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Background
A lot of mines are exploited with the mechanized underground operation beneath thick 
layers of rock-soil. The gangue haulages and undercut operations are supported under a 
combination of bolts and meshing covered in a layer of shotcrete to prevent the move-
ment of surrounding rocks and protect the workers’ safety (Steward and Loggerenberg 
2006). A great amount of dust produced in the process of traditional dry shotcrete has a 
strong impact on workers’ health, even causing the pneumoconiosis. The dry shotcrete 
of low strength may fail in supporting roadways under the action of rock burst. Luckily, 
the technology of wet shotcrete can solve the above problem. The field situation of wet 
shotcrete and dry shotcrete around spraying workers are shown in Fig. 1. And compari-
son of dust data is presented in Table 1.

As shown in Fig. 1, total and respirable dust concentration of wet shotcrete are much 
lower than that of dry shotcrete obviously. Therefore, the application of wet shotcrete 
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technology in mine support will be of great importance to decrease dust and improve 
supporting intensity. In China, shotcrete support of roadways is in the period from the 
“dry shotcrete” to “wet shotcrete”. However, the pipe blockage caused by the large resist-
ance often occurs and affects the development of wet shotcrete. Hence, it is imperative 
to study the rheological behavior and on-way resistance in order to ensure the safety and 
effectiveness of wet shotcrete pipage.

The pipe deliver of wet shotcrete is commonly referred to as a full flow system in the 
concrete industry. The pipage system requires that the pump pressure should be equal 
or higher that the pressure loss generated by wet shotcrete flowing through the pipeline. 
The composition and workability of wet shotcrete are nearly similar to that of the self-
compacting concrete (SCC). SCC requires relatively high pumpability, usually, its slump 
is larger than ordinary concrete, the continuous aggregate grading is strictly required, 
and the maximal particles diameter is less than one third of pipe diameter.

Many different hypotheses about the law of concrete flow behavior were proposed. 
Sakuta et al. (1989) and Lipovetsij (1963) regarded the nature of concrete friction stress 
as a constant along the pipeline for the given concrete and pipes:

However, it was generally accepted that wet shotcrete was a Bingham fluid which takes 
into account this yield stress and the plastic viscosity (Soualhi et al. 2015; Kaplan et al. 
2005; Siedlarz and Gołaszewski 2015). The yield stress is the resistance to the primal 
flow, while the plastic viscosity is a measure for the resistance in Eq. (2).

(1)τf = constant

Fig. 1  The Field situation comparison between dry shotcrete and wet shotcrete. a dry shotcrete, b wet 
shotcrete

Table 1  Dust concentration comparison between dry shotcrete and wet shotcrete

Measuring points Wet shotcrete (mg/m3) Dry shotcrete (mg/m3)

Total dust  
concentration

Respirable dust 
concentration

Total dust  
concentration

Respirable dust 
concentration

Around spraying workers 14.8 5.3 95.5 49
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where τ is the shear stress (Pa); τ0 is yield stress (Pa); ηp is plastic viscosity (Bingham) 
(Pa s); dv

dr
 is shear rate (s−1);

Due to structural breakdown and workability loss caused by chemical reactions, the 
rheological behavior of fresh concrete may deviate from the linear behavior. The rheo-
logical parameters of wet shotcrete are constants no longer (Wallevik 2003; Kirk et al. 
2015; Roussel 2006). A different rheological model was widely applied, as is shown in 
Eq. (3).

where K is consistency factor (Pa sn); n is consistency index.
In order to describe the shear-thickening behavior, a modified Bingham model (Feys 

et  al. 2008; Yahia and Khayat 2001) was proposed by the authors (Eq.  4). Ronny V 
applyed to the modified Bingham model and noted that shear-thickening had a great 
influence on the pressure loss.

where η is linear term (Pa s); c is second order parameter (Pa s2).
These approaches have almost neglected the fact that a lubrication layer existed at the 

vicinity of the pipe wall. The lubrication layer was proposed by Aleekseev (1952) and 
Weber (1968). The shear of this layer allows the slipping of concrete and caused the pres-
sure loss along the pipeline. The principle of slippage and lubrication layer is visualized 
in Fig. 2. In case of a lubrication layer, the velocity vlub at the wall is zero and the veloc-
ity gradient caused by the lower viscosity ηlub in the lubrication layer is larger than that 
caused by the viscosity ηbulk in the concrete bulk. When concrete is pumped, the yield 
stress of the concrete outside the lubrication layer is higher than the shear stress near 
the wall where the velocity vbulk of concrete bulk is a constant (Thrane 2007).

