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Abstract: Clinical laboratories are strong, integral partners in personalized health care. 

Laboratory databases hold a vast amount of data on human phenotypes, genotypes, biomark-

ers, progression of disease, and response to therapy. These structured and unstructured free 

text data are critical for patient care and a resource for personalized medicine and translational 

research. Laboratory data are integrated into many electronic medical records that provide 

“summary reports” and “trending” to visualize longitudinal patient data. Recent advances in 

ophthalmology such as gene therapy, cell therapy using stem cells, and also retinal prosthesis 

explore the potential of translational research marking a new era in research into the diagnosis 

and treatment of eye diseases.
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Introduction
Scientific research is traditionally divided into two categories: basic research and 

applied research. Basic research is needed to provide a better understanding of 

normal conditions vs disease, but it does not directly translate that knowledge into 

useful clinical applications. Translational research is the advancement of science 

applied to the development of new diagnostic tests, drugs and/or intervention tech-

niques for patients with an established understanding of their disease development 

and progression.

The main goal of translational research is to integrate advances in biotechnology in 

clinical trials, that is, furthering research from the bench to the bedside (Figure 1).

The observations of clinical investigators on the nature and progression of diseases 

direct basic scientific research. Researchers use clinical samples to study the diagnosis, 

the expression of biomarkers, differences between normal and disease conditions, and 

responses to therapy. Basic scientists then provide to clinicians new treatment strategies 

based on laboratory data. This constant feedback assists in the discovery of disease 

biomarkers and drug targets, resulting in a more rational development of medications 

and improves the effectiveness of therapeutic agents.

Translational research also enables faster development of potential therapies, 

reducing the time between the identification of drug targets and the availability of clini-

cally relevant treatment options. Currently, the completion of all phases of preclinical 

testing and clinical trials of a single drug takes 7–12 years, but the great amount of 

translational research being conducted around the world is a promising sign for faster 

progress in the near future.1
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Generally, the first phase of research explores what is 

needed in order to treat a disease so that potential treatments 

can be developed from basic laboratory research and to test 

the safety and efficacy of the medicines developed. The con-

cepts involved in this phase form the basis of evidence-based 

practice and the creation of clinical guidelines. In relation to 

drug development, the term “from the bench to bedside” is 

properly employed. Many pharmaceutical companies have 

created teams of professionals to work with translational 

medicine so that the interaction between basic research and 

clinical medicine is facilitated, particularly for clinical trials. 

This is already occurring with the development of biological 

products specifically designed for autoimmune diseases. 

Thus, these days, the evaluation of therapies involves such 

diverse areas as psychology, physical therapy, and nutrition. 

The second phase of studies examines discoveries in clini-

cal sciences and evaluates the effectiveness and safety of 

interventions. Hence, Phase 1 studies are transferred to 

practical applications in real life environments and day-

to-day situations when different demographic factors and 

priorities can change clinical decisions and responses to 

treatment. Research in this phase plays a very informative 

role by providing information on the needs, acceptability, 

efficacy, and cost-effectiveness for the creation of health 

care policies that promote good management and use of 

resources. Particularly in the modern world in major eco-

nomic recession, these needs should challenge the environ-

ment created by the restricted view often seen in the setting 

of clinical trials.2,3

Phase III of translational research adds information 

necessary to convert treatment and preventive strategies, 

which have proven their effectiveness and cost-effectiveness 

in Phase 2, as the basis of more stringent, albeit more exten-

sive and evidence-based government policies. These policies 

require different research processes to evaluate settings with 

more complex interactions. They involve a process of sus-

tainability that relies on approaches that require continuous 

refinement and methodological improvements.

As a consequence, research and translational medicine 

have personalized medicine.

Personalized medicine, as a term, evolved to indicate that 

the results of various forms of genomic analysis are applied 

to tailor medical care for a specific patient with obvious 

advantages that supplement, but do not replace, traditional 

clinical medicine. These advantages include the possibility 

of predicting susceptibility for a disease and, as a result, 

allow more detailed screening or prophylactic (preventative) 

treatment. Personalized medicine also offers the potential 

for diagnosis of diseases at an early stage when treatment is 

often more effective and sequelae may be minimized. This 

is particularly true with respect to cancer. Potential beneficia-

ries of these novel technologies will primarily be our patients 

but medical care institutions will also benefit. There are vast 

business opportunities for companies that develop diagnoses, 

drugs, or methods for data analysis. Already several medical 

schools have developed institutes, programs, or curricula 

focused on personalized medicine. Companies have been 

formed employing marketing analysis that purports to predict 

one’s risk of developing a myriad of diseases ranging from 

Alzheimer’s disease and diabetes to baldness in men.2–5

Translational medicine has also had a great impact 

in ophthalmology. Some examples of research using this 

concept that will certainly be part of our everyday clinical 

practice in the near future are listed below.

