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Quantitative modelling is increasingly important in cancer research, helping to integrate myriad diverse experimental data into
coherent pictures of the disease and able to discriminate between competing hypotheses or suggest specific experimental lines of
enquiry and new approaches to therapy. Here, we review a diverse set of mathematical models of cancer cell plasticity (a process in
which, through genetic and epigenetic changes, cancer cells survive in hostile environments and migrate to more favourable
environments, respectively), tumour growth, and invasion. Quantitative models can help to elucidate the complex biological
mechanisms of cancer cell plasticity. In this review, we discuss models of plasticity, tumour progression, and metastasis under
three broadly conceived mathematical modelling techniques: discrete, continuum, and hybrid, each with advantages and dis-
advantages. An emerging theme from the predictions of many of these models is that cell escape from the tumour microen-
vironment (TME) is encouraged by a combination of physiological stress locally (e.g., hypoxia), external stresses (e.g., the presence
of immune cells), and interactions with the extracellular matrix. We also discuss the value of mathematical modelling for
understanding cancer more generally.

1. Introduction

Cancer is a disease involving, initially, abnormal cell
growth with the potential to invade locally and—later—
spread to other organs. In normal cells, the highly complex
processes of cell division and death are controlled by
myriad genes. Proliferation, differentiation, and apoptosis
of cells are controlled by the activities of those genes and
balance normal cell growth while appropriately regulating
programmed cell death. Cells become cancerous when
mutations accumulate in the various genes that control cell
proliferation and the cell cycle, death, and responses to
stress, but how these mechanisms operate and the in-
terplay between them continues to be mysteries. Cancer
cells appear to behave, in some sense, as “autonomous
entities,” growing without control to form tumours.
Spreading cancer cells from their primary tumour to other
parts of the body—through blood and lymph,—causes
cancer metastasis. Once this state has been reached,
treatment options become limited, and the disease is
usually fatal.

,e tumour microenvironment (TME) contains differ-
ent types of cells and is a key actor in the cascade of local
invasion and progression towards metastasis. Apart from
malignant cells, it consists of cells of the immune system,
tumour vasculature and lymphatics, fibroblasts, and peri-
cytes, inter alia. Interactions between these cells actually give
rise to the TME (from the normal local environment pre-
ceding the lesion). Additionally, the TME comprises the
extracellular matrix (ECM), which provides a physical
scaffold for in situ tumour growth. ,e adhesion of cells to
the ECM is key to their movement out of and into the TME.
Growth factors within the TME interact with cell surface
receptors and impart to local tissue its tensile strength and
elasticity [1].

Cell migration can be broadly classified into single cell
migration and collective migration modes. ,ese molecular
programs are associated with a characteristic structure of the
actin cytoskeleton, integrins, matrix-degrading enzymes,
cell-cell adhesion, and signalling towards the cytoskeleton
[2]. ECM stiffness, hypoxia, nutrient deprivation, acidity,
and different cell populations strongly affect cell plasticity in
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motility [3]. ,e epithelial-mesenchymal transition (EMT),
loss of cell-cell, and cell-ECM interactions (amongst other
processes) contribute to escape mechanisms for cancer cells
from the locally stressful TME. Some of the relationships
between these factors and their role in promoting stress in
the tumour microenvironment are illustrated in Figure 1.

In the context of the above discussion, identifying first-
order principles and key biological mechanisms in cancer
cell plasticity is clearly indispensable to a clear un-
derstanding of cancer progression. In particular, these
principles are likely to be important in the therapeutic
context of blocking or slowing the spread of cancer cells: a
major challenge for developing modern cancer treatment
therapies. Since biological experiments are expensive, time-
consuming, ethically challenging and sometimes downright
impossible with existing technology, mathematical models
can provide an independent, experiment-free check of hy-
pothesis consistency, ideally focusing (or moderating or
altering) hypotheses before experimental work as well as in a
feedback loop of model-experiment-model. More specifi-
cally, mathematical models can be used to describe cancer at
various scales and act as an exploratory tool to complement
experimental work. Furthermore, mathematical models can
be used as a predictive tool. Quantitative descriptions of
cancer-driven mechanisms can lead to the development of
new and novel cancer treatment therapies [4]. In this review,
we explore the importance of quantitative models in cancer
cell plasticity and how these models can be used to design
new therapy strategies and/or optimise the benefit from
existing therapy options.

2. Mathematical Models of Cancer
Cell Plasticity

,e strength of a mathematical model rests in its ability to
combine experimental data, consolidating it into a coherent
framework, which can be used to predict the overall (or
precise) dynamics of a system.Mathematical models are very
useful in identifying the parameters that are most sensitive to
the system and they allow for logical reasoning beyond the
provision of experiments. In the specific context of tumour
growth, mathematical models can, for example, quantify the
links of three-dimensional tumour-tissue architecture with
growth, invasion, and underlying microscale cellular and
environmental characteristics. Ideally, these approaches can
lead to the design of new, targeted experiments and strat-
egies for cancer treatments [5–8].

