Published online 30 June 2011

Nucleic Acids Research, 2011, Vol. 39, No. 18 8065-8077

doi:10.1093/nar[gkr478

Identification of an hepatitis delta virus-like
ribozyme at the mRNA 5-end of the L1Tc
retrotransposon from Trypanosoma cruzi

Francisco J. Sanchez-Luque', Manuel C. Léopez'*, Francisco Macias', Carlos Alonso?

and M. Carmen Thomas™'*

"Departamento de Biologia Molecular, Instituto de Parasitologia y Biomedicina Lépez Neyra—CSIC, Parque
Tecnoldgico de Ciencias de la Salud, Granada and 2Centro de Biologia Molecular Severo Ochoa—CSIC,

Madrid, Spain

Received January 21, 2011; Revised and Accepted May 24, 2011

ABSTRACT

L1Tc is a non-LTR LINE element from Trypanosoma
cruzi that encodes its transposition machinery and
bears an internal promoter. Herewith, we report the
identification of an in vitro active hepatitis delta
virus-like ribozyme located in the first 77 nt at the
5-end of the L1Tc mRNA (L1TcRz). The data pre-
sented show that L1TcRz has a co-transcriptional
function. Using gel-purified uncleaved RNA tran-
scripts, the data presented indicate that the kinetics
of the self-cleaving, in a magnesium-dependent
reaction, fits to a two-phase decay curve. The
cleavage point identified by primer extension takes
place at +1 position of the element. The hydroxyl
nature of the 5-end of the 3'-fragment generated
by the cleavage activity of L1TcRz was confirmed.
Since we have previously described that the 77-nt
long fragment located at the 5-end of L1Tc has
promoter activity, the existence of a ribozyme in
L1Tc makes this element to be the first described
non-LTR retroelement that has an internal
promoter-ribozyme dual function. The L1Tc nucleo-
tides located downstream of the ribozyme catalytic
motif appear to inhibit its activity. This inhibition
may be influenced by the existence of a specific
L1iTc RNA conformation that is recognized by
RNase P.

INTRODUCTION

Retrotransposons are mobile DNA eclements that trans-
pose through an RNA intermediate, which is reverse trans-
cribed and integrated into a new position in the genome.

These elements are classified into two major groups: those
that are flanked by long terminal repeats (LTR) or LTR
retrotransposons and those that lack LTR named
non-LTR retrotransposons. Two groups of elements lack-
ing LTR have been described: long interspersed nucleotide
elements (LINEs, also known as L1) with coding capacity
and short interspersed nucleotide elements (SINEs)
without coding capacity. LINEs and SINEs bear a
poly-A tail and are flanked by direct target site duplication
(TSD) sequences. Some of these elements exhibit site spe-
cificity for insertion, while others present a random distri-
bution. Since transcription is the first step in the element
mobilization process, some non-LTR elements (fly,
humans, mouse or Trypanosoma cruzi L1) bear an internal
promoter to preserve its autonomous character (1-5).
Furthermore, LINEs encode the proteins implicated in
their mobilization mechanism, being able to mobilize
SINEs in trans. The mobilization mechanism has been
termed target-primed reverse transcription (TPRT) (6).
The L1Tc element 1is the most well studied
non-LTR retrotransposon of the genome of 7. cruzi, a
protozoan parasite responsible for Chagas’ disease,
a chronic sickness that affects 10 million people in South
America (http://www.who.int/mediacentre/factsheets/
fs340/en/index.html). L1Tc is actively transcribed as a
polyadenylated mRNA (7). It codes for the enzyme ma-
chinery involved in TPRT, including an apurinic/
apyrimidinic (AP) endonuclease (7,8), 3’-phosphatase,
3’-phosphodiesterase, a reverse transcriptase (9), RNase
H (10) and a nucleic acid chaperone (11,12). L1Tc also
bears at its N-terminal end a functional 2A-autoproteolitic
sequence (13) similar to that found in small-size RNA
viruses. The first 77 nt of L1Tc (Pr77) correspond to an
internal promoter that generates abundant and translat-
able transcripts (5). Run-on analyses employing RNA
polymerase-specific inhibitors suggest that LI1Tc is
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transcribed by RNA polymerase II. Pr77-derived tran-
scripts are not processed by a frans-splicing mechanism
and initiate at nucleotide +1 of L1Tc (5). In spite of the
large and diverse chromosome distribution of L1Tc in
several strains of the parasite (14), there is evidence sug-
gesting that L1Tc may show certain insertion site specifi-
city (15). Pr77 is not restricted to L1Tc from 7. cruzi as it
is also present at the NARTc non-autonomous retrotrans-
poson of the T. cruzi genome (16), at the ingi and RIME
non-LTR retrotransposons of the 7. brucei genome (17),
at short interspersed degenerate retrotransposon in the
genomes of Leishmania species (18) and also it has been
found associated with sequences not related to retroele-
ments at different positions of the 7. brucei genome (15).

Recently, the presence of an active hepatitis delta virus
(HDV)-like ribozyme at the 5-untranslated region
(5-UTR) of the Drosophila simulans R2 element has
been described (19). The R2 non-LTR retrotransposon
copies from Drosophila are specifically integrated into
the same position of the 28S ribosomal genes and are
co-transcribed with the rRNA. The ribozyme releases
the R2 mRNA from the 28S-R2 co-transcript in vitro
leaving a 5'-end similar to that detected in R2 transcripts
in vivo. In contrast to L1Tc, the R2 element does not have
an internal promoter.

The HDV ribozyme belongs to the group of small auto-
catalytic RNAs whose members are smaller than 200 nt in
length and catalyze a trans-esterification that leads to the
cleavage of the RNA sugar—phosphate backbone leaving
5-hydroxyl and 2’,3’-cyclic phosphate ends (20,21). The
HDYV ribozyme was first described to reside within the
HDV circular RNA, where it releases the genomic RNA
units from the large concatemers generated by rolling
circle replication (22). This ribozyme cleaves at a site
located immediately upstream of the minimal catalytic
domain that exhibits a compact tertiary structure. New
members of the HDV-like ribozyme family have been
described to be present in the human genome (23) as
well as in other organisms, including insects, plants and
fish, where they have shown to be functional (24).

In the present article, we report the identification of an
active HDV-like ribozyme located in the first 77 conserved
nucleotides of the 5-end of the mRNA from the L1Tc
retrotransposon (L1TcRz). The sequence of the minimal
catalytic domain endowed with activity is compatible with
an HDV-like ribozyme folding. We have analyzed the
cleavage kinetics at different Mg>" concentrations and
identified the cleavage site. We also analyzed the nature
of the 5-end generated by the activity of L1TcRz and
described the influence of the upstream sequences in the
optimal folding required for catalysis. The results are con-
sistent with the idea that L1TcRz belongs to the HDV-like
ribozyme type. The LI1TcRz is the first HDV-like
ribozyme reported in Trypanosomatids, the second re-
ported in a non-LTR retroelement and the fourth char-
acterized in depth. Since we have previously described that
Pr77 has promoter activity, the existence of a ribozyme
in this region of L1Tc makes this element to be the
first described non-LTR retroelement with an internal
promoter-ribozyme dual function. It was observed that
the region of LI1Tc located downstream of LI1TcRz

negatively affects the ribozyme activity. This region leads
the 5-UTR to adopt a structure that sequesters the
L1TcRz into a non-catalytic conformation. Pr77-derived
transcripts are translated despite the fact that they are not
processed by trans-splicing (5), suggesting the existence of
a cap-independent translation mechanism similar to the
internal ribosome entry site (IRES) described for mouse
L1 (25). Since IRESs are generally sensitive to RNase P
cleavage in vitro (26,27), the data of the RNase P-mediated
cleavage presented in this article support the hypothesis
that an IRES may be present in L1Tc.