Genetic testing and gene therapy  
in retinal diseases
The era of molecular ophthalmology began in 1985 with the 

discovery of the retinoblastoma gene.6 Since then, hundreds 

of other genes responsible for a variety of important diseases 

have been discovered, including genes associated with age-

related macular degeneration (AMD), glaucoma, congenital 

cataract, both syndromic and non-syndromic forms of photo-

receptor degeneration, multiple macular dystrophies, corneal 

dystrophies, vitreoretinopathies, and optic neuropathies. The 

discovery of genetic causes of diseases allows individual-

ized molecular investigations of DNA samples to be used 

Stem cell
translational research
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Figure 1 Scheme showing translational research conducted by our research group 
(Clinicaltrial.gov: NCT01068561). This clinical trial was about the use of bone 
marrow-derived stem cell for the treatment of retinal dystrophy. The patient is 
examined at the research center (A). The bone marrow is collected for bone marrow 
transplantation (B). The material collected is taken to the cell therapy laboratory for 
stem cell separation (C). Stem cells are injected into the patient’s eye in an operating 
room (D). The patient is again evaluated at the research center (A).
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in clinical diagnosis and prognosis and in counseling. In 

addition, individuals who are found to carry known disease-

causing mutations can be enrolled in clinical trials of new 

therapies or carefully studied to fully explore the behavior 

of their disease over time.7,8 Samples from patients who lack 

mutations of known disease-causing genes can also serve as 

a valuable resource for scientists who seek to find additional 

disease-causing genes.9

Experiments to discover genes implicated in different 

diseases have aided this research by providing an improved 

understanding of specific biologic pathways that, when out 

of balance, lead to disease or susceptibility for disease. Such 

pathways can become important targets for therapeutic agents 

and scientists have been very creative in devising treatment 

specifically aimed at these targets.9

For example, the discovery that the ABCA4  gene is 

involved in transporting vitamin A derivatives from outer 

segment disks led to the discovery that vitamin A inhibitors, 

such as fenretinide, inhibit the accumulation of lipofuscin in 

animal models of Stargardt’s disease.10,11 The identification 

of the role of vascular endothelial growth factor in choroidal 

neovascularization led to the development of therapeutic 

antibodies (eg, ranibizumab and bevacizumab) to combat the 

main blinding complications of AMD. Growth factors and 

neuroprotective agents have also been used to reduce the rate 

of apoptotic response to inherited cellular abnormalities.12,13 

In recent years, gene-replacement therapy, therapeutic stem 

cells, and retinal prostheses have changed our approach to 

the treatment of genetic eye diseases.