Mathematical modelling and computer simulation allow
us to explore the so-called “what-if” scenarios describing
potentially complex biophysical, chemical, and physiological
processes that are often beyond the reach of experimental or
clinical protocols. ,is might be due to the protocols being
expensive, invasive, hard-to-capture, or highly variable.

Despite oft-held beliefs to the contrary in the biological
and medical sciences, mathematical models can in fact be
simple and used to capture the “sense” of the system under
study, often through phenomenological approaches. ,ey
may, of course, also be very complex and this complexity
implies that the computer simulation is very intensive, takes

a long time to run and/or require substantial resources of
another type (e.g., computer memory).

,ere is also an additional issue: potentially a large
number of parameters need to be calibrated against available
data. If there are insufficient data, then the model may well
be “undetermined”, that is, unable to discriminate between
different hypotheses. In addition to the calibration issue, the
models need to be validated so that they can be used in
predictive settings. Validation can be performed by running
computer simulations using just some of the available data
and then seeing how well the outputs derived from the
simulations match the data that were “held back” when
calibrating.

Models may be static (representing known behaviour) at
a specific point in time. Models may also evolve in time, for
example, describing the action of a drug, or they may evolve
in time and space, for example describing the growth and
motion of a tumour. Models may also be stochastic in that
they try to represent processes, such as diffusion, that are
fundamentally stochastic in nature.

In outline, and broadly speaking, there are three mathe-
matical modelling techniques having been so far used to
understand cancer dynamics and plasticity: discrete, contin-
uum, and hybrid. Discrete models track and update individual
cells according to a set of biological rules [7, 9]. Continuum
models consider the tumour tissue as a continuous medium,
and differential equations are used for modelling [6]. Hybrid
models combine the benefits of the discrete and continuous
modelling and techniques, and describe chemical reactions
and tissue landscapes in a single model [10, 11].

In the discussion below, we organise the individual
models/studies under review along these lines, but, im-
portantly, we also taxonomise the models by their primary
findings (and aims). In particular, we distinguish between
models whose aim is (a) the understanding of cell plasticity
and tumour progression in their own right versus (b) those
with clinical implications, that attempt to understand the
effect of therapy on tumour progression and/or how to
optimise treatment efficacy. We are also not aiming here to
cover every existing model or to go into the details of specific
models. Rather, our aim is to give the reader a flavour for
each type of mathematical approach. We also aim to il-
lustrate the kinds of insight that mathematical models of
different kinds can provide with respect to understanding
basic cancer cell biology but also with respect to therapy
design and optimisation.

2.1. Discrete Cell Modelling. A discrete model can address
the behaviour of one or more individual cells as they interact
with one another and the microenvironment. In this way,
discrete models are best suited to understanding cancer
progression and cell plasticity-related changes at the level of
the individual cell. Discrete or individual-based models can
be generally further divided into two distinct categories:
lattice-based and lattice-free. Lattice-based models track
cells within a rigid “grid,” while off-lattice models have no
such restriction [7, 9] and permit the model cells to move
freely within the simulation space.
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A substantial advantage of discrete models is that they
operate with simple transition rules, e.g., a cell can divide
and its daughter will be placed in a neighbouring cell, rather
than using constitutive differential equations. ,is makes
them fundamentally accessible to nonexperts, since the rules
can be designed and understood by the nonmathematician.
Rule-based approaches also are more fundamentally suited
to describing biological interactions, which are themselves
rule-based, involving individual agents. ,is is a major
advantage but brings with it two drawbacks: firstly, these
models generally require much more computational power
(less of an issue in the era of high-performance computing
than previously) and secondly, because of the absence of
equations, these models lend themselves less to drawing
simple conclusions about the system under study. For ex-
ample, it is more difficult to find a simple relationship be-
tween a fundamental parameter, e.g., cell motility and a
variable of interest, e.g., time to plasticity-induced invasion
of local stroma.

2.1.1. Lattice-Based Models. Lattice-based models them-
selves are different from one another. One way to think
about this is that there are different conceptual methods can
be used to implement the lattice: allowing either exactly one,
more than one, or less than one cell per lattice site (in the
latter case, basically sites represent subcellular compart-
ments rather than entire cells). More specifically, there are
models that use cellular automata (CA), lattice gas cellular

automata (LGCA) models, and cellular Potts models (CP).
In CAmodels, a single lattice site can hold a single cell, while
LGCA models allow multiple cells in a single site (at the
expense of some extra computational effort). CP models use
multiple lattice sites to represent each cell [7]. Lattice-based
models all have in common that they are inherently sto-
chastic, since the movement of each cell is a stochastic event.