MATERIALS AND METHODS
Construction of DNA templates for transcription

DNA templates were generated for in vitro transcription
by PCR employing two different templates: L1Tc genomic
clone 7134 and L1Tc cDNA clone 55 (7) (accession
number X83098). Both clones differ in the composition
of the sequence located upstream of the +1 position of
the element. Constructs were also generated bearing the
pGEM-T easy sequence and the L1Tc sequence of differ-
ent lengths starting at its +1 position.

The general scheme of PCRs consisted of a single
5-primer that incorporates the T7 RNA polymerase pro-
moter and anneals several nucleotides upstream of the +1
position of the element or at the pGEMT-easy vector,
where L1Tc 1-152 fragment is cloned and different
3/-primers are annealed at different positions within
L1Tc sequence. The 5-primers are common for all con-
structs of each clone, while 3’-primers are common for the
three series and unique for each length product.

PCRs were performed by ReddyMix Kit (Thermo
Fisher Scientific—ABgene) and agarose gel purified
by phenolic extraction. The 5-primers were: T7 c55
—100 (5-TAATACGACTCACTATAGGGCGCTGTA
CTA-3') annealing 100nt upstream the +1nt of clone
55; T7-5-UTR-G3PDHf (5-TAATACGACTCACTAT
AGGGATATTTTTACTTTGAAAGCCA-3) annealing
171 nt upstream the +1 nt of clone 7134; and M 13 univer-
sal forward primer (5-GTTTCCCAGTCACGAC-3).
The 3’-primers were: L1Tc55+47r (5-GAGTACTAGAC
CCTGGCACCA-3), L1Tc55+59r (5-CTCTCTAGCAA
AGAGTACTAGACCCT-3'), L1Tc55+70r (5-CGCTTA
GCTTCCTCTCTAGC-3'), L1Tc55+77r (5-CAGCAGG
CGCTTAGCTTCCTCT-3'), L1Te55+126r (5-CCGACC
CGTTTGTGCGGCG-3') and L1Tc55+152r (5-TGTAA
ATGGCTCCATCT-3).

Additional substrates were used for cleavage reactions
resolved in native gels. In this case, clone 7134 was chosen
for these experiments and uncleaved RNAs were designed
to contain 10nt upstream the cleavage position. DNA
templates were generated by PCR using T7 L1Tc7134-
10f (5-TAATACGACTCACTATAGGGACATCCTCA
GCCCTG-3') primer in 5 and LI1Tc55+77r, L1Tc55+
126r and L1Tc+152r in 3. NARTc RNAs synthesis and
co-transcriptional cleavage assays were performed using
DNA templates generated by PCR using pBACS52-
EcoR1 digested band 3 (14) as DNA template and the
primers T7 NARTc-11f (5-TAATACGACTCACTATA



GGGTATCTTTGGCCCCTG-3') in 5 and L1Tc55+77r,
NARTc+126r (5-AAAACTAAGTAACAACTACTCAT
C-3") and NARTc+152r (5-CTCCAACATCTGCCCTTC
C-3)in 3.

Co-transcriptional cleavage assays

About 22ng of PCR templates were transcribed by T7
RNA polymerase kit (PROMEGA) following manufac-
turer instructions with the following exceptions: reactions
were scaled down to 10ul final volume, 0.5-1uCi of
o*?P-UTP was added to each reaction, and UTP final con-
centration was reduced to 0.8 mM. Reactions were carried
out for 2h and performed at three different temperatures:
42, 37 and 25°C. About 10 pl of formamide buffer 2x were
added to each reaction as stop and loading buffer.
Samples were resolved in 8% polyacrylamide, 7M urea
and tris—-borate—-EDTA (TBE) 1x gel electrophoresis.

Cleavage reactions

About 45 ng of the DNA templates were transcribed using
the T7 RNA polymerase kit (PROMEGA) following
manufacturer instructions in a 100 pl final volume reaction
and co-transcriptionally radiolabeled by reducing UTP to
0.4mM final concentration and adding 40puCi of
o**P-UTP to the reaction. Transcriptions were performed
at 37°C for 2h and stopped by addition of 100 pul 2x
formamide buffer. Uncleaved fragments were purified
from 8% polyacrylamide, 7M urea and TBE 1x gel elec-
trophoresis. RNA elution was performed at 4°C, shaking
overnight in buffer TEN,5o (10 mM, pH 7 Tris—HCI, 1 mM
EDTA, 250 mM NacCl) followed by phenol extraction.

Cleavage reactions were performed as follows. Trace
amounts of endogenously radiolabeled RNA were rena-
tured in 0.5mM pH 7 Tris—HCI, 0.05mM EDTA by in-
cubation at 85°C for Smin followed by 10min at room
temperature. Samples were then tempered at 37°C for
2min. This point is taken as time 0. Three different
MgCl, concentrations were assayed for cleavage reactions.
Cleavage reaction is started by adding reaction buffer
until final concentrations of 40mM pH 7 Tris—HCI,
10mM NaCl and either 10, 1 and 0.1 mM MgCl,. The
final concentration of EDTA in the reactions was
0.02mM. It was necessary to incorporate an extra series
of experiments for pGEM-T easy clone RNA at 0.5 mM
MgCl, final concentration. Different time points were
taken and cleavage reactions were stopped by adding
one volume of 2x formamide buffer and kept frozen at
—80°C. Reactions were performed in triplicate and re-
solved by electrophoresis in 8% polyacrylamide, 7M
urea and 1x TBE gel. Gels were dried and incubated
with phosphor-storage screens for scanning in Typhoon
and quantification.

The plotted data was fitted to both double exponential
(Equation 1) and hyperbolic (Equation 2) equations by the
Prism 5 v.500 software (GraphPad Software, Inc.). These
equations are as follows:

fo=A+Be M4+ Ceket 1
Je=A/(t+To5) (2)
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where f,. is the cleaved fraction, 7 is the time, A4 is the
cleavage fraction at infinite times, —B and —C are the
amplitudes of the observable phases (Equation 1), k;
and k, are the observed first-order rate constant for the
fast and slow phases respectively (Equation 1) and T} 5 is
the time at . = 4/2 (Equation 2).

Checking for 5'-hydroxyl ends

The 77nt length 3'-fragments generated by co-transcrip-
tional cleavage reactions of pGEM-T-61/L1Tc+77,
7134-171/L1Tc+77 and 55-171/L1Tc+77 constructs were
gel purified as described above for uncleaved RNA. For
the cleavage 3’-product of the pGEM-T easy construct,
one-half of the product was dephosphorylated at 37°C
for 30 min with 1 U of calf intestinal alkaline phosphatase
(Roche) and subsequently gel purified (3cGEMT?*). The
other half was not dephosphorylated. Aliquots of each
sample RNA were split into two tubes to insure the
same radiolabeling level for samples with and without
T4 polynucleotide kinase (T4 PNK, Roche). Control
samples were carried out in a 10pl final volume with
nuclease-free water. Experimental samples were 5-end
radiolabeled by phosphorylation reaction in 10 ul final
volume for 20 min by adding 30 uCi y**P-ATP, 10U T4
PNK enzyme (New England Biolabs) and the appropriate
reaction buffer. Reactions were stopped by addition of
10 pl of 2x formamide buffer and resolved by electrophor-
esis in 8% polyacrylamide, 7M urea, 1x TBE gel.