(2)τ = τ0 + ηp ·
dv

dr

(3)τ = τ0 + K ·

(

dv

dr

)n

(4)τ = τ0 + η ·
dv

dr
+ c ·

(

dv

dr

)2

Fig. 2  Schematic pattern of wet shotcrete flow in the pipe
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Jacobsen et  al. (2009) conducted the experimental research with colored fresh con-
crete flowing after ordinary concrete to observe the flow conditions and demonstrated 
the lubrication existence at the interface between concrete bulk and the pipe. It was 
uncertain that the exact thickness of this lubrication layer in literatures was estimated to 
be between 1 and 5 mm (Austin et al. 2000; Crepas 1997). The redistribution of particles 
occurs within the pipe under the action of shear. The particles migration which moves 
from high shear rate regions to low shear rate regions was reported in literature (Choi 
et al. 2013), especially the migration of coarse particles may increase under the influence 
of the pipe wall.

The purpose of research and analysis was to study pipe flow law of wet shotcrete based 
on lubrication layer, mainly containing the pipe pressure calculation and the forma-
tion of lubrication. Considering that the detailed analysis of the formation and proper-
ties of this lubrication layer had not been carried out yet, this research of pumping wet 
shotcrete was conducted based on lubrication layer. Through Buckingham rheological 
equation, formulas of yield shear stress and plastic viscosity were deduced. The com-
parison analysis showed that the lubrication layer played a key role in the process of wet 
shotcrete flow. Moreover, its thickness mainly depended on mix proportion. Finally, the 
measures for easy forming lubrication were adviced.

Materials and schemes
Material

Three different kinds of common wet shotrete proportion were studied in this paper 
given in Table 2. The cement was ordinary portland cement with the density of 3120 kg/
m3. The sand was a natural river sand with a density of 2560  kg/m3. The maximum 
coarse aggregate size was 10 mm less than pipe diameter. It was a limestone aggregate 
with density of 2670  kg/m3. Taking into account water absorption rate of sand and 
coarse aggregates, the amount of mixing water was corrected. A lignosulfonate-based 
water reducing admixtures (WRA) was used. Its dosage is shown in Table 2 marked as 
% WRA, meaning percentage of admixture relative to binder content (in weight). Each 
concrete was produced in a single horizontal-axis forced mixer on the scene. The mix-
ing process was as follow: coarse aggregates and sand were mixed during 20 s; both of 
cement and fly ash were added during 20 s; WRA and water were added during the addi-
tional 2 min of mixing.

Table 2  Mix proportion

Materials Design strength (C25–C35)

Name of the series Group 1 Group 2 Group 3

Cement (kg/m3) 401 430 410

Fly ash class F (kg/m3) 43 48 44

Water (kg/m3) 204 192 186

Sand (kg/m3) 876 889 887

Coase aggregate (kg/m3) 704 680 711

Lignosulfonate-based WRA (%) 0.3 0.25 0.25

Slump (mm) 110 ± 20 110 ± 20 100 ± 20
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Pumping system

Experimental concrete transmission pumps (double piston pumps) were made of two 
paralleling pump cylinders as shown in Fig.  3. When the fresh concrete flowed into a 
pump cylinder, it was extruded from the other pump cylinder by strong hydraulic pres-
sure. And fresh concrete were sent through S valve. The stroke rate of pump cylinders 
could be manually controlled by the handle of hydraulic pumps. And two hydraulic pis-
ton tilt cylinders were used to switch between the two pump cylinders in the S valve 
hydraulic system.