(1) Discrete Models of Cancer *erapy Optimisation and
Design. An early stochastic cell population model was de-
veloped by Donaghey using Monte Carlo simulation in 1980
[12]. In this approach, the direction in which a cell moves is
determined by generating a uniform random variable and
using this to simulate random cell movement (seeing which
subinterval it lies in in order to determine a direction).
Although this tool was not developed specifically for
studying tumours, Donaghey developed a digital simulation
language (CELLSIM) which can be used to model cell
population kinetics generally and used tumour growth as a
case study of its use. CELLSIM was used to compare the
results of models with those obtained from the actual
population and to develop novel, optimised schedules for
chemotherapy treatment for cancer patients. In many ways,
this early work played a large part in shaping the field. It
preceded later, more sophisticated models that had access to
more experimental data.

During approximately the same period, Dutching and
colleagues began to develop tumour growthmodels based on
control theory, methods of system analysis, automata theory,
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Figure 1:,e tumour microenvironment (TME) promotes cancer cell plasticity because of the effect of ECM stiffness, acidity, hypoxia, and
the presence of immune cells in TME. Cancer cells can survive in TME through epigenetic changes and also escape to more favourable
environments. To escape from stress within the TME, cancer cells use individual or collective cell migrationmechanisms. Two individual cell
migration methods are amoeboid and mesenchymal migration. Cancer cells can migrate from the TME by collective cell migration
mechanisms, in cluster or multicellular sheets.
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and computer science. ,ey simulated the results for dif-
ferent chemotherapy treatment methods to optimise the
most suitable treatment as well as the treatment schedule
[13–16]. Some of these mathematical models considered the
tumour growth in a nutrient medium [17] and attempted to
describe the spatial structure and the time behaviour of
disturbed cell growth in the two-dimensional and three-
dimensional cell spaces. ,ey helped to set the stage spe-
cifically by showing the potential, in the long run, of
optimising chemotherapy schedules by using simulation
experiments as a powerful new tool prior to clinical therapy.

Kansal et al. [18] developed a three-dimensional CA
model for brain tumour growth considering “Gompertzian”
growth.,is is a standard approach in mathematical biology
generally, in which initially the growth is exponential, fol-
lowed by slower growth rate until a plateau is reached as
tumours grow.,is model, extended by Schmitz et al. [19] to
study the effects of treatments by considering three treat-
ment parameters (sensitivity of proliferative cells, differing
susceptibility of cells in the arrested state, and mutational
response of the tumour to treatment), predicted the com-
position and dynamics of the tumour at selected time points,
which was in agreement with medical literature. An im-
portant prediction of this latter model is the emergence and
eventual dominance of a second tumour clone with a dif-
ferent genotype to the primary (indicating, amongst other
things, the flexibility of this type of model). ,e model of
Schmitz et al. incorporates several important and novel
features (in its time), e.g., how to model proliferative and
nonproliferative cells, an isotropic lattice, and an adaptive
grid lattice.

Some of the most recent work on CA models in tumour
growth involves modelling three-dimensional invasive solid
tumour growth in heterogeneous microenvironments under
chemotherapy [20] by modifying an earlier CA model de-
veloped by Jiao and Torquato through taking into account a
variety of microscopic-scale tumour-host interactions, such
as short-rangemechanical interactions between tumour cells
and tumour stroma, degradation of ECM by the invasive
cells and oxygen/nutrient gradient-driven cell motion
[21, 22]. ,e simulations indicated—crucially for patient
care—that, in a mathematical context, constant dosing is
generally more effective than periodic dosing, due to the
resulting continuous high drug concentration in constant
dosing. ,e effects of geometrically confined microenvi-
ronment and nonuniform drug dosing were also in-
vestigated in this model, with complex resulting predictions.

(2) Discrete Models of Fundamental Tumour Plasticity,
Growth, and Invasion. Smolle and Stettner developed a
lattice-basedmodel that studies tumour growth and invasion
under the influence of surrounding stroma and tumour cells
for cell division, migration, and death in tumour tissues [23].
,e model indicated how cellular functions and microen-
vironmental factors influenced histological tumour patterns.
,e model was later improved to study the histological
patterns in melanoma [24]. Basically, these models suggest
that the resulting morphological patterns closely depend on
the preset functional properties of tumour cells, with

autocrine and paracrine factors introducing specific modi-
fications of the histology and, therefore, that comparisons of
clinical histological samples with computer generated pat-
terns may lead to a better “functional” interpretation of
clinical samples.

Ferreira et al. [25] developed a lattice-based growth
model for primary carcinomas by considering biological
factors such as cell division, motility, and death controlled by
the diffusion of growth factor. ,e results of the model
indicated that the growth patterns are compact with gyration
radius, surface roughness, and number of peripherical cells
scaling.