Determining the HDV-like ribozyme cleavage site by
primer extension

The same 3'-cleavage fragments used for the analysis of
the hydroxyl nature of their 5'-ends were used unlabeled as
substrate for primer extension analysis. Reaction was per-
formed with L1Tc55+77r primer and M-MuLV reverse
transcriptase (Roche). First, L1Tc55+77r primer was
radiolabeled by phosphorylation by T4 PNK using
v?P-ATP as phosphate donor. The reaction mix
contains 15 pmol of primer, 10 U of enzyme and 30 puCi
of y**P-ATP in a final volume of 10l and at 1x reac-
tion buffer. Reaction is performed at 37°C for 30 min. The
radiolabeled product was gel purified as described for
uncleaved RNAs. Reverse transcription reaction was per-
formed by mixing 200 ng of RNA, 1 pmol of primer and
40 U RNase-inhibitor in a final volume of 6.5 pl. This mix
is denatured at 85°C for Smin and primer annealing is
performed at 25°C for 10min. The reaction was carried
in 20 pl final volume in the presence of 40 U enzyme, add-
itional 25U of RNase-inhibitor (Promega), at final con-
centrations 10mM of each dNTPs and at 1x reaction
buffer. Reaction was performed for 1h at 37°C and
stopped by adding the same volume of 2x formamide
buffer.

Manual sequencing of the ¢7134-171/L1Tc+126 PCR
DNA template was performed with the same primer
used for sequence ladder. Sequencing reactions were per-
formed using Thermo Sequenase™ Cycle Sequencing Kit
(USB) and following manufacturer’s indications.



8068 Nucleic Acids Research, 2011, Vol. 39, No. 18

RNA cleavage by RNase P

The RNA fraction of Escherichia coli RNAse P known as
M1 RNA and its natural substrate pre-tRNAY" were
in vitro transcribed using the T7 RNA polymerase kit
(PROMEGA) and DNA templates kindly ceded by Dr
Jordi Gomez. Both templates were linearized by FokI di-
gestion prior to transcription. RNAs were gel purified by
UV shadowing and eluted as described before for uncle-
aved RNAs. M1 RNA was resuspended in nuclease-free
water and adjusted to a final concentration of 500 nM.
The same volume of 2x buffer B (20mM, pH 7.5 Tris—
HCI, 20mM MgCl,, 200mM NH,4Cl) was added to the
reaction. Then, the sample was denatured at 65°C for
Smin and renatured by slow cooling to reach room tem-
perature. The M1 RNA is aliquoted and preserved at
—20°C. The different RNAs tested as substrates for M1
RNA cleavage were endogenously radiolabeled during
transcription and gel purified. About 300-500 cps of
each RNA are incubated for 1h at 37°C in 50 mM Tris—
HCI, 0.1 mM NH4Cl, 100 mM MgCl, and 4% polyethyl-
ene glycol with 20 U of RNase-inhibitor and 1.25 pmol of
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M1 RNA in a final volume of 10 pl. The reactions were
stopped by adding 10pul of 2x formamide buffer and
resolved by 8% polyacrylamide, 7M urea, TBE 1x gel
electrophoresis.

RESULTS

Identification of an HDV-like ribozyme folding in the
5’-end of L1Tc

Based on the recent identification of several HDV-like
ribozyme candidates located at the 5'-end of retrotrans-
posons (19), we performed as a first attempt a manual
structure-based search in the sequence located at
the 5-termini of the L1Tc non-LTR retrotransposon
(Figure 1A). Folding and sequence analyses showed spe-
cific characteristics at the first 77nt of L1Tc that are
partially compatible with those present in the three
HDV-like ribozymes that experimentally have been
shown to be active (Figure 1B;) (19,22,23). The three
helices of HDV-like ribozymes, known as P1, P2 and P4,
are detected in the putative L1Tc ribozyme folding as well

Single Open Reading Frame

Y

N
@lndJe]
[n]g]=n)

U
&g cC U
G-C G-C
U'A G'C
C+G &G
&C.G U.A
SI/C;G G:C
U-AACGUG:-C
UC C U
&
C
UA G
C-GGAAGCUAA
U=A
C:-G
U=A
u=G
CU

Figure 1. Schematic representation of L1Tc element, HDV-like ribozyme and L1TcRz foldings. (A) L1Tc non-LTR retrotransposon present in
T. cruzi genome. Its sequence is flanked by two direct repetitions called target site duplications (TSDs). The 5-UTR contains a 77-nt internal
promoter (Pr77). Some copies present a single open reading frame that codifies for the following functional domains: AP endonuclease, reverse
transcriptase (RT), RNase H and nucleic acids chaperone. A 2A autoproteolitic domain (2A) is present within the N-terminal end preceded by a
short peptide. A nuclear localization signal (NLS) is detected within the nucleic acid chaperone domain. The 3’-UTR is composed by a 21nt
fragment and a poly-A track. (B;) HDV-like ribozyme and (B,) L1TcRz foldings. HDV-like ribozyme scheme is based on the three described ones
that have been fully characterized (19,22,23). Solid line circles represent conserved base pairings of variable composition; dotted line circles also
represent variability in nucleotide number (from 0 to more than one); the conserved nucleotides in the three characterized ribozymes are indicated.
Helix names are shown as P1, P1.1, P2, P3 and P4. The arrow points to the cleavage site.



as the two pseudoknots. The P3 pseudoknot involves 3 bp,
while the P1.1 pseudoknot involves 1 or 2 bp (Figure 1B,).
Furthermore, there is high identity at the nucleotide level
of several bases implicated in the helices and pseudoknots
formation.

Co-transcriptional self-cleaving activity in the L1Tc
5'-termini RNA. Identification of the catalytic domain

To determine the existence of co-transcriptional cleavage
activity in the L1Tc 5-end RNA, a series of DNA tem-
plates bearing L1Tc 5-end sequences were generated for
in vitro transcription. The cleavage activity associated with
the sequence that adopts the HDV-like folding (the 77-nt
length sequence of the 5'-end of L1Tc) was evaluated as
well as shorter (70, 59 and 47 nt) and longer (126 and 152 nt)
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sequences (see scheme in Figure 2A;-3C,). To evaluate
whether or not sequences located upstream of L1Tc had
any influence in the activity of the ribozyme, three DNA
template groups were constructed. Sequences located
upstream of the first nucleotide of two different copies
of L1Tc were assayed. One of the sequences corresponds
to a genomic clone, called 7134 (Figure 2A,), and the
other, named clone 55 (Figure 2B;), corresponds to a
cDNA clone isolated by positive hybridization to an RT
probe in the screening of a 7. cruzi cDNA library (7) (ac-
cession number X83098). The third DNA template group
was generated bearing a sequence of the pGEM-T easy
vector located upstream of L1Tc sequences (Figure 2C)).