Pipeline circuit

The experiment was carried out with a horizontal pumping circuit of 100  m. Due to 
the workability of the piston pump, the phenomenon, fresh concrete being pushed 
alternately into the pipes and pulled from the pumping reservoir, may cause a sudden 
decrease and increase of pressure in one second. As shown in Fig. 4, it can be clearly 
seen in the measured pressure curve that the concrete velocity was always slower than 
piston velocity because the concrete was pushed by the alternate force from two pistons, 
concrete was passive while the pistons were active, and the fresh concrete may be com-
pressed resulting in a part of loss of concrete velocity. The sound of alternate pistons 
could be clearly heard on site.

The circuit was made up of steel pipes with an inner diameter of 64 mm and includes 
four 90° bends and 6 pressure sensors. The special concrete pressure sensor (Model 
EP3000) was used in tests and purchased from Xi’an Hehai Electronic Technology CO., 

Fig. 3  The pumping system of the new wet spraying integral machine. 1 hopper; 2 S valve group parts; 3 tilt 
cylinder; 4 working barrel; 5 water tank; 6 hydraulic cylinder

t

v
piston velocity concrete velocity

Fig. 4  The characteristic of pumping velocity
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LTD. The pressure sensor adopted the technology of the secondary encapsulation of sili-
cone oil to prevent the coarse aggregates from breaking the membrance of the sensor. 
The detailed locations of the sensors are shown in Fig. 5. The first sensor was located at 
1 m after the beginning of the circuit whereas the last one is located at 10 m before the 
end. The pressure sensors were connected to a data-acquisition system which registered 
the local pressure. With these sensors, the pressure at difference locations can be meas-
ured and the pressure loss per unit of length can be calculated.

Experimental results and analysis
Flowing behavior of fresh wet shotcrete

The pumping tests of each mix proportion were performed at five discharge rates avail-
able on the pump. By taking the pressure given from the No. 1 sensor as the pumping 
pressure, one obtained an experimental point for each flow value. As shown in Fig. 6, 
there was a nearly linear relationship between pressure and the flow rate by using linear 
interpolation fitting. It can be seen that the lower the flow rate is, the smaller the pipe 
pressure is. In the pumping process, the flow rate could be smaller for reducing the pres-
sure loss under the condition of guaranteeing the pumping success.

Different groups of mix proportion had different pressure at the same position whose 
value was highest in Group 3 and lowest in Group 2. The pressure value mainly depends 
on the rheological parameters (i.e. mix proportion) in the case of the same flow rate. To 
analyse the reason, literatures (Choi et al. 2013; Ingber et al. 2009; Lu et al. 2008) indi-
cated that a redistribution of particles occurs in the pipe under the action of shear, par-
ticles migrating from high shear rate regions to low shear rate regions, which is relative 
to the formation of lubrication (next “The formation of lubrication layer” section would 
focus on the lubrication formation). Literatures (Spangenberg et al. 2012; Myoungsung 
et al. 2013) also reported that the origin of shear induced by particle migration is gener-
ated by the competition between gradients in particle collision frequency and gradients 

Fig. 5  Overview of the experimental setup and the location of pressure gauges
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Fig. 6  Pressure-flow rate relationship in the 100 m full-scale test
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in viscosity of the concrete within the pipe. As discussed above, the shear is affected by 
the particles and material viscosity.

The shear and viscosity are directly influenced by mix proportion (Xiao and Yue 2011). 
It was shown in Duan (2011), Liu (2005) that with the increasement of water-binder 
ratio, the yield shear stress presents the declining trend while the plastic viscosity is 
irregularity, and with the sand rate increasing, the trend of yield shear stress firstly go up 
and then down. It is also obvious that both of shear and viscosity contribute to the pipe 
pressure (Wallevik 2003; Kirk et al. 2015; Feys et al. 2008; Yahia and Khayat 2001).

Therefore, the pressure was influenced indirectly by mix proportion. The rheological 
parameters of three fresh concrete were measured by fresh concrete rheometer (Model 
eBT2, purchased from Germay Schleibinger company), the results are shown in Table 3.