Hatzikirou and Deutsch introduced a microscopic
modelling method called lattice gas cellular automata
(LGCA) to study and analyse the effects of the microenvi-
ronment on cell migration by developing two models to
address the motion in an environment providing directional
information and considering the influences of orientation of
the cells [26]. Hatzikirou et al. [27] established a LGCA
model of tumour invasion to analyse observed travelling-
front behaviour in a homogeneous environment of two
interacting populations of tumour cells and necrotic ma-
terial. ,ese models predicted the velocity of the travelling
invasion front, which in these models depends on fluctua-
tions arising from the motion of the discrete cells at the front
of the growing tumour.,e calculated width of the travelling
front was found to be proportional to the velocity of the
front (cells). Finally, Chopard et al. [28] developed an LGCA
model to predict the velocity of the travelling invasion front,
which, in their findings, strongly depends upon fluctuations
that arise from the motion of the discrete cells at the front.

,e cellular Potts model (CPM) was developed by Graner
and Glazier [29] for modelling cell sorting and was applied
thereafter to various phenomena in biological development.
,e results indicated that long-distance cell movement leads
to “sorting,” with a logarithmic increase in the length scale of
homogeneous clusters within the primary tumour. ,ey
found two successive phases: a rapid boundary-driven
creation of a low cohesivity cell monolayer around the
aggregate, followed by a slower (and boundary-in-
dependent) internal rearrangement.,e basic CPMhas been
since extended to also account for the effects of growth
factors [30], extracellular materials [31], nutrients [30, 32],
or other diffusing chemicals [33].

2.1.2. Lattice-Free Models. In lattice-free approaches, cells
are at liberty to move in any direction and any distance
consistent with the underlying biological, physical, and
chemical processes. A complicating feature of these models
is, of course, collision detection between the cells since,
unlike in lattice-based approaches, the cells are not confined
to discrete “voxels.”

(1) Lattice-Free Models of Fundamental Tumour Plasticity,
Growth, and Invasion. Anderson and Chaplain developed a
discrete mathematical model (as part of a hybrid formula-
tion) for the formation of the capillary sprout network under
the effect of tumour angiogenic factors (TAF) secreted by a
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solid tumour [34] based on a “discretized” form of a system
of nonlinear partial differential equations (i.e., equations that
evolve both in time and in space). ,ese equations describe
the initial migratory response of endothelial cells to the TAF
and fibronectin. ,e discretized model tracks individual
(model) endothelial cells at the sprout tips and incorporates
anastomosis, mitosis, and branching explicitly.,e results of
this model are complex but importantly indicate that both
chemotaxis and haptotaxis are necessary for the formation of
a capillary network at a large scale. ,is model was later
extended to describe invasion and metastasis by focusing on
three key variables: tumour cells, host tissue (ECM), and
matrix-degradative enzymes associated with the tumour
cells [35]. ,e results suggested that haptotaxis is crucial for
both invasion and metastasis.

Drasdo and Hohme introduced an off-lattice model for
tumour growth [36]. ,is model assumed that each cell is an
elastic, sticky particle of limited compressibility and
deformability, which is capable of active migration, growth,
and division. ,e standard metropolis algorithm was used to
simulate a friction-dominated stochastic dynamics driven by
physical interactions, which was also used by Drasdo et al.
for a Monte Carlo approach to analyse the dynamics of
tissue-cell populations [37]. ,ese models make quite spe-
cific predictions about the growth of avascular tumours with
a necrotic core that are approximately spherical. In par-
ticular, a key finding is that depletion of glucose or oxygen
(or both) depletion seems to determine the size of the ne-
crotic core but not the size of the tumour.

(2) Discrete Models of Cancer *erapy Optimisation and
Design. A recent off-lattice model to integrate physical
dynamics and cell signalling was proposed by Lettort et al.
[38]. ,ey presented an open-source package called Phys-
iBoss that combines intracellular signalling using Boolean
modelling (MaBoss) [39] and multicellular behaviour using
agent-based modelling (PhysiCell) [40]. ,ese tools are
useful for studying heterogeneous cell population responses
to treatment, mutation effects, and different modes of in-
vasion or isomorphic morphogenesis events. ,e models
have specifically studied heterogeneous cell fate decisions in
response to tumour necrosis factor (TNF) treatment and
explored the effect of different treatments on the behaviour
of several resistant mutants. ,e findings of these models are
very diverse indeed and beyond the scope of this article, but
the thorough review provided in [40] gives specific examples
of the power of this system for studying different cancer
biology and treatment problems.

2.2. Continuum Modelling. Continuum models treat tu-
mours as a collection of tissue and the underlying processes
are described by differential equations. Compared to discrete
models, continuum model parameters are easier to develop
and analyse as the models often represent a mean field
approach compared with Monte Carlo methods. Further-
more, such models are often amenable to mathematical
analysis that allows, for example, steady-state solutions to be
determined analytically. Unfortunately, the trade-offs

relative to discrete models is that (a) the mathematics is
generally inaccessible to nonmathematicians and (b) that the
resulting constitutive equations may contain simplifications
of the biology (e.g., assuming continuity or heterogeneity)
that may make the results highly theoretical and of limited
clinical relevance.