The analysis of the RNA products revealed co-trans-
criptional cleavage activity in all constructs containing the
77nt in length sequence as they gave rise to the expected
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Figure 2. Co-transcriptional cleavage of L1Tc RNAs of different length and at different temperatures. Co-transcriptional cleavage of the L1TcRz
was checked in three different insertion environments: genomic clone 7134 (A), cDNA clone 55 (B) and L1Tc-unrelated pGEM-T easy clone (C). The
constructs of different length assayed are represented as thin lines in A, B; and C; schemes. The vertical lines labeled as +1 represent the expected
cleavage point. Autoradiographs of the electrophoretic analysis of the transcription and co-transcriptional cleavage reactions at different tempera-
tures are represented in A,, B, and C,. The full-length uncleaved fragment is represented by empty circles; the uncleaved fragment with the complete
77-nt length L1TcRz catalytic domain is represented by a solid circle; the cleavage 5'-product is represented by solid arrowheads; the cleavage
3’-product is represented by empty arrowheads. The average cleavage quantification of three independent triplicates of each reaction is represented on

A3, B3 and C3.
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full-length RNAs of 248, 177 and 138 nt (Figure 2A,—C,,
respectively, lane 77, black circle) in addition to the cleav-
age S-products of the 171, 100 and 61 nt (Figure 2A,—C>,
respectively, lanes 77 black arrowheads) and the 77nt
3'-product (Figure 2A2-C2, lanes 77 white arrowheads).
Construct +70 had significant catalytic activity in the
pGEM-T easy clone (Figure 2C,, lane 70), weak catalytic
activity in clone 7134 (Figure 2A,, lane 70) and an un-
detectable one in clone 55 (Figure 2B, lane 70). No
co-transcriptional activity was observed when subsequent
deletions +59 and +47 of the three clones were assayed
(Figure 2A,—C,, lanes 59 and 47). The addition of 49- and
75-nt length sequences located downstream of the L1Tc
Pr77 in constructs +126 and +152 did not prevent the
co-transcriptional cleavage although it was substantially
reduced (Figure 2A,—C,, lanes 126 and 152). Data repre-
senting the cleavage levels of all mentioned constructs at
different temperatures is shown in Figure 2, panels A,—C,
and represented in Figure 2, panels A;—C;. The sequences
located upstream of LITc influenced the cleaving effi-
ciency since maximal cleavage was observed in the
pGEM-T easy -61/L1Tc+77 construct. A lower cleaving
activity was observed in clones 7134-171/L1Tc+77 and
particularly in clones 55-100/L1Tc+77. The highest
co-transcriptional cleavage activity was observed when
the reactions were carried out at 42°C in 7134 and

pGEM-T easy clones. A slight decrease was observed
when the reactions were performed at 37°C. However,
the co-transcriptional activity drastically dropped when
the reactions were performed at 25°C. An opposite
behavior was observed when clone 55 was assayed.

Nature of the 5'-ends generated by L1TcRz

To determine the nature of the 5-ends of the products
generated by LITcRz, we analyzed whether the
3’-products are directly accessible to 5-end radioactive
labeling by T4 PNK using y*’P-ATP as phosphate
donor (see scheme of Figure 3A). Thus, co-transcriptional
assays using clones 7134-171/L1Tc+77, 55-171/L1Tc+77
and pGEM-T easy -61/L1Tc+77 sequences were per-
formed as before. The endogenously radiolabeled RNA
3'-fragments were gel purified and the same amount of
each was both used for the 5'-end phosphorylation assay
and kept as control of the initial radiolabeling stage. The
results showed that the 5-ends of the 3'-fragments
generated in these reactions were sensitive to phosphoryl-
ation (Figure 3B) confirming the hydroxyl nature of the
S-end of the 3'-fragment generated by the cleavage
activity of the L1TcRz. To confirm that the observed
increase of labeling of the 3’-products was not due to the
presence of a small subpopulation of dephosphorylated
molecules, one-half of the 3’-product of the pGEM-T

A Clone pGEM-T easy-61/L1Tc+77 RNA
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Figure 3. Analysis of the 5'-hydroxyl nature of the ends of the cleavage 3'-products. Schematic cleavage reaction of the clone pGEM-T easy —61/
L1Tc+77 RNA is represented in (A). The uncleaved RNA is expected to have 5'-triphosphate and 3’-hydroxyl ends. The cleavage 5'- and 3’-products
are expected to have 2’,3'-cyclic phosphate and 5'-hydroxyl ends, respectively. The T4 polynucleotide kinase (T4 PNK) challenge is represented in (B).
5'-hydroxyl ends, not 5'-phosphate, are sensible to phosphorylation by T4 PNK. Same quantity of endogenously radiolabeled cleavage fragments was
both ice preserved in reaction buffer and phosphorylated by T4 PNK using gamma >?P-ATP as phosphate donor. The cleavage 3'-products of clones
7134, 55 and pGEM-T easy RNAs were further radiolabeled confirming the expected 5'-hydroxyl nature of their 5'-ends (solid arrowhead). The 61 nt
in length RNA 5-product of the cleavage of the pGEM-T easy construct is used as negative control in the phosphorylation reaction (the empty
arrow indicates the labeled 5'-product). One of the 3’-products is pre-treated with alkaline phosphatase prior to being treated with T4 PNK. (marked

with an asterisk).



easy construct was dephosphorylated by alkaline phos-
phatase treatment, gel-purified and subsequently phos-
phorylated (substrate 3cGEMT* in Figure 3). The
results showed that the level of phosphorylation was the
same in the dephosphorylated and in the not dephosphory-
lated RNA samples as an indication that the whole popu-
lation of the molecules had a 5'-hydroxyl end.

Cleavage kinetics and Cleavage site of L1TcRz

Clones 7134-171/L1Tc+77, 55-100/L1Tc+77 and pGEM-T
easy -61/L1Tc+77 uncleaved products (full-length tran-
scripts) generated by an in vitro transcription, shown in
Figure 3A,—C, (lanes 77-black circles), were gel purified
and used for the analysis of the cleavage kinetics (sche-
matic representation in Figure 4A;—A;). Cleavage reac-
tions were performed at physiological temperature
(37°C) at low ionic strength in the presence of EDTA
and at different Mg>" concentrations. As it is shown in
Figure 4B,—Bs, the cleavage reactions are Mg?" dependent
as no cleavage products were observed at 0.1 mM Mg>*. A
positive progression in the catalytic rates was detected
when the reaction was assayed at higher Mg?" concentra-
tions (1 and 10 mM). The highest cleaving efficiency of the
RNA derived from clones 7134-171/L1Tc+77 was
reached at a Mg>" concentration of 10mM (Figure 4B,).
The highest cleaving efficiency of the RNA derived from
clone pGEM-T easy-61/L1Tc+77 was reached at 1 mM
Mg?" (Figure 4B,;). Under the condition used in the
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present experiments, almost no appreciable cleaving
activity was observed for the RNA derived from clones
55-100/L1Tc+77 (Figure 4Bj). Figure 4, panels C;—Cjs,
shows the cleavage reaction kinetics for each assayed
clone at 1 mM Mg*".