More than a dozen recessive retinal diseases have been 

successfully treated with viral- or nanoparticle-based gene 

transfer in animal models.14 For example, one molecular 

form of Leber’s congenital amaurosis is caused by the lack 

of retinoid isomerase encoded by the RPE65  gene and 

vision was restored in a naturally occurring canine model 

of this disease using an adeno-associated viral vector to 

transfer a normal version of RPE65 to the retinal pigment 

epithelium.15 More recently, three different groups have 

extended this work to humans.16–18 Maguire and colleagues 

reported results in twelve patients who were treated with 

gene-replacement therapy. They observed visual improve-

ment in all twelve patients, with the greatest gains among 

younger patients.16

AMD is one of the best examples of a chronic degen-

erative genetic disease discovered to date; the hereditary 

factor is responsible for over 70% of the risk of developing 

the disease. Genetic testing can identify individuals with 

an increased risk for advanced AMD.19 Early identification 

of at-risk patients may prevent vision loss or slow the 

progression of the disease through individualized treatment 

based on age and risk level. Frequent monitoring of individu-

als with an increased risk for advanced AMD may result in 

early detection of small choroidal neovascularization lesions 

and may lead to improved long-term visual acuity through 

early treatment. Additionally, environmental risk factors can 

be identified and modifications in lifestyle can be made to 

reduce the risk of developing advanced AMD.20

Both the candidate gene approach and genome-wide 

association studies (GWAS) have been used to elucidate 

sequence variations associated with AMD.21 Early work 

identified the potential importance of the complement family 

of inflammatory proteins in AMD on the basis of biochemical 

analysis of retinal drusen. As the genes and naturally occur-

ring sites of variability for all complement cascade proteins 

became known, statistically significant associations with 

neovascular AMD were identified. To date, convincing and 

reproducible associations of variations of the complement 

factor H (CFH), complement factor I (CFI), complement 

factor B (CFB), and complement component (CC3) genes 

have been demonstrated.22–25

Macula Risk (ArcticDx, Inc, Toronto, ON) is a commer-

cially available prognostic genetic test for patients diagnosed 

with early or intermediate AMD. Using an algorithm based on 

the complete combination of known AMD genes and history 

of smoking, the genetic test identifies those most likely to 

progress to advanced AMD with vision loss. Tested patients 

are stratified into risk categories; 20% of patients are pre-

dicted to have a higher than average lifetime risk of advanced 

AMD with 1% of those falling into a high-risk group with 

a predicted 65% chance of developing geographic atrophy 

or choroidal neovascularization. The ability to identify at-

risk patients allows physicians to tailor a more appropriate 

management plan for individual patients.20

Stem cell therapy in retinal diseases
Several important cell types in the eye have little if any capac-

ity for endogenous regeneration and as a result the only viable 

treatment option for patients with hereditary disorders that 

involve the loss of such cells is some type of cell replacement 

therapy. Although the replacement of highly differentiated 

cells, such as photoreceptors, poses challenges, a number 

of recent experiments suggest that the use of stem cells to 

achieve such a goal is now feasible.9

Distinct stem cell types have been established from 

embryos and identified in fetal tissues and umbilical cord 

blood as well as in specific niches in many adult mammalian 
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tissues and organs such as bone marrow, brain, skin, eyes, 

heart, kidneys, lungs, gastrointestinal tract, pancreas, liver, 

breast, ovaries, and prostate.26

Stem cell-based therapy has been tested in animal models 

for several diseases, including neurodegenerative disorders, 

such as Parkinson disease, spinal cord injury, and multiple 

sclerosis. Replacing lost neurons which have not been physi-

ologically replaced is pivotal to therapeutic success. In the 

eye, degeneration of neural cells in the retina is a hallmark 

of such widespread ocular diseases as AMD and retinitis 

pigmentosa (RP). In these cases the loss of photorecep-

tors that occurs as a primary event (as in RP) or secondary 

to loss of retinal-pigment epithelium (in AMD) leads to 

blindness.26–28

Stem cells can potentially be used for both neuropro-

tection and cell replacement. Intravitreal delivery of neu-

rotrophic factors slows down photoreceptor degeneration 

in rodent models of RP and retinal ganglion cell loss in 

glaucoma models and optic nerve and optic tract trauma, 

but the effect may be temporary. Slow-release preparations 

and gene therapy approaches to induce retinal cells to secrete 

neurotrophic factors are two ways to induce longer-term 

effects. A third option is to use stem cells as long-term 

delivery agents, possibly encapsulated in a device because 

many stem cells either secrete neurotrophins naturally or can 

be genetically engineered to do so.29,30

Recently, some reports demonstrated the clinical feasi-

bility of the intravitreal administration of autologous bone 

marrow-derived mononuclear cells in patients with advanced 

degenerative retinopathies.31,32 More recently, our group 

conducted a prospective Phase I trial to investigate the safety 

of intravitreal bone marrow-derived mononuclear cells in 

patients with retinitis pigmentosa or cone–rod dystrophy, 

with promising results.33

In 2010, the US Food and Drug Administration granted 

Orphan Drug designation for RPE cells of Advanced Cell 

Technology, Inc to initiate its Phase I/II clinical trials using 

retinal pigment epithelial cells derived from human embry-

onic stem cells to treat patients with Stargardt’s Macular 

Dystrophy and in 2011 the company received a positive 

opinion from the Committee for Orphan Medicinal Products 

of the European Medicines Agency towards designation of 

this product as an orphan medicinal product for the treatment 

of Stargardt’s disease.34

Stem cells maintain the balance between somatic cell 

populations in several tissues and are responsible for organ 

regeneration. The remarkable progress of regenerative medi-

cine over the last few years is promising for the use of stem 

cells in the treatment of ophthalmic disorders. Based on this 

success, experimental and human studies of bone marrow-

derived stem cells have begun.