,e general form of a continuum model is a partial
differential equation (PDE) that describes dynamics in time
and space. Typically, we may have a function u(t, x) that is a
function of time t and position x. Here, u may describe the
density of a population of cells and x lies in some spatial
domain. ,e governing equations take the form

zu

zt
� ∇x D(x)∇x( 􏼁 + f(t, x, u). (1)

Here, zu/zt means the partial derivative with respect to t,
∇x is the gradient derivative with respect to x, D(x) is the
diffusion tensor, and f(t, x, u) describes any chemical re-
actions the cells may be experiencing. If D(x) is a constant,
then the spatial domain is said to be homogeneous. How-
ever, if D is a function of space, the problem is said to be
heterogeneous. Models of this type need to be provided with
an initial condition for u at t� t0, an initial time, and
boundary conditions on the boundary of the domain. ,is
then guarantees the existence of a (unique) solution to the
model.

2.2.1. Continuous Models of Fundamental Tumour Plasticity,
Growth, and Invasion. Various mathematical models of
tumour growth by diffusion have been developed in the
literature, which is rich along these lines. Controlling for the
mitosis of tissues, tumour growth was modelled by con-
sidering sources such as negative feedback mechanism [41],
discontinuous switchlike mechanisms [42, 43], non-
uniformly distributed mitotic inhibitors [44, 45], effects of a
necrotic core [46], and others.

McElwain and Ponzo developed a model for the growth
of solid tumours with nonuniform oxygen consumption
[47], focusing on necrosis within a tumour.,e results of the
model were compared with the simpler model developed by
Greenspan [48], and this analysis identified significant
differences between the growth patterns of these twomodels.
In some cases, for instance, the predicted radius of (just) the
necrotic core is much larger in the McElwain and Ponzo
model than the predicted outer radius of the whole tumour
in the Greenspan model. A related model, considering
apoptosis as a volume loss mechanism [49], reproduces
clinically observed growth patterns and predicts that, under
certain conditions, a dormant state can exist without the
formation of a central coagulative necrotic region.

Chaplain and Britton presented a mathematical model
for the production of a growth inhibitory factor (GIF) within
a multicell spheroid representing a tumour by assuming that
the GIF is produced by cells within the spheroid in some
prescribed nonlinear, spatially dependent manner [50]. ,e
results of simulations of this model suggest that using a
nonlinear, spatially dependent source function that reflects
the heterogeneity of the interior of multicell spheroids is
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sufficient to produce a GIF concentration profile within the
spheroid, as observed experimentally. Chaplain extended
this model to study avascular growth in solid tumours and
considered two mathematical models describing different
aspects of solid tumour growth and development (angio-
genesis and vascular growth) for tumour angiogenesis factor
(TAF), under the assumption of linear (Fickian) diffusion
and endothelial population balance equation, by considering
the general conservation equation for endothelial cell density
[51]. ,e predictions of this work are complex but, crucially,
the models suggest that there appears to be a natural critical
domain size in this system, in which the size of a carcinoma
is diffusion-limited and the carcinoma is an avascular state.
While in this state, no invasion can take place, but, once
vascularized, the models predict rapid exophytic growth.

Anderson and Chaplain described the formation of the
capillary sprout network in response to TAF supplied by a
solid tumour. ,eir model takes account of the essential
endothelial cell-ECM interactions via the inclusion of the
matrix macromolecule fibronectin. It consists of a system of
nonlinear partial differential equations (PDEs) describing
the initial migratory response of endothelial cells to the TAF
and the fibronectin [34]. Anderson et al. moderated this
mathematical description for tumour invasion and metas-
tasis, describing the interactions of the tumour cells, ECM,
and matrix-degradative enzymes (MDE) [35]. ,is last
model was based on a system of reaction-diffusion-che-
motaxis equation, and the authors later extended it by
considering cell interactions with ECM, macromolecules
(MM), MDEs, and oxygen [52–54]. In outline, the findings
of this body of work are two. Firstly, tumour plasticity is
driven by selective pressure in the hostile microenviron-
ment; secondly, the loss of cell adhesion is an indispensable
driver of plasticity and invasion.

