89.0

(10.2)

91.2

(8.1)

F (2,162) = 2.24, p = 0.11

*Statistically significant results after one-way ANOVA (F tests) were followed by group comparison with Bonferroni correction.
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RESULTS

Characteristics of the Participating
Individuals
Table 1 shows the demographic and clinical characteristics of
the participants. There was no significant difference in the mean
age of the participants among the groups. Compared with the
TD group, the ASD group showed significantly lower IQ and
higher scores on the ASD screening scale (PARS total) and
ADHD screening scales (inattention and hyperactivity subscales
of ADHD-RS).

Overall Gaze Fixation Percentage (Success
of Data Retrieval)
The bottom row of Table 1 shows that the overall gaze fixation
percentage values during the measurement using Gazefinder
were not statistically different across the groups (92% in the
TD group, 89% in the ASD group, 91% in the second control
group). The lowest value was 47.4% of a child belonging to
the ASD group, but this was the only record below 60%.
Out of the 165 participants, 161 showed a value of 70%
or higher.

Extracting Indices (Candidate Attributes)
As for the first steps to create the best-fit diagnostic algorithm,
we extracted the four sets of the candidate attributes
to be used in the algorithm. The candidate attributes
are shown on the corresponding AOIs in association
with the AOI rate scores in Supplementary Figures 1,
2 for the younger and older individuals, respectively,
and in association with the AOI count scores in
Supplementary Figures 3, 4 in the younger and older
individuals, respectively.

TABLE 2 | Calculated values of the area under curve (AUC) and their 95%

confidence intervals (CIs) for the proposed algorithms for younger and older

participants using either AOI rate scores or AOI count scores.

Subjects to be

tested

AUC 95% CI

Algo #1: AOI rate score for

the younger individuals

Younger

individuals (n = 80)

0.83 0.72–0.90

Algo #2: AOI rate score for

the older individuals

Older individuals

(n = 61)

0.83 0.72–0.92

Final AOI rate score

algorithm

Younger

individuals (n = 80)

0.82 0.70–0.90

Final AOI rate score

algorithm

Older individuals

(n = 61)

0.82 0.69–0.92

Algo #3: AOI count score for

the younger individuals

Younger

individuals (n = 80)

0.74 0.63–0.83

Algo #4: AOI count score for

the older individuals

Older individuals

(n = 61)

0.88 0.78–0.95

Final AOI count score

algorithm

Younger

individuals (n = 80)

0.75 0.63–0.85

Final AOI count score

algorithm

Older individuals

(n = 61)

0.87 0.72–0.95

Creating the Best-Fit Diagnostic Algorithm
Table 2 shows the AUCs for Algo #1, 2, 3, 4, the final AOI rate
score algorithms, and the final AOI count score algorithms. To
select one algorithm for the two age bands, we found that the
final AOI rate score algorithm fit equally for the younger and
older individuals (0.82 vs. 0.82) and that the final AOI count
score algorithm showed a better fit for the older individuals
(0.75 vs. 0.87). For the younger individuals, we selected the
final AOI rate score algorithm, and for the older individuals, we
selected the final AOI count score algorithm. Merging the two
algorithms along the age bands provided the best-fit diagnostic
algorithm, of which the ROC curve is shown as a solid line
in Figure 3, and the AUC was 0.84, as shown in the first row
of Table 3. The sensitivity, specificity, and accuracy were 74,
80, and 78%, respectively. We also checked whether the best-fit
diagnostic algorithm showed a good fit for the younger and older
participants. The second and third rows of Table 3 show that the
AUC, sensitivity, specificity, and accuracy did not differ between
the younger and older participants.

Evaluation of Diagnostic Performance
To show that the high accuracy of the best-fit diagnostic
algorithm did not result from overfitting or from chance alone,
the diagnostic performance of the best-fit algorithm was first

FIGURE 3 | ROC curves of the best-fit diagnostic algorithm* and the votes of

the 141 LOO** algorithms. Solid line: ROC curve of the best-fit diagnostic

algorithm (AUC = 0.84, sensitivity = 71%, specificity = 80%,

accuracy = 78%), dotted line: ROC curve of the votes of the 141 LOO

algorithms (AUC = 0.74, sensitivity = 65%, specificity = 70%,

accuracy = 67%), thick line: ROC curve of the best-fit diagnostic algorithm in

an independent sample (second control group: AUC = 0.91,

sensitivity = 87%, specificity = 80%, accuracy = 88%). *The merged

algorithm of the final AOI rate score algorithm for age <10 years, and the final

AOI count score algorithm for 10 years and over. **Leave-one-out method to

cross-validate the best-fit diagnostic algorithm.
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assessed using the LOO method, the result of which is shown
as a dotted line in Figure 3 and in the fourth row of Table 3.
The AUC was 0.74, which was smaller than the AUC of the
best-fit algorithm, and the sensitivity and specificity were 65 and
70%, respectively.We also checked the diagnostic performance of
the best-fit diagnostic algorithm in an independent sample (the
second control group, N = 24). For the 24 participants in this
group, we found an AUC of 0.91, with a sensitivity and specificity
of 87 and 80%, respectively.