The analysis of the data shown in Figures 5B; and B,
indicates that a high proportion of the cleavage of the
pGEM-T ecasy-61/L1Tc+77 and clones 7134-171/
L1Tc+77 transcripts occur in the first 2 min of the reaction
suggesting that L1TcRz is a fast-reacting ribozyme. In
fact, the maximum cleavage of pGEM-T casy-61/
L1Tc+77 RNA was reached at 0.277 & 0.029 min at
10mM Mg*>". The cleavage kinetic curve of clone 7134
171/L1Tc+77 RNA at 1 mM Mg?" (Figure 4B,) fits better
to a two-phase decay equation (solid line) than to a hyper-
bolic equation (dotted line). This behavior has been pre-
viously described for the HDV-like ribozyme of the
CPEB3 gene (28). The R* coefficient of the cleavage
reaction for clones 7134-171/L1Tc+77 RNA at 10mM
Mg?" and pGEM-T easy-61/L1Tc+77 RNA at any
Mg>" concentration is higher for a two-phase decay
curve than for a hyperbolic one. However, due to the
fast reacting activity of the ribozyme the fitting of the
equation performed by Prism 5 v.5.00 software
(GraphPad Software, Inc.) remains statistically ambigu-
ous. The two-phase decay curve used for the data fitting
corresponds to the double exponential equation used by
Chadalavada et al. (28). The parametric data of both
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Figure 4. Ribozyme kinetics. pGEM-T easy —61/L1Tc+77 (A;), clone 7134-171/L1Tc+77 (By) and clone 55-100/L1Tc+77 (Cy) uncleaved RNAs
were gel purified for cleavage reaction assays. The cleavage point (vertical line) and the expected size of the cleavage fragments are also represented in
(A). Cleavage reactions were performed at 37°C at different Mg>" concentrations. The result of the quantification of triplicates of each reaction is
represented in (By), (B,) and (B3) and the data are fitted to both a two-phase decay curve (solid line) and a hyperbolic one (dotted line). The cleavag,e
rate is represented from 0 (minimum) to 1 (maximum) indicated as (°/;). Autoradiographs of an example kinetic of each assayed RNA at 1 mM Mg*"
is shown in (C). Arrowheads indicate the uncleavaged RNAs (UC), and the 5'- (C5’) and 3’-products (C3’).
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hyperbolic and double exponential data fitting are
summarized in the Supplementary Table SI.

To analyze the specific cleavage site of L1TcRz, primer
extension assays were performed using the 3’-end frag-
ments resulting from the co-transcriptional cleavage reac-
tions of the pGEM-T easy-61/L1Tc+77 and clones
7134-171/L1Tc+77 templates. The gel-purified products
were used as template for the extension of the radiolabeled
L1Tc55+77r primer and the products resolved in a 6%
polyacrylamide, 7M urea, sequencing gel. Sequencing of
the clone 7134-171/+126 DNA template was also carried
out using the above-mentioned primer and employed as
molecular weight marker. As shown in Figure 5, the
full-length extended products correspond to the first nu-
cleotide of the L1Tc element (white arrowhead). The
cleavage site coincides with the transcription initiation
site of Pr77, previously described by Heras er al. (5). It
is noteworthy that two strong elongation stops were also
observed at G.3; and C, 33 positions (black arrowhead)
that may be due to the difficulty of the reverse transcript-
ase to extend the primer through the triple GC base
pairing predicted for the P1 helix of L1TcRz (see folding
Figure 1B,).

Influence of Pr77 downstream sequence in the required
folding for L1TcRz ribozyme activity

As it was shown in Figure 2, the L1Tc sequences located
downstream of the first 77 nt of the element partially in-
hibit the co-transcriptional cleavage activity of L1TcRz.
To determine the specificity of the downstream sequence
in disabling the ribozyme activity, a series of DNA tem-
plates were generated in which a pGEM-T easy sequence
of 146nt in length, named 146xeno, replaced the L1Tc
downstream +77nt sequence in clones 7134, clone 55
and pGEM-T easy. As it is shown in Figure 7A;, lanes
L1Tc7134, L1Tc55 and L1TcpGEMT, co-transcriptional
cleavage was observed in all reactions. Quantification of
the cleavage products and the comparison of their abun-
dance with those produced by the RNAs that bear +77,
+126 and +152 L1Tc sequences indicate (Figure 6A,) that
the replacement of the sequences located downstream of
Pr77 in L1Tc by those of pGEM-T easy partially restores
the co-transcriptional cleavage of clones 7134, 55 and
pGEM-T easy (+77) derived RNAs.

We further checked the implication of a sequence dif-
ferent from L1Tc but naturally located downstream of
Pr77 in the ribozyme activity of L1TcRz. Thus, the
sequence from the NARTc non-autonomous retroelement
was chosen as this element shares the first 77 nt with L1Tc
with close to 100% identity and 56% of the nucleotide
conservation with the Pr77 downstream sequence. The
two templates, NARTc —10/+126 and NARTc —10/
+152, exhibited cleavage products of a size consistent
with cleaving at position +1 of LITc (Figure 6Bj).
Quantification of the cleavage products (Figure 6B,) in
NARTc —10/+126 and —10/+152 RNAs indicates that
the NARTc downstream sequences do not negatively in-
fluence the cleavage efficiency as much as the correspond-
ing fragments from L1Tc do.

Primer

Extension <7134

= )
S ¥ sequencing
W

@ 5 C G AU

Figure 5. Primer extension of the 3’-products of in vitro cleavage.
3’-Products of co-transcriptional cleavage of pGEM-T easy —61 and
c¢7134-171/L1Tc +77 RNAs were used as template for primer
L1Tc55+77r extension. Manual sequencing of clones 7134-171/
L1Tc+126 PCR template using the same primer was resolved in the
same polyacrylamide gel as size standard. The maximum extension cor-
responding to the 5'-end of the products (empty arrowhead) is localized
in the C; nucleotide of the element. An intense premature stop of the
extension is localized at position G;; (solid arrowhead) corresponding
to the tight junction (triple GC base pairing) of the P1 helix (Figure 2).

The folding adopted by the L1Tc 5-UTR sequence is
cleaved by RNAse P

We further investigated the implications of L1Tc se-
quences located downstream of Pr77 in limiting the
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electrophoresis of NARTc constructs is shown in (By) and quantification of triplicates of these reactions in (B,). Empty circles indicate the uncleaved
RNAs, empty arrowheads correspond to the 3’-products and the solid arrowheads correspond to the 5'-products.

proper folding required for L1TcRz activity. Thus, we
analyzed the particular electrophoretic mobility of the
conformation endowed with ribozyme activity and
checked whether the sequences located downstream of
the first 77nt of L1Tc (49 and 75nt in length, RNAs
—10/+126 and —10/+152, respectively) induce a particular
folding that may inhibit the one required for LI1TcRz
ribozyme activity. The results revealed a global switching
of the folding of the L1Tc RNA from a catalytic form to a
non-catalytic one when sequence downstream the +77
position is included in the molecule (Supplementary
Figure S1). Since this inhibition is restricted to L1Tc
(not NARTYc¢) and we suspect the existence of an IRES-
like structure in the L1Tc 5-UTR but not in NARTc, we
checked the existence of a RNase P recognition motif in
these regions. Thus, we analyzed whether the folding
adopted by the 3’-products generated by L1Tc ribozyme
in the RNAs +77, +126 and +152 is recognized and
cleaved by the M1 RNA of E. coli RNase P. Thus,
in vitro transcription was carried out using the constructs
pGEM-T easy —61/L1Tc+77, /4126 and /+152. The
3’-products of the L1TcRz cleavage were gel purified for
subsequent RNase P digestion. Pre-tRNA"Y" was used as a
positive control. The results show that the cleavage of the
RNA + 126 and of RNA + 152 gave rise to two fragments:
one close to 50 nt long in each case and the other close to
75 and 100nt long, respectively (Figure 7A). Cleavage
products were not detected in the control reactions
carried out in the absence of RNase P or in the reactions
of the RNA +77. The fact that there are only two frag-
ments after RNase P digestion indicates that there is a
single recognition site in the L1Tc 5-UTR. Since one of

the two fragments resulting from the RNase P cleavage of
both substrates (Figure 7A, labeled by an asterisk) has the
same size (50 nt in length, approximately), it is most likely
that the RNase P cleavage site is located in the vicinity of
position +50 of the L1Tc RNA (see scheme of Figure 7B).

To confirm that the RNase P-digested structure corres-
ponds to a folding adopted by the mentioned L1Tc
sequence, transcripts of the same size were generated bear-
ing NARTc sequences. The data shown in Figure 7C
indicate that only the pre-tRNA"Y", used as a control, was
digested by RNAse P. Cleavage by RNAse P was not
detected when the L1Tc+77/+146xeno RNA was assayed
(data not shown). Further experiments will be required to
unambiguously show the presence of an IRES at the
5'-end of the L1TcRz.