Instead of the more complex PDE models described
above, which directly represent physical space, tumour
growth and treatment can be modelled based on ordinary
differential equations (ODEs) that describe the evolution of a
system in time only, such as exponential growth, logistic
equation, and linear-quadratic models [55]. Clearly, these
models are inherently less realistic in general, but for specific
problems (in which we may not be interested in spatial
properties of tumours), they are suitable because they are
easier to analyse. ODE models can essentially be derived
from the PDE model by saying that u does not depend on
space. ,us, there is no diffusion term and the ODE model
becomes

du

dt
� f(t, x, u), u t0( 􏼁 � u0. (2)

In some cases, a time-dependent control c(t) that
minimises some pay-off can be found. In this case, we can
modify this ODE as described very recently by Sharp et al.
[56]:

du

dt
� f(t, x, u, c). (3)

Andasari and Chaplain derived a system of ODEs for
intracellular modelling of cell-matrix adhesion during

cancer cell invasion by applying the law of mass action [57].
,e model accounts for reactions between cell surface re-
ceptor integrins, the matrix glycoprotein fibronectin, and
actin filaments in the cytoskeleton.,e results suggested that
rearrangement of actin filaments with integrin/fibronectin
complexes near adhesion sites and interaction with fibrillar
fibronectin produces the force necessary for cell migration
(taking account of cell-matrix adhesion forces).

Gerich and Chaplain modified and extended the model
developed by Anderson et al. [35] by developing a local and,
respectively, a nonlocal model for cancer cell invasion [58].
,e local model was based on haptotaxis (directional mo-
tility) and the nonlocal model was based on cell adhesion.
Assuming that cancer cells proliferate according to the lo-
gistic growth law, they observed in simulations of the model
that as sensing radius goes to zero, the nonlocal model
converges to a related system of reaction-diffusion-taxis
equations. Domschke et al. extended this nonlocal model to
explore the effect of varying cell-cell and cell-ECM adhesion
properties of the cancer cell for multiple cancer cell pop-
ulations [59]. ,e computational simulation results of the
model showed a range of heterogeneous invasion patterns as
a consequence of several possible changing cell-cell and cell-
matrix adhesion scenarios. Bitsouni and colleagues [60]
developed a nonlocal mathematical model describing cancer
cell invasion andmovement as a result of integrin-controlled
cell-cell adhesion and cell-matrix adhesion, and trans-
forming growth factor-beta (TGF-β) effect on cell pro-
liferation and adhesion, for two cancer cell populations with
different levels of mutation. ,e model consists of partial
integrodifferential equations describing the dynamics of two
cancer cell populations, coupled with ODEs (so is, in some
sense, a hybrid of PDE andODEmodelling) describing ECM
degradation and the production and decay of integrins with
a parabolic PDE governing the evolution of TGF-β con-
centration. ,ey used this model to study aggregation and
travelling wave dynamics of cancer cells [61], quantitatively
characterising the effect of cancer mutation rate on the speed
of cancer invasion.

Friedman and Reitich developed a model concentrating
on the case where at the boundary of the tumour, the birth
rate of cells exceeds their death rate [62]. A new formulation
for this model and the model described in [49] was de-
veloped by Cristini and colleagues, who considered the
tumour core to be nonnecrotic with no inhibitor chemical
species present [63]. ,is model assumed that tumour ge-
netics completely determine the morphological behaviour,
and the TME is not taken into account. ,ey observed that,
for highly vascularized tumours, while they grow un-
bounded, their shape always stays compact and invasive
fingering does not occur. Macklin and Lowengrub extended
this model by considering effects of the interaction between
the genetic characteristics of the tumour and the TME on the
resulting tumour progression and morphology [64], con-
cluding that the range of morphological responses can be
placed into three categories, depending on the TME: (a)
tissue invasion via fragmentation due to a hypoxic micro-
environment, (b) fingering, invasive growth into nutrient-
rich, biomechanically unresponsive tissue, and (c) compact
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growth into nutrient-rich, biomechanically responsive tis-
sue. ,ese findings corroborate experimental data that
suggests the importance of the impact of microenvironment
on tumour growth, morphology, and implications for cancer
therapy.

2.2.2. Free Boundary Models for Tumour Growth. A free
boundary (FB) model is a special type of differential
equation model in which we wish not only to find the so-
lution but also where the solution is actively interacting with
the spatial medium and, consequently, the domain itself is
unknown. FBs arise in biological models when there is an
effect from the medium, e.g., the TME affecting the tumour
or an area of the spatial domain becomes active from a
normal inactive state. Several models of this type have been
developed, all of a highly theoretical nature, some aimed at
simply proving the existence of solutions to these difficult
problems.

Chaplain and Stuart [65] developed a free boundary
model for the diffusion of tumour angiogenesis factor (TAF)
into the surrounding host tissue, explaining local anasto-
mosis.,emodel includes finite boundaries, critical distance
between tumour and neighbouring vessels, natural decay,
and, respectively, sink term for TAF.

Friedman and Reitich [62] studied a free boundary
model for the growth of a nonnecrotic, vascularized tumour
where the tumour expands due to cell proliferation or death
under the level of a diffusing nutrient concentration. ,ey
observed that if the tumour doubling time is large compared
to the time scale of the diffusion of the nutrient, the radius of
the tumour converges to a stationary radius and the con-
vergence is very (i.e., exponentially) fast. On the other hand,
the stationary solution is generally unstable and the tumour
size increases exponentially fast for a large set of possible
initial data.