DISCUSSION

Using Gazefinder, we successfully created the best-fit diagnostic
algorithm to discriminate school-aged and adolescent individuals
with ASD from typically developing individuals of the same
age range, with a sensitivity of 78% and specificity of 80%.
The diagnostic performance was tested in two ways: one was
a machine-learning procedure called the LOO method and the
other was a test in a different, independent sample of the same
age range. These two tests of diagnostic performance indicated
acceptable to excellent discriminability.

The reported sensitivity and specificity of ADOS-2 (Module
3) were as high as 91 and 66%, respectively, in a large sample of
German children with an average age of 10 (36). Similarly, the
sensitivity and specificity of ADI-R in a small sample of Japanese
children of age 5–9 were 92 and 84%, respectively, and of age 10–
19 were 97 and 90%, respectively (9). The diagnostic accuracy of
Gazefinder was not better than that of the standard diagnostic
tools, but comparable. In addition, the diagnostic validity of
Gazefinder was even better than the established screening tools
that are available for a wide range of ages. For instance, the
Social Communication Questionnaire (37) is a widely used tool
available for a wide age range, although the sensitivity and
specificity were 64 and 72%, respectively, in a sample of 1–25-
year-old individuals (38). There are also a number of screening
tools with reported sensitivities and specificities exceeding 80%,
although these figures have not been cross-validated or tested in
different datasets (39). Considering the applicability of the best-fit
algorithm to a wide age range of the subjects, our validated data
support the use of the best-fit algorithm in clinical settings as an
available alternative to a range of screening tools for detecting
ASD, particularly in terms of diagnostic performance.

In addition to the fact that the diagnostic evaluation
using Gazefinder was completed within 2min without any
expertise, it is worth noting that a substantial majority of
the participating individuals succeeded in completing the
examination. Surprisingly, 161 (98%) of the 165 participants kept
staring at the monitor for 70% or longer of the total duration
of the examination. The four individuals with <70% of the
total fixation time were diagnosed as having ASD. Among these
four individuals, only two individuals were correctly predicted
as having ASD (data not shown in tables). Apparently, the
diagnostic accuracy may be decreased if we include individuals
with <70% of the overall gaze fixation percentage. One
explanation for this observation is that the lower overall gaze
fixation percentage by itself may be predictive of ASD. This leads
to an understanding that the accuracy of the best-fit algorithm
might have been compromised when the overall gaze fixation
percentage was lower than the specific cutoff, for example, 70%.
Although the overall accuracy of the best-fit diagnostic algorithm
was secured, we may set a threshold of 70% as the lowest
percentage for securing algorithm-based diagnosis for clinical
use, until firm conclusions are drawn.

Discussion of the Methodology
There was an initial possibility of potential overfitting due to the
limited sample size in our results. This has been discussed in
the context where the attributes outnumber the observations in
machine-learning-assisted neuroimaging studies (40). We have
made several attempts to overcome this shortcoming. First, to
enhance the efficiency in creating a valid algorithm, we tried to
increase the clinical homogeneity among the diagnostic groups.
We extracted participants with ASD without any comorbid
conditions and TD participants without any suspicions of ASD
symptomatology. Second, we avoided building a multi-layered
algorithm. Until recently, neural networks, and their applications
such as in deep learning, the prominent feature of which is a
combination of perceptrons aligned in multiple layers, has been
used widely in literature. The major problem inherent to these
techniques is overfitting, particularly if the sample size is small,
when the network cannot learn itself (41). Therefore, we adopted
a single-layered algorithm. Third, we adopted cross-validation
using the LOOmethod (34). Cross-validation is required not only
for checking the predictive validity, but also for achieving optimal

TABLE 3 | Diagnostic performance of the best-fit algorithm.