DISCUSSION

In this work, we describe the presence of an HDV-like
ribozyme at the 5-end of the L1Tc mRNA, named
LI1TcRz. When the first 77nt of L1Tc mRNA were
analyzed, we manually obtained a compatible HDV-like
ribozyme folding structure (19,22,23). The analysis of the
transcription of templates from positions upstream of the
first nucleotide of the L1Tc element revealed the presence
of RNA fragments putatively generated by
co-transcriptional cleavage activity. Co-transcriptional
cleavage assays carried out on the sequences located at
the 5-end of L1Tc having various lengths (+47, +59,
+70 and +77) show that the highest autocatalytic
activity of L1TcRz resides within the first 77 nt of L1Tc.
Nevertheless, in the pGEMT +70 construct, the L1Tc
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Figure 7. Presence of RNase P cleavage motif within L1Tc 5-UTR RNA. L1Tc and NARTc +1/+77, +1/+126 and +1/+152 RNAs were subjected
to cleavage reaction by E. coli RNase P M1 RNA. Autoradiographs of the gel analysis of the reactions are shown in (A) and (C). (+) lines
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RNAs (C).

ribozyme cleaves at high levels even in the absence of a P2
stem. This length corresponds to the catalytic sequence
predicted to appropriately fold into an HDV-like
ribozyme conformation. Moreover, the overall size of
these putative RNA fragments was consistent with the
expected cleavage point according to the manually pre-
dicted folding. The catalytic activity was confirmed when
gel-purified full-length uncleaved transcripts self-cleaved
in a magnesium-dependent reaction, generating fragments
with the same size as those co-transcriptionally obtained.

The kinetics of the self-cleaving reaction fit a two-phase
decay curve described specifically for the HDV-like
ribozyme type. The 5'-hydroxyl end of the co-transcrip-
tionally 3’-products obtained was consistent with the bio-
chemical cleavage reaction typical of HDV-like ribozymes
(29). Primer extension analysis with these fragments con-
firmed the expected cleavage point at the 5'-side of the
+1nt of LITc. In previously reported primer extension
analyses carried out using the epimastigotes polyadeny-
lated RNA-purified fraction, we described that L1Tc
mature messengers started at L1Tc +1nt (5). It was

consequently deduced that Pr77-driven L1Tc mRNAs
transcription started at +1nt (5). However, taking into
account the results reported here, we believe that the
in vivo cleavage activity of the ribozyme may well be re-
sponsible of the detected transcripts starting at the L1Tc
+1nt. This fact suggests that L1TcRz is in vivo function-
ally active.

The data shown indicate, therefore, that the 77-nt
length sequence of the L1Tc 5-end has two different func-
tions: the internal promoter (Pr77) previously described as
DNA (5) and the HDV-like ribozyme currently described
as RNA. The mechanisms to generate mRNAs for
non-LTR retrotransposons may imply either the utiliza-
tion of internal promoters (1-3,5,30) or an HDV-like
ribozyme that releases mRNAs from host co-transcripts
(19). The HDV-like ribozyme cleaves upstream its cata-
lytic domain and thus both, ribozymes and internal pro-
moters, persist within the mRNAs and their functions are
preserved after transposition. The only element, up to
date, which has been described to have an HDV-like
ribozyme is the R2 retroelement of Drosophila that



specifically mobilizes into the 28S rDNA and
co-transcribes its mRNAs within the ribosomal cassette
(31). L1Tc becomes now the first-described retroelement
with a dual internal promoter—ribozyme system.

The presence of the ribozyme in L1Tc could be related
to the particular transcriptional system of the
Trypanosomatids, the natural host of L1Tc. The genome
of these parasites is organized in large gene clusters uni-
directionally and polycistronically transcribed, and sepa-
rated by the called strand switch regions (SSRs) (32).
Many L1Tc¢/NARTc copies are localized in this SSRs
and it has been previously speculated with the possible
involvement of Pr77 in the transcription promotion of
the large clusters (5). However, despite some LI1Tc/
NARTc sequence specificity for insertion has been re-
ported (15), its distribution is considered random (14),
so the ribozyme activity could be yielding the appropriate
releasing of L1Tc/NARTc mRNAs from large polycis-
tronic transcripts. We cannot exclude the possibility that
Pr77 initiates transcription of some nucleotides upstream
of the ribozyme cleavage site. The L1TcRz activity may
insure a precise 5-end identical for Pr77-driven trans-
cribed RNAs or those released from polycistronic tran-
scripts. Since spliced leader RNA is absent in the in vivo
L1Tc mRNAs and a cap structure has not been detected at
their 5’-ends (5), the end generated by the ribozyme could
be related to a precise 5-structure that supplies the pro-
tective cap function. L1Tc and NARTc copies have been
found in tandem and isolated distributions, in addition to
be associated to genomic regions rich in repetitive DNA
sequences (14). Considering the faint polyadenylation
signals of these elements, the ribozyme could preserve
the monocistronic character of the mRNAs.

Our data also indicate that HDV-like ribozyme cleavage
activity can be modulated by sequences upstream of the
cleavage point. The cleavage ability of the three assayed
constructs seems to adequately fit to the predicted up-
stream sequence-dependent ribozyme-folding interfer-
ences. The RNA derived from clones 55 and 7134
includes a G_ capable of extending the P1 helix and dis-
rupting the single base pair of the Pl.1 pseudoknot
(Supplementary Figure S2A and S2B, bi-headed gray
arrow). This fact has been also described for the R2
ribozyme in which the nucleotides located upstream of
the catalytic folding, able to extend the helix PI, can
prevent the P1.1 pseudoknot formation and moderately
affect the cleavage efficacy (33). The L1Tc ribozyme may
be sensitive to P1.1 pseudoknot disruptions by helix P1
extension because this pseudoknot is composed only by a
single base pair. For clone 55, the RNAfold software (34)
predicts the existence of an alternative helix between the
7 nt upstream of the L1TcRz cleavage site and 7 nt located
within the ribozyme core (Supplementary Figure S2A,
dotted gray line). A similar folding disruption has been
reported to dramatically affect the cleavage activity of
the ribozyme present in the human CPEB3 gene (28).
Since we could not find any handicap for pGEM-T easy
cloned ribozyme (Supplementary Figure S2C), all these
features can explain the progressive decrease of the cata-
lytic activity from clone pGEM-T easy to clone 7134 and
to clone 55. It is interesting to note that clone 55 has been
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obtained from a T. cruzi cDNA library and bears 110 nt
non-related to L1Tc sequence at its 5'-end. This is consist-
ent with the LITcRz low cleavage rate detected in the
clone 55 construct.

The cleavage reactions of full-length RNAs performed
at different Mg®" concentrations showed that the catalytic
activity of L1TcRz is magnesium dependent. Mg®" is
commonly required for the proper folding of RNAs and,
consequently, for the catalytic activity of structure-
dependent RNAs, like ribozymes. Moreover, despite the
fact that some cleavage has been recorded under hi%h
hydrostatic pressure conditions in total absence of Mg*"
(35), the HDV ribozyme is the only one of the small cata-
lytic ribozymes probed to coordinate a Mg>" cation at its
catalytic center (36,37). Thus, the Mg?" dependence of the
L1TcRz is consistent with the ribozyme nature of the
reported cleavage.