It is known that in the process of pumping, the wet shotcrete, a kind of composite 
material which includes water, cement and aggregates as the main components, moves 
in the pipe as a large bulk. In a point of suspension, solid particles of shotcrete suspense 
concentratedly in a viscous liquid (i.e. paste or mortar). Under the action of pump push 
force, the unit equilibrium analysis of wet shotcrete in a pipe is shown in Fig. 7.

Based on the fact that fresh concrete was analogous to a general Bingham body, the 
pumping of wet shotcrete was regarded as a sort of flowing of Bingham liquid along 
pipelines. In accordance with the derivation method of Eq. (2), Buckingham rheological 
equation was derived as follows:

where η is the viscous constant (Pa s) and v is the slip speed (m/s), D is the pipe diameter.
As the profiles of pressure are shown in Fig.  6, there was the linear relationship 

between the axial pressure variation �p and flow rate for an element in the pipe whose 

(5)πr2 ·�p = 2πr · τ · l

(6)τ = r ·
�p

2l

(7)τ =
4

3
τ0 + η ·

(

8v

D

)

Table 3  Rheology parameters

Type Group 1 Group 2 Group 3

Plastic viscosity (Pa s) 15 12 26

Yield stress (Pa) 85 113 127

Fig. 7  Fresh wet shotcrete flow in the pipeline
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length was l. In order to describe the mathematical relationship between the stress and 
the speed, another linear regression Eq. (8) was done based on Eq. (7)

The linear regression maked it possible to find the rheological parameters from Eq. (7)

The formation of lubrication layer

Indeed, the loss of pressure is located on the lubrication layer which consists of cement 
paste or mortar, as the coarse aggregates move away from the zone with shear-induced 
particle migration. As is shown in Fig. 2, the entire velocity variation between pipe wall 
and concrete bulk is concentrated in this layer. In order to explore the formation mecha-
nism of the lubrication layer, two kinds of particulate distributive models are established 
along the time axial: slurry cementing model and capillary water coupling model.

(1) �    �Slurry cementing model. It is known that the concrete particles evenly distrib-
ute in the hopper before pumping, and the particles are uniformly filled in free 
cement mortar whose connection among particles is slurry cementing model. At 
the same time, the force between liquid and particles is greater than or equal to 
the force between particles Flk ≥ Fkk, as is shown in Fig. 8a

(2) �   � �Capillary water coupling model. In the process of pumping, the uniform distribu-
tion of particles is broken by the tip flow of cement paste and by inertia of parti-
cles motion at the pipe wall, relative with the viscous drag of the inserted cement 
paste, forcing the coarse particles to move towards the pipe center. In the proper 
distribution proportion, the kinetic particles suspension is caused by the sum of 
lift force and buoyancy which is greater than gravity in the pipe. Therefore, the 
free slurry is pushed towards the bottom half of pipes to form lubrication. How-
ever, due to the operating characteristic of the piston pump, the flowing speed 
of wet shotcrete in the pipe is slower than that of piston pump and the particles 
speed in wet concrete is not always at the peak of pumping speed (Fig.  4). The 
particles whose gravity is greater than buoyancy begin to sink in the pipe when 

(8)τ = a+ b · v

(9)











τ0 =
3a

4

η =
rb

8

kklk

bubble

lubrication

before pumping after pumping

a
b

Fig. 8  Physical model of particle distributein pipe. a slurry cementing model, b capillary water coupling 
model
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they lose lifting force because of low or no speed leading to the formation of the 
lubrication layer in the upper half of pipes. At the same moment, the particles 
which have concentrated in the center of pipes keep on suspending at the action 
of capillary water tension. Therefore, the stability of pumping is beneficial for the 
formation of lubrication, while the longer machine halt or bigger pumping pres-
sure is prone to breaking the normal particles migration for forming lubrication.

In other words, the formation of lubrication layer is caused by the particles migration. 
The force between liquid and particles is transformed to the capillary water tension. The 
skeleton of wet shotcrete is filled with the liquid and air, where there is a surface tension 
at the interface of liquid and air bubble, as is shown in Fig. 8b. At the same time, the liq-
uid in the skeleton void changes to be the capillary edges liquid under the pull σT, and 
the particles is forced to aggregate under the action of the pressure Pc.