Bazaliy and Friedman [66] studied a free boundary
problem for the tumour growth with arbitrary initial shape
using an elliptic-parabolic system, establishing existence and
uniqueness of solutions for small time intervals. Chen and
Friedman [67] considered a system of two hyperbolic
equations and two elliptic equations to model tumour
growth using a free boundary problem. Hyperbolic equa-
tions are used for the densities of cells in proliferating and
quiescent states, respectively, while elliptic equations are
used for the concentration of nutrients and pressure. ,e
existence, uniqueness, and regularity of the solution are
proved for small time intervals. Chen et al. [68] also
modelled a hyperbolic free boundary problem with pro-
liferating and quiescent cell populations and proved that the
stationary solution is linearly asymptotically stable.

Friedman [69] studied a free boundary tumour model
with three population of cells—proliferating, quiescent, and
necrotic—by assuming tumour tissue is a fluid subject to the
Stokes equation. Sources of the Stokes equation are de-
termined by the proliferation rate of (proliferating) cells.
,ey proved that for the coupled system of PDEs for the
densities of three types of cells, the nutrient concentration,
fluid velocity, and pressure have a unique smooth solution,

with a smooth free boundary for a small time interval.
Friedman andHu [70] studied aggressiveness of a tumour by
considering a free boundary tumour growth modelled by the
Stokes equation. In this model, they used two parameters:
proliferation rate (μ) and cell-cell adhesiveness (c) which
measure the aggressiveness as a quotient, μ/c. As the value of
this parameter increases, the model predicts that the tumour
will lose its spherical shape, develop “fingers,” and become
invasive.

Cui and Friedman [71] studied a free boundary problem
for a nonlinear system of two ODEs. One ODE is singular at
some points, including the initial point r � 0, and hence, the
initial value problem has a one-parameter family of solu-
tions. ,ey proved that there exists a unique solution to this
free boundary problem.

Friedman [72] introduced a free boundary multiscale
tumour model including the effects of gene mutations on the
population density of the tumour cells. Two time scales are
tumour growing time and cycle time of individual cells. ,e
model is formulated as a system of PDEs for population
densities of cells and concentrations of oxygen and che-
mokines. ,ey proved the existence and uniqueness of the
solution, and properties of the free boundary are also
established.

Xu et al. [73] studied a free boundary problem for tu-
mour growth under the influence of delay, by assuming that
the process of proliferation is delayed compared with ap-
optosis (because of the time required for mitosis). ,ey
formally prove that if the ratio of the diffusion time scale to
the tumour doubling time is small, the volume of the tumour
is self-limiting, i.e., it will either disappear or evolve to a
dormant state. Xu and Wu [74] analysed a free boundary
model of tumour growth with angiogenesis. ,ey proved the
existence and stability of the steady-state solutions when the
rate at which the tumour attracts blood vessels is constant.
Similarly, Zhang and Tao [75] studied the growth of an
avascular tumour comprising two different cell types
(proliferative and quiescent) with different chemotactic
responses to extracellular nutrients using a free boundary
model, proving global solvability of the model.

2.2.3. Continuous Models of Cancer *erapy Optimisation
and Design. Enderling et al. [76] presented a mathematical
model for the growth and invasion of a solid tumour into a
domain of breast tissue using a linear-quadratic (LQ) model.
,e model predicted that the single high dose of radio-
therapy delivered by targeted intraoperative radiotherapy
would result in eliminating sources of recurrence. On the
other hand, fractionated external beam radiotherapy would,
in their model, eliminate stray tumour cells but allow cells
with loss of heterozygosity (LOH) in tumour suppressor
genes (TSGs) or cell-cycle checkpoint genes to pass on low-
dose radiation induced DNA damage and, consequently,
mutations that may favour the development of a new
tumour.

Based on the PDE model developed by Anderson and
colleagues [35] and the model developed in [76], Enderling
et al. presented a system of ODEs to mathematically study
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breast cancer development, local treatment, and recurrence
[77]. ,ey apply different simulated treatment strategies
(surgery, adjuvant external beam radiotherapy, and targeted
intraoperative radiotherapy) in the context of their model to
identify different sources of local recurrence and to discuss
their prevention in the clinical setting.

Byrne and Chaplain studied growth of nonnecrotic
tumours on the effect of inhibitors using a model with two
reaction-diffusion equations that describe the distribution of
externally supplied nutrient and inhibitor species and an
integrodifferential equation that governs the evolution of
outer radius of the tumour [78]. ,ey represented evolution
of the tumour as a free boundary problem. Implications of
the model for treatments of cancer are also discussed at a
level of detail beyond the scope of the present article but
essentially highlighting the complex effects of encouraging
vs suppressing an immune response and vascular delivery of
drugs and nutrients to tissue.

