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ABSTRACT Stenotrophomonas maltophilia is emerging as an opportunistic multidrug-
resistant pathogen. S. maltophilia podophage Philippe has a 74,717-bp genome which is
related broadly to the N4-like phage group, including Stenotrophomonas phage Pokken.
The low sequence identity to other described phages suggests that Philippe is an
unclassified member of the N4-like subfamily Rothmandenesvirinae.

The ubiquitous, Gram-negative bacterium Stenotrophomonas maltophilia plays an im-
portant role in beneficial plant interactions, functioning in both the sulfur and nitrogen

cycles and pollutant degradation (1). The emergence of this species as an opportunistic,
multidrug-resistant pathogen is a growing concern for immunocompromised patients,
and phage therapy is being investigated to address this issue (2, 3). Here, the annotated
genome sequence of S. maltophilia podophage Philippe is presented.

Phage Philippe was isolated in January 2019 from a soil sample in College Station,
TX (GPS coordinates, 30.60322, 296.36004), using S. maltophilia (ATCC 17807) as the
bacterial host. Soil (5 g) was mixed into 10 mL phosphate-buffered saline (PBS) buffer
(pH 7.4), and the filtered supernatant (0.2-mm filter) was used for phage isolation. The
host was cultured in tryptone nutrient broth (0.5% tryptone, 0.25% yeast extract, 0.1%
glucose, 0.85% NaCl, wt/vol) at 30°C with aeration, and phage isolation and propaga-
tion were conducted via the soft agar overlay method (4, 5). Genomic DNA was puri-
fied from ;8 mL phage lysate using a modified Wizard DNA cleanup kit as previously
described (6). DNA sequencing libraries were prepared as 300-bp inserts using a Swift
2S Turbo kit and sequenced on an Illumina MiSeq instrument with paired-end 150-bp
reads using v2 300-cycle chemistry. The CPT Galaxy-Apollo phage annotation platform
(https://cpt.tamu.edu/galaxy-pub) (7–9) was used for all subsequent analyses except
HHpred (10). The 148,548 raw sequencing reads were quality controlled using FastQC
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc) and trimmed using the
FASTX-Toolkit v0.0.14 (http://hannonlab.cshl.edu/fastx_toolkit/), prior to genome as-
sembly using SPAdes v3.5.0 (11). A single contig was assembled with 94-fold coverage.
The contig sequence was completed by PCR amplifying the end region using primers
(59-ATACCCGAGAACAGTGCAGC-39 and 59-CTATCTGGATCAGGCTGCCG-39) and Sanger
sequencing the resulting PCR product. Phage termini were predicted using PhageTerm
(12). Gene predictions were made using Glimmer v3 (13) and MetaGeneAnnotator v1.0
(14). ARAGORN v2.36 (15) and tRNAscan-SE v2.0 (16) were used to detect tRNA genes.
TransTermHP v2.09 was used for the identification of rho-independent termination
sites (17). Gene functions were predicted using InterProScan v5.48 (18) and BLAST
v2.9.0 (19) against the NCBI nonredundant and Swiss-Prot databases (20). Additional
protein analysis was completed using TMHMM v2.0 (21), HHpred (10), LipoP v1.0 (22),
and SignalP v5.0 (23). Genome-wide DNA sequence similarity was evaluated using
ProgressiveMauve v2.4 (24). All analyses were conducted with default settings. The
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phage morphology was determined by negatively staining the phage particles with
2% (wt/vol) uranyl acetate and observing them with transmission electron micros-
copy at the Texas A&M Microscopy and Imaging Center.

Phage Philippe has a podophage morphology (Fig. 1). It has a 74,717-bp genome
with a GC content of 54.3%. A total of 94 protein-coding genes and 6 tRNAs were identi-
fied in the Philippe genome. Philippe is related broadly to the N4-like phage group, shar-
ing the highest similarity to Stenotrophomonas phage Pokken (GenBank accession num-
ber NC_049463), with 26.4% nucleotide identity calculated using ProgressiveMauve and
50 similar proteins (BLASTp; E value, ,1025). This low sequence identity to other
described phages suggests that Philippe is an unclassified member of the N4-like
subfamily Rothmandenesvirinae. All components of the lysis cassette in Philippe were
identified, including the SAR endolysin N-acetylmuramidase, class II holin, and an o-
spanin fully embedded within the i-spanin. As expected of an N4-like phage, three
RNA polymerase (RNAP) genes were annotated, with the largest identified as the vi-
rion RNAP.

Data availability. The Philippe genome sequence was deposited in GenBank under
accession number MZ326861. The associated BioProject, SRA, and BioSample accession
numbers are PRJNA222858, SRR14095251, and SAMN18509471, respectively.
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