Research using stem cells opened another arm in trans-

lational research.

The need to use the lab, biologists, and clinical experts 

has created a multidisciplinary environment, which is a 

characteristic of translational medicine.

Retinal prosthesis technology
Retinal prosthesis technology is currently under development 

in more than 13 centers across five continents worldwide, 

although the technology used, and stages of development in 

the various groups, differ significantly.

Extensive efforts have been undertaken to develop 

artificial devices aimed at restoring some vision in blind 

individuals. Most of these devices use electrical currents to 

stimulate the visual pathway, thereby bypassing damaged 

structures.35–41 Briefly, these devices incorporate an image 

capture module (eg, a camera), a processor that transforms 

the captured image into a pattern of stimulating currents 

and an electrode array through which electrical currents are 

delivered to the target stimulation site (retina, optic nerve, or 

visual cortex). Among these, retinal prostheses are probably 

the most advanced as the first clinical trials are currently 

underway.36 Patients with advanced retinal degenerative 

diseases and their family members often actively seek 

information on the latest neuroprotective treatments aimed at 

slowing down the progression of their disease or rehabilita-

tive technologies that may restore their sight. Retina physi-

cians are faced with the task of explaining to patients the 

state of retinal prosthesis technology, including when it will 

become practical and what level of vision might be restored. 

While this may seem daunting, a systematic approach to 

categorizing retinal prosthesis technology greatly simplifies 

comprehension of this field.

A retinal prosthesis is a device that gathers visual 

information with an electronic detector, then processes 

and converts that image into a form of stimulation that 

the retina and brain can interpret as a form of vision. All 

retinal prostheses can be categorized according to three 

fundamental design features – detector type, stimulation 

type, and stimulation site.

Detectors for retinal prostheses can be complementary 

metal-oxide-semiconductor (CMOS) or charge-coupled 

device (CCD) chips found in webcams or camcorders to 

microphotodiodes that act as tiny solar cells, turning light 

directly into electrical current.36–41
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Most retinal prostheses under development today 

employ electrical current to stimulate the retina, producing 

electrophosphenes. These are small, round, oval, or elongated 

spots of light produced when pulses of electrical current are 

applied to the retina.41

In an effort to develop a more naturalistic method of 

retinal stimulation, the collaborative groups at Wayne State 

University and Mayo Clinic are designing methods to deliver 

neurotransmitters to retinal neurons using microfluidic 

technology. This approach leverages natural chemical visual 

channels within the retina and can stimulate or inhibit neu-

ronal firing, thus forming the basis for visual contrast. This 

technique employs the controlled delivery of neurotransmit-

ters to the retina in space and time, analogous to the way an 

inkjet printer puffs ink onto paper.41,42

The most critical component of the retinal prosthesis 

system is the tissue interface formed at the junction of the 

neurosensory retina and the stimulator.

Subretinal placement assures close proximity to the neu-

rosensory retina and obviates the need for tack fixation as 

the retina is draped over the stimulation sites. However the 

surgical approach is more complex as it requires a pars plana 

vitrectomy, formation of a localized retinal detachment bleb 

and trans-scleral, trans-choroidal incisions for the ab-externo 

insertion of the stimulator into the subretinal space. After inser-

tion, the retina is re-attached via internal tamponade.38,40

Retinal prosthesis technology has been under develop-

ment for more than two decades. Several different designs 

for retinal prostheses have had promising results in both 

animals and humans and one of these designs has recently 

been approved for clinical use in Europe.41,42

The junction of the fields of bioengineering, biomateri-

als, neurology, and ophthalmology has allowed transla-

tional research to develop a system of intraocular retinal 

prosthesis.

Conclusion
Translational medicine has been described as the integrated 

application of innovative pharmacology tools, biomarkers, 

clinical methods, clinical technologies, and study designs to 

improve the understanding of medical disorders. In medi-

cine, translational research offers an opportunity to apply 

the findings obtained in basic research to everyday clinical 

applications.

Translational medicine is the development of more useful 

methods that allow a better application of basic research-

based knowledge to the medical field as we are now seeing 

in the area of ophthalmology.
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