2.3. Hybrid Modelling. Hybrid or continuum-discrete
models can bridge the gap between the cellular scale and the
tumour (or even organism) scale. In the hybrid approach,
tumour tissue is modelled using both discrete and contin-
uum elements. In general (but with exceptions), oxygen,
nutrient, drugs, growth factors, and certain tissue features
are described as continuum fields and cells are described as
discrete elements. ,ere are sometimes subtle elements in
interfacing the two approaches and to get the model to
behave appropriately.

Anderson developed a hybrid mathematical model of
solid tumour invasion to study how the geometry of the
growing tumour is affected by mutation-driven tumour cell
heterogeneity focusing on four key variables: tumour cells,
the ECM,matrix-degradative enzymes, and oxygen [52].,e
results predicted that local tumour cell-ECM interactions,
not cell-cell interactions, control the overall geometry of the
tumour. Gerlee and Anderson [79] studied the emergence of
the glycolytic phenotype of clonal evolution in cancer, using
a hybrid model in which the continuum part of the model is
contained in the system of nonlinear PDEs modelled in [35].
,ey analysed the influence of tissue oxygen concentration
and ECM density on the dynamics of the model output. ,e
results suggested that the combined effect of the oxygen
concentration and matrix density creates an environment in
which a “glycolytic phenotype” gains a selective advantage.
Anderson and colleagues also developed a hybrid model of
cancer invasion considering cellular and microenviron-
mental factors simultaneously and interactively [54], whose
outputs indicate that the genetic makeup of a cancer cell may
“realize” its plastic/invasive potential through a clonal
evolution process driven by TME selective forces.

Jiang et al. [30] developed a mathematical model for
avascular tumour growth that spans three distinct spatial
scales. At the level of the cell, a lattice Monte Carlo model
describes cellular dynamics (proliferation, adhesion, and
viability). At the subcellular level, a Boolean network reg-
ulates the expression of proteins controlling the cell cycle. At
the extracellular level, reaction-diffusion equations describe

the chemical dynamics (nutrient, waste, growth promoter,
and inhibitor concentrations). ,e model predicted TME
conditions required for tumour cell survival and ranges of
the diffusion coefficients of growth promoters and in-
hibitors, while (using the same parameters) the model also
accurately matched experimentally determined spheroid
growth curves under different external nutrient supply
conditions.

Jeon et al. developed an off-lattice hybrid model for
tumour growth and invasion [80], building on earlier work
by Anderson and Chaplain [34]. ,is semidiscrete model
includes cell-cell and cell-ECM interaction, cell proliferation
and cell death. ,e authors used the Langevin equation in
the form of force balance to develop the model, which makes
no implicit or explicit assumption about the nature of
cellular movement. ,ey found that cell-cell adhesion and
haptotaxis are the key drivers of tumour growth and
morphology.

3. Perspectives

We have here reviewed a large number of fairly diverse
quantitative models of cancer cell plasticity, falling roughly
into three categories: discrete, continuum, and hybrid, each
with strengths and weaknesses relative to a specific research
question. ,e schematic relationships of these classes of
models to one another are illustrated in Figure 2. For the
convenience of the reader, we have also summarised
(nonexhaustively) the principal findings of these modelling
studies and the mathematical techniques used in each case in
Table 1.

We now compare, in brief, the strengths and weaknesses
of the different types of models reviewed here. One may
consider different approaches when one is addressing
roughly different degrees of detail. For example, the discrete
lattice-free models perhaps include the most detailed in-
formation about the relevant biology, but are also the most
computationally expensive, restricting their applications to
relatively smaller scales or requiring the use of supercom-
puters. In contrast, discrete lattice-bound models coarse-
grain the free space into discrete lattice sites, reducing the
computational cost regarding cell movements, often at the
cost of losing spatial precision, which is a good compromise
depending on the questions being asked. ,e continuum
models further coarse-grain discrete cells into a continuous
density, with the aim of enabling such models to simulate
large-scale phenomena but, again, at the cost of losing all
local spatial information, e.g., local cell-cell interactions. If
this loss impairs the modelling approach from answering
important questions but we still require the simulation of
large-scale phenomena, we may then consider using hybrid
modelling.

We now offer some perspectives on the future devel-
opment of this exciting and highly active area of research. An
important question is how such models can be used in a
clinical context. In a so-called “personalized medicine”
clinical setting, there may be a need to have results available
from computer simulations very quickly, to aid, say, invasive
operations. Recently, there has been a move to run such
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Discrete 
models

Based on 
Monte Carlo 
techniques 
to describe 
movement

Lattice-based models

LGCA CA CPM
Off-lattice models

Denotes two different cell types (red, blue) moving and 
interacting on or off lattice

Hybrid models Bridging the two regimes

Continuum 
models

ODE, evolving in time
Chemical reactions
Growth relations (cf Gompertz)

PDE, evolving in