Pipe pressure calculation based on lubrication layer

The rheologic material of the lubrication layer is the one of the constitutive mortar. 
There is a simple approach that can capture the concentration of shear in the fluid lubri-
cation layer (Myoungsung et al. 2013). The shear rate in the lubrication layer can be esti-
mated as

where vlu is the average velocity of the lubrication layer, δ is the lubrication layer thick-
ness, ηlu is the plastic viscosity of the mortar in the lubrication layer, ηbulk is the plastic 
viscosity of concrete in the bulk, V0 is the average concrete velocity.

In this shear rate range, the contribution of the yield stress of the mortar can be 
neglected and the average shear rate in the lubrication layer can be approximated as 
dvlu
dr

=
�p·R
2Lηlu

, so the pressure gradient can be computed as:

where ηlu can be calculated from the Eq. (9). The size of particles should be considered 
when estimating ηbulk (Mahmoodzadeh and Chidiac 2013), so the approach has been 
adopted in this formula,

where ηi is instrinsic viscosity, y is a function of concentration ϕ, ϕm is the maximum 
packing density.

Numerical simulation and verification
The lubrication layer facilitates the flowing of fresh wet shotcrete through pipes. In order 
to predict the thickness of lubrication layer, the computational fluid dynamics (CFD) 
simulation and comparative analysis with experiment data were therefore used to solve 

(10)
dvlu

dr
=

V0

δ + Rηlu/2ηbulk

(11)
�p

L
=

2ηluV0

R(δ + Rηlu/2ηbulk)

(12)ηbulk = ηi ·

[

y3
4(1− y7)

4(1+ y10)− 25y3(1+ y4)+ 42y5

]

(13)y(ϕ) = (ϕ/ϕm)
1/3
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this complex problem. In the stabilization stage of pumping, the concrete flow was nearly 
continuous and the interaction between particles were slight. Therefore, in simulation, 
the fresh concrete was simplified and regarded as single phase fluid. Therefore, the com-
putational modeling techniques could simulate concrete flow by using a single phase fluid 
method with the commercial CFD code Fluent (Gram and Silfwerbrand 2011; Fluent Inc 
2011). The parameters of fresh concrete for simulation are shown in Table 4.

Those following boundary conditions were used as follows: the inlet velocity of wet 
shotcrete was set according to the flow rate and the outlet pressure was fixed at the 
atmospheric pressure. No slip conditions were applied for the pipe interface. The mesh-
ing zone was divided into a lubrication layer and a bulk zone (Fig. 9).

We considered the case of a 100 m pumping circuit with a 7 m3/h flow rate and the 
varied lubrication layer from 1 to 5 mm. Then we compared the simulation pressure pro-
file with the experimental pressure along the pipeline (Fig. 10).

The numerical simulation results of different lubrication layers and the pressure dis-
tribution along the pumping circuit for the three tested concretes are shown in Fig. 10. 
The different thickness of lubrication layers had different numerical simulation results 
that the thicker the lubrication layer is, the smaller the pipe pressure is. The simulated 
pumping pressure of 1  mm lubrication layer was approximately 1.7 times higher than 
those of 5 mm lubrication layer. It could be seen that no or less lubrication layer caused 
by unreasonable mix design may result in high pipe pressure. If the pumping pressure 
required by pumping wet shotcrete exceeds the capacity of the high pressure pump, 
pipe blockage will happen. The best agreements of Group1, Group 2 and Group 3 were 
obtained respectively for the layer thickness of 2, 3.5 and 1.5 mm. To verify the thick-
ness simulated, a new method for measuring the thickness of lubrication layer as follow: 
cutting three kind of flowing concrete in pipe along cross-section after hardening; pho-
tographing the cross-section and binarization processing as shown in Fig. 11; measuring 

Table 4  Parameters of fresh concrete for simulation

Material no. Phase Density  
(kg/m3)

Viscosity  
coefficient (Pa s)

Thickness preseted 
of lubrication layer 
(mm)

Group 1 Single phase 2220 15 1–5

Group 2 Single phase 2239 12 1–5

Group 3 Single phase 2238 26 1–5

Fig. 9  Cross section including the lubrication layer
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the distance of ten aggregates that are most close to the outer boundary from the outer 
boundary of cross-section; finally, calculating the average value of the distances as the 
the thickness of lubrication layer as shown in Table 5. It can be seen that the tested value 
is similar to the simulated value.