Our results show that the co-transcriptional cleavage
in vitro decreases when sequences longer than 77 nt L1Tc
are assayed (constructs +126 and +152). This inhibition is
neither observed in NARTc constructs nor in 146xeno.
Thus, the L1Tc nucleotides located downstream of the
ribozyme fragment appears to inhibit its activity. This
sequence-dependent attenuator effect may be a conse-
quence of the use of T7 RNA polymerase for in vitro tran-
scription and could not be occurring in vivo. The
premature transcription of downstream attenuator se-
quences due to the T7 RNA polymerase high speed
(~20-fold faster than the eukaryotic enzymes) has shown
to prevent the HDV ribozyme folding and to inhibit con-
sequently the co-transcriptional cleavage (38). Since the
NARTc RNA downstream sequences do not interfere
with the cleavage rate, we believe that these data
strongly suggest the existence in L1Tc RNA of a consist-
ent and specific conformation that is incompatible with
the cleavage activity.

The data presented here support the co-transcriptional
function of the L1TcRz and are consistent with the previ-
ously described activity of the wild-type HDV ribo-
zyme whose RNA co-transcriptional folding promotes a
catalytically active conformation rather than the post-
transcriptional one (38). Thus, the highest cleavage level
is always reached in co-transcriptional assays when
compared to those performed with full-length gel-purified
RNAs. In fact, the LITcRz is a fast reacting ribozyme
[faster than the human CPEB3 (28)]. These data suggest
that the RNA cleavage is produced during the first events
of the element expression allowing an in vivo early
co-transcriptional cleavage.

It is worth noting that the 126- and 152-nt length L1Tc
RNAs, but neither the same length RNAs of NARTc nor
the 146xeno have a RNase P cleavage site at position +50
of Pr77 RNA. The existence of a RNase P-recognition
motif together with the absence of a capped spliced
leader structure at the L1Tc RNAs 5-end suggest a
cap-independent translation mechanism for L1Tc, such
as an IRES. Consisted with this, NARTc does not code
for proteins (16) and lacks this IRES-related RNase P
motif. L1Tct+77 RNA is not cleaved by the RNase P
despite the fact that the cleavage position is included
within this sequence. This result shows that the RNase P


http://nar.oxfordjournals.org/cgi/content/full/gkr478/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr478/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr478/DC1

8076 Nucleic Acids Research, 2011, Vol. 39, No. 18

recognition motif is not present in the first 77nt of L1Tc
although some of the sequences forming this motif are
present in this fragment. An IRES has been shown to
precede each one of the two ORFs of the mouse L1
(25). Further studies will be required to evaluate the ex-
istence of an IRES also at the 5'-end of L1Tc. Interestedly,
both the Pr77 derived and the L1TcRz-released transcripts
of NARTc¢/L1Tc may lack the cap structure and coinci-
dently have the same 5-end. This fact could be related to
the requirement of an appropriate 5-end structure for ef-
ficient protection of the uncapped RNA.

As mentioned above, Pr77-like sequences are restricted
neither to L1Tc nor to retrotransposons and to
Trypanosomatids. Sequence searches have identified
Pr77 homologous sequences in a wide range of organisms
from fungi to higher eukaryotes. Furthermore, manual
searches have identified a folding structure compatible to
HDV-like ribozymes in Pr77-like sequences from
Haliangium ochraceum, T. brucei and Penicillium
chrysogenum (laboratory data). In vitro transcription
assays and co-transcriptional cleaving analyses have
shown that sequences from 7. brucei homologous to
Pr77 included in the ingi and RIME retroelements have
also HDV-like ribozyme activity (Carreira, P. et al. manu-
script in preparation). The origin and acquisition of this
type of sequences by a wide range of organisms generate
controversy and it is still unknown. The analysis of these
and other related sequences will help us to elucidate this
question.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENT

We are grateful to Dr Jordi Gomez from IPBLN-CSIC for
providing the pre-tRNA™" and RNase P M1 RNA tem-
plates and for his assistance in RNase P-cleavage assays.

FUNDING

Plan Nacional I+D+I del Ministerio de Ciencia e
Innovacion (MICINN)—Spain (grant numbers
BFU2007/65095/BMC, BFU2007-64999/BMC, BFU2010-
16470); Instituto de Salud Carlos III (ISCIII)—Redes
Tematicas de Investigacion Cooperativa en Salud
(RETIC)—Spain  (grant numbers RD06/0021/0014,
RD06/0021/0008) and Fondo Europeo de Desarrollo
Regional (FEDER). Funding for open access charge:
Plan Nacional I+D+I del Ministerio de Ciencia e
Innovacion (MICINN)- Spain (grant number BFU2010-
16470)

Conflict of interest statement. None declared.

REFERENCES

1. McLean,C., Bucheton,A. and Finnegan,D.J. (1993) The 5
untranslated region of the I factor, a long interspersed nuclear
element-like retrotransposon of Drosophila melanogaster, contains

10.

11.

12.

16.

17.

18.

an internal promoter and sequences that regulate expression.
Mol. Cell. Biol., 13, 1042-1050.

. Mizrokhi,L.J., Georgieva,S.G. and Ilyin,Y.V. (1988) Jockey, a

mobile Drosophila element similar to mammalian LINEs, is
transcribed from the internal promoter by RNA polymerase II.
Cell, 54, 685-691.

. Swergold,G.D. (1990) Identification, characterization, and cell

specificity of a human LINE-1 promoter. Mol. Cell. Biol., 10,
6718-6729.

. DeBerardinis,R.J. and Kazazian,H.H. Jr (1999) Analysis of the

promoter from an expanding mouse retrotransposon subfamily.
Genomics, 56, 317-323.

. Heras,S.R., Lopez,M.C., Olivares,M. and Thomas,M.C. (2007)

The L1Tc non-LTR retrotransposon of Trypanosoma cruzi
contains an internal RNA-pol II-dependent promoter that
strongly activates gene transcription and generates unspliced
transcripts. Nucleic Acids Res., 35, 2199-2214.

. Luan,D.D., Korman,M.H., Jakubczak,J.L. and Eickbush,T.H.

(1993) Reverse transcription of R2Bm RNA is primed by a nick
at the chromosomal target site: a mechanism for non-LTR
retrotransposition. Cell, 72, 595-605.

. Martin,F., Maranon,C., Olivares,M., Alonso,C. and Lopez,M.C.

(1995) Characterization of a non-long terminal repeat
retrotransposon cDNA (L1Tc) from Trypanosoma cruzi:
homology of the first ORF with the ape family of DNA repair
enzymes. J. Mol. Biol., 247, 49-59.

. Olivares,M., Alonso,C. and Lopez,M.C. (1997) The open reading

frame 1 of the L1Tc retrotransposon of Trypanosoma cruzi codes
for a protein with apurinic-apyrimidinic nuclease activity.
J. Biol. Chem., 272, 25224-25228.

. Garcia-Perez,J.L., Gonzalez,C.I., Thomas,M.C., Olivares,M. and

Lopez,M.C. (2003) Characterization of reverse transcriptase
activity of the L1Tc retroelement from Trypanosoma cruzi. Cell.
Mol. Life Sci., 60, 2692-2701.

Olivares,M., Garcia-Perez,J.L., Thomas,M.C., Heras,S.R. and
Lopez,M.C. (2002) The non-LTR (long terminal repeat)
retrotransposon L1Tc from Trypanosoma cruzi codes for a
protein with RNase H activity. J. Biol. Chem., 277, 28025-28030.
Heras,S.R., Lopez,M.C., Garcia-Perez,J.L., Martin,S.L. and
Thomas,M.C. (2005) The L1Tc C-terminal domain from
Trypanosoma cruzi non-long terminal repeat retrotransposon
codes for a protein that bears two C2H2 zinc finger motifs and is
endowed with nucleic acid chaperone activity. Mol. Cell. Biol., 25,
9209-9220.