Subjects to be tested AUC 95%CI Sensitivity** Specificity** Accuracy**

Best-fit algorithm All (n = 141) 0.84 0.76–0.91 0.74 0.80 0.78

Best-fit algorithm Younger individuals (n = 80) 0.82 0.70–0.90 0.78 0.70 0.76

Best-fit algorithm Older individuals (n = 61) 0.87 0.72–0.96 0.73 0.87 0.75

Votes for 141 LOO algorithms* All (n = 141) 0.74 0.64–0.82 0.65 0.70 0.67

Best-fit algorithm Second control group (n = 24) 0.91 0.66–0.99 0.87 0.80 0.88

*Leave-one-out (LOO) algorithm: an algorithm developed with a procedure identical to that applied to develop the best-fit algorithm without the inclusion of one specific individual (LOO

algorithms). The removed individual was tested for the diagnosis of ASD, based on each LOO algorithm. This procedure was iterated for all participating individuals, and the majority of

the votes for the 141 LOO algorithm was used as the cross-validated predicted diagnosis (N = 141; cross-validation).

**Sensitivity and specificity were calculated at the point on the ROC where the Youden J index (Sensitivity + Specificity – 1) was maximized.
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diagnostic performance (42). LOO is assumed to perform better
than other cross-validation methods because the test data are
secured not to be used in the training data to form an algorithm.
Furthermore, we used a different, independent dataset (the
second control group) to be tested with the best-fit diagnostic
algorithm. It is worth noting that the independent second control
group was a mixture of individuals with ASD with clinical
signs of ADHD, and non-TD individuals with subthreshold
signs of either ASD or ADHD or both. However, the diagnostic
performance of this sample was not compromised. To this end,
our validation processes have supported the robust predictive
validity of the proposed best-fit diagnostic algorithm.

Limitations
Despite the fact that the predictive validity of the best-fit
diagnostic algorithm was established, potential limitations of the
findings should be acknowledged. First, we enrolled a relatively
small sample of individuals of Japanese origin. Our stimulus
movie was created to be used among non-Japanese people as
well, and included actors of various ethnicities. Our findings may
be better replicated in a larger sample with different cultural
and biological settings. Second, we invented the diagnostic
algorithm based on responsivity to social stimuli; however, this
is only one aspect of the broad behavioral spectrum of ASD.
Particularly, we have not established that our measure reflects
the symptoms of restricted interest and repetitive behaviors
(RRBs). Furthermore, the predicted diagnosis does not indicate
the severity of the symptoms, as the diagnostic algorithm has
been designed to monitor whether responsivity to specific stimuli
was observed or not. Thus, Gazefinder has immense possibility
for customization in the future. Third, we did not investigate
whether the indices we collected were associated with clinical
correlates, severity, or prognosis. In a previous study using eye-
tracking devices, children with ASD who were more oriented
toward social images were shown to have better language and
higher IQ scores (16). The clinical applicability of Gazefinder
can be further developed in this direction in the context of
treatment monitoring. Fourth, we did not assess social anxiety
symptoms. In a previous study, gaze avoidance was reported
in adolescents with either social anxiety disorder or ASD, but
delayed orientation to the eye regions was observed in the latter.
We did not examine whether the reduced gaze fixation to the eye
regions results from delayed orientation or from orienting in a
direction outside the eye regions; this should be addressed in the
future. Fifth, we did not assess the participants of our study with
both ADOS-2 and ADI-R-JV; we assessed them with only one
of these tools. Among 39 individuals with ASD in the analysis,
five were assessed only with ADI-R, and two individuals among
these were over 10 years. This may compromise the diagnostic
accuracy because of higher likelihood of recall biases, although
the number of such individuals is minimal. Sixth, we excluded
individuals with ADHD and general cognitive delay. Although
this exclusion will allow the algorithm to be more sensitive to
ASD, the general clinical applicability of the diagnostic algorithm
may be limited in clinical settings, where individuals with ASD
are frequently comorbid with ADHD and/or cognitive delay. In
our future study, we may include individuals with or without

ADHD and compare them with individuals with ASD using
the diagnostic algorithm. Finally, since we did not conduct full
diagnostic assessments for screen-negative individuals, we might
have overlooked ASD diagnoses in this group of individuals.
However, this is unlikely since our thorough clinical assessments
were conducted by trained psychiatrists or pediatricians, all of
whom have an experience of joining clinical/research workshop
of ADOS-G or ADOS-2 and some have established research
reliability with the developers, followed by the consistent negative
results for all the three screening tests for ASD.