In order to deeply study, the relationship between thickness of lubrication layer 
and content of each material was analysed as shown in Fig. 12. There were not strong 
dependency between thickness of lubrication layer and content of binder, water and 
sand, excepting limestone that showed the declining trend with increasing lubrication 
thickness. However, it can be seen that the content of binder and sand was largest in 
concrete than that of others, which may explain that the more cement and sand, less 
coarse aggregate, are beneficial for the formation of lubrication layer. We also gained 
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Fig. 10  Pressure variation for different lubrication layer thicknesses

Fig. 11  Binarization processing of the cross-sections of three concretes

Table 5  Calculation of measured thickness and omparation with simulation

No. 1 2 3 4 5 6 7 8 9 10 Average value of test Simulated value

Group 1 (mm) 1.8 0.2 2.4 3.3 0.7 2.6 2.1 1.4 3.1 1.7 1.93 2

Group 2 (mm) 4.6 3.3 0.4 4.7 5.3 2.3 3.3 3.6 4.6 2.5 3.46 3.5

Group 3 (mm) 0.2 1.8 0.9 1.5 0.6 2.5 1.8 2 1.7 1.3 1.43 1.5
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that the thickness of lubrication layer increases with the plastic viscosity increasing from 
Table 3. In addition, the thickness of lubrication layer may be effected by the aggregate 
gradation, the proposed point should be future studied next step.

Combined with the thickness of lubrication layer, 2, 3.5 and 1.5 mm, from the numeri-
cal simulation and measured value, the pressure distribution calculated from the pres-
sure gradient formula (Eq.  11) was plotted in Fig.  13. There was a better agreement 
between the computed and tested value, and the discrepancies between them could be 
seen: the computed value was similar to the experimental data in Group 2, while there 
were the most discrepancies in Group 3 that the calculated results were entirely greater 
than the experimental data. According to the analysis, the discrepancies of three com-
parative groups may be caused by the different mix proportion.
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Conclusions
In order to achieve high quality wet shotcrete for the tunnel mine support and under-
stand the pumping process of wet shotcrete, the pumping experiments that can carry 
out a number of full-scale pumping tests were studied in this paper. The experimental 
results showed that there was the linear relationship between pressure loss and flow rate. 
The computing equations of the yield shear stress and plastic viscosity were deduced by 
linear regression with Buckingham rheological equation. In addition, in order to analyze 
the formation of lubrication layer relating with particles migration, two kind of particu-
late distributive models were established along the time axial: slurry cementing model 
before pumping and capillary water coupling model in the process of pumping. By the 
computational fluid dynamics CFD simulation, the thickness of the lubrication layer was 
respectively found to be around 2, 3.5 and 1.5 mm in Group1, Group 2 and Group 3. A 
new method for measuring the thickness of lubrication layer was proposed to verify it 
by cutting the harden concrete and binarization processing. Two of test and simulation 
showed similar results of thickness. This layer thickness mainly depended on the con-
crete mix design in Group 2 was extremely suitable for the wet shotcrete flow in pipes.

On a basis of the simulation results, the computed method of lubrication layer were 
obtained from the rheological characteristics of wet shotcrete. The pumping pressure 
was estimated with various thickness of lubrication layer, which obtains a good result. 
According to the comparative analysis, the lubrication layer played a key role in the pro-
cess of wet shotcrete flow and the pipe pressure gradually declined as the lubrication 
layer become thick. In conclusion, for improving the efficiency of lubrication formation 
and pumpability, the wet shotcrete should be pumped stably at relatively low flow rate, 
and the mix proportion should be adjusted with relatively increasing cement and sand 
content, reducing the content of coarse aggregate in a reasonable range.
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