Heras,S.R., Thomas,M.C., Macias,F., Patarroyo,M.E., Alonso,C.
and Lopez,M.C. (2009) Nucleic-acid-binding properties of the
C2-L1Tc nucleic acid chaperone encoded by L1Tc
retrotransposon. Biochem. J., 424, 479—490.

. Heras,S.R., Thomas,M.C., Garcia-Canadas,M., de Felipe,P.,

Garcia-Perez,J.L., Ryan,M.D. and Lopez,M.C. (2006) L1Tc
non-LTR retrotransposons from Trypanosoma cruzi contain a
functional viral-like self-cleaving 2A sequence in frame with the
active proteins they encode. Cell. Mol. Life Sci., 63, 1449-1460.

. Olivares,M., del Carmen Thomas,M., Lopez-Barajas,A.,

Requena,J.M., Garcia-Perez,J.L., Angel,S., Alonso,C. and
Lopez,M.C. (2000) Genomic clustering of the Trypanosoma cruzi
nonlong terminal L1Tc retrotransposon with defined interspersed
repeated DNA elements. Electrophoresis, 21, 2973-2982.

. Bringaud,F., Bartholomeu,D.C., Blandin,G., Delcher,A., Baltz,T.,

El-Sayed,N.M. and Ghedin,E. (2006) The Trypanosoma cruzi
L1Tc and NARTc non-LTR retrotransposons show relative site
specificity for insertion. Mol. Biol. Evol., 23, 411-420.
Bringaud,F., Garcia-Perez,J.L., Heras,S.R., Ghedin.E., El-
Sayed,N.M., Andersson,B., Baltz,T. and Lopez,M.C. (2002)
Identification of non-autonomous non-LTR retrotransposons in
the genome of Trypanosoma cruzi. Mol. Biochem. Parasitol., 124,
73-78.

Bringaud,F., Berriman,M. and Hertz-Fowler,C. (2009)
Trypanosomatid genomes contain several subfamilies of
ingi-related retroposons. Eukaryot. Cell, 8, 1532-1542.
Bringaud,F., Muller,M., Cerqueira,G.C., Smith,M., Rochette,A.,
El-Sayed,N.M., Papadopoulou,B. and Ghedin,E. (2007) Members
of a large retroposon family are determinants of


http://nar.oxfordjournals.org/cgi/content/full/gkr478/DC1

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

post-transcriptional gene expression in Leishmania. PLoS Pathog.,
3, 1291-1307.

. Eickbush,D.G. and Eickbush,T.H. R2 retrotransposons encode a

self-cleaving ribozyme for processing from an rRNA cotranscript.
Mol. Cell. Biol., 30, 3142-3150.

Symons,R.H. (1992) Small catalytic RNASs. Annu. Rev. Biochem.,
61, 641-671.

Cochrane,J.C. and Strobel,S.A. (2008) Catalytic strategies of
self-cleaving ribozymes. Acc. Chem. Res., 41, 1027-1035.
Been,M.D. and Wickham,G.S. (1997) Self-cleaving ribozymes of
hepatitis delta virus RNA. Eur. J. Biochem., 247, 741-753.
Salehi-Ashtiani,K., Luptak,A., Litovchick,A. and Szostak,J.W.
(2006) A genomewide search for ribozymes reveals an HDV-like
sequence in the human CPEB3 gene. Science, 313, 1788-1792.
Webb,C.H., Riccitelli,N.J., Ruminski,D.J. and Luptak,A. (2009)
Widespread occurrence of self-cleaving ribozymes. Science, 326,
953.

Li,P.W., LiJ., Timmerman,S.L., Krushel,L.A. and Martin,S.L.
(2006) The dicistronic RNA from the mouse LINE-1
retrotransposon contains an internal ribosome entry site
upstream of each ORF: implications for retrotransposition.
Nucleic Acids Res., 34, 853-864.

Lyons,A.J. and Robertson,H.D. (2003) Detection of tRNA-like
structure through RNase P cleavage of viral internal ribosome
entry site RNAs near the AUG start triplet. J. Biol. Chem., 278,
26844-26850.

Serrano,P., Gomez,J. and Martinez-Salas,E. (2007)
Characterization of a cyanobacterial RNase P ribozyme
recognition motif in the IRES of foot-and-mouth disease virus
reveals a unique structural element. RNA, 13, 849-859.
Chadalavada,D.M., Gratton,E.A. and Bevilacqua,P.C. The human
HDV-like CPEB3 ribozyme is intrinsically fast-reacting.
Biochemistry, 49, 5321-5330.

Nakano,S., Chadalavada,D.M. and Bevilacqua,P.C. (2000)
General acid-base catalysis in the mechanism of a hepatitis delta
virus ribozyme. Science, 287, 1493-1497.

30.

31

32.

33.

34.

3s.

36.

37.

38

Nucleic Acids Research, 2011, Vol. 39, No. 18 8077

Nur,I., Pascale,E. and Furano,A.V. (1988) The left end of rat

L1 (L1Rn, long interspersed repeated) DNA which is a CpG
island can function as a promoter. Nucleic Acids Res., 16,
9233-9251.

Zhou,J. and Eickbush,T.H. (2009) The pattern of R2
retrotransposon activity in natural populations of Drosophila
simulans reflects the dynamic nature of the rDNA locus.

PLoS Genetics, 5, e1000386.

Bringaud,F. (2005) [Comparative genomics of trypanosomatid
parasitic protozoa]. Med. Sci., 21, 1027-1028.

Ruminski,D.J., Webb,C.H., Riccitelli,N.J. and Luptak,A. (2010)
Processing of insect retrotransposons by self-cleaving ribozymes.
Nature Precedings, Available from Nature Precedings <http://hdl.
handle.net/10101/npre.2010.4333.1>.

Gruber,A.R., Lorenz,R., Bernhart,S.H., Neubock,R. and
Hofacker,I.L. (2008) The Vienna RNA websuite.

Nucleic Acids Res., 36, W10-W74.

Fedoruk-Wyszomirska,A., Giel-Pietraszuk,M., Wyszko,E.,
Szymanski,M., Ciesiolka,J., Barciszewska,M.Z. and Barciszewski,J.
(2009) The mechanism of acidic hydrolysis of esters

explains the HDV ribozyme activity. Mol. Biol. Rep., 36,
1647-1650.

Chen,J.H., Gong,B., Bevilacqua,P.C., Carey,P.R. and Golden,B.L.
(2009) A catalytic metal ion interacts with the cleavage

Site G.U wobble in the HDV ribozyme. Biochemistry, 48,
1498-1507.

Chen,J.H., Yajima,R., Chadalavada,D.M., Chase,E.,
Bevilacqua,P.C. and Golden,B.L. A 1.9 A crystal structure of the
HDV ribozyme precleavage suggests both Lewis acid and general
acid mechanisms contribute to phosphodiester cleavage.
Biochemistry, 49, 6508-6518.

. Chadalavada,D.M., Cerrone-Szakal,A.L. and Bevilacqua,P.C.

(2007) Wild-type is the optimal sequence of the HDV
ribozyme under cotranscriptional conditions. RNA, 13, 2189-2201.


http://hdl.handle.net/10101/npre.2010.4333.1
http://hdl.handle.net/10101/npre.2010.4333.1