Clinical Applicability
In typical community settings, individuals with ASD are expected
to be diagnosed at certain stages during childhood (43). However,
more than half of the children, adolescents, and young adults
with confirmed diagnosis of ASD do not have a history of clinical
diagnoses related to ASD, as was reported in a community survey
in the last century from the US (44). This was reported a decade
ago, although the situation appears to remain the same at present.
A more recent study from Japan pointed out that only 32%
of children confirmed to have ASD at 5 years of age had any
history of neuropsychiatric/neuropediatric diagnosis until their
fifth birthdays, meaning that more than half of the children
with ASD are left undiagnosed at 5 years of age or even older
(1). This may be due to the lack of appropriate chances to be
screened, although general health checkups during childhood are
a rule in most developed countries. The challenges inherent to
the diagnostic evaluation of ASD, particularly in the community
setting, should be resolved with ease and without expertise.
We propose the computerized best-fit diagnostic algorithm
implemented in Gazefinder as a solution to this.

Despite the diagnostic accuracy and convenience of the
diagnostic algorithm, standard diagnostic procedures in clinical
settings, such as ADOS-2, should not be replaced with diagnosis
with Gazefinder. We assume that a diagnostic evaluation with
Gazefinder is a mechanical one and thus should be followed with
an expert clinical diagnosis. Presently, clinical evaluation may
not be readily available in countries where trained manpower
is limited, and mechanical diagnosis alone can result in a false
sense of security among caregivers. However, in such countries,
we can propound that Gazefinder can function as a screener and
thereby reduce the burden on experts including pediatricians,
child psychologists, and child psychiatrists. We should minimize
the drawbacks and maximize the advantages of using Gazefinder
in the future. In order not to give false sense of security when
a false negative result is provided, the cutoff point should be
adjusted to increase the sensitivity.

We have confirmed that the diagnostic performance of the
best-fit algorithm is comparable to standard diagnostic tools and
is even better than current screening tools for ASD. Diagnostic
evaluation using Gazefinder is secured in more than 90% of
the participants and adolescents. Thus, the proposed best-fit
diagnostic algorithm is ready to be used in clinical settings and
to be tested in clinical trials. We have drafted and submitted the
protocol to the Japanese supervisory authorities, and currently,
a clinical trial is under way. Clinical trials using Gazefinder to
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establish diagnostic validity in countries other than Japan are
also appreciated.
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Supplementary Figure 1 | Candidate attributes∗ of AOI rate scores∗∗ among the

individuals of younger than 10 years. AOIs outlined with red lines represent

parameters with a positive effect (i.e., AOI rate score was higher in individuals with

ASD) and AOIs outlines with blue lines represent parameters with a negative effect

(i.e., AOI rate score was lower in individuals with ASD). ∗Attributes that were

significantly (p < 0.05) associated with the diagnosis of ASD or had an effect size

of Cohen’s d with 0.5 or larger. ∗∗Percentage of fixation time allocated to the AOI

divided by duration of each movie clip.

Supplementary Figure 2 | Candidate attributes∗ of AOI rate scores∗∗ among the

individuals of 10 years and over. AOIs outlined with red lines represent parameters

with a positive effect (i.e., AOI rate score was higher in individuals with ASD) and

AOIs outlines with blue lines represent parameters with a negative effect (i.e., AOI

rate score was lower in individuals with ASD). ∗Attributes that were significantly (p

< 0.05) associated with the diagnosis of ASD or had an effect size of Cohen’s d

with 0.5 or larger. ∗∗Percentage of fixation time allocated to the AOI divided by

duration of each movie clip.

Supplementary Figure 3 | Candidate attributes∗ of AOI count scores∗∗ among

the individuals of younger than 10 years. AOIs outlined with red lines represent

parameters with a positive effect (i.e., AOI count score was higher in individuals

with ASD) and AOIs outlines with blue lines represent parameters with a negative

effect (i.e., AOI count score was lower in individuals with ASD). ∗Attributes that

were significantly (p < 0.05) associated with the diagnosis of ASD or had an effect

size of Cohen’s d with 0.5 or larger. ∗∗Presence (or absence) of countinous fixed

gaze ofer the AOI; takes the value of either 0 or 1.

Supplementary Figure 4 | Candidate attributes∗ of AOI count scores∗∗ among

the individuals of 10 years and over. AOIs outlined with red lines represent

parameters with a positive effect (i.e., AOI count score was higher in individuals

with ASD) and AOIs outlines with blue lines represent parameters with a negative

effect (i.e., AOI count score was lower in individuals with ASD). ∗Attributes that

were significantly (p < 0.05) associated with the diagnosis of ASD or had an effect

size of Cohen’s d with 0.5 or larger. ∗∗Presence (or absence) of countinous fixed

gaze ofer the AOI; takes the value of either 0 or 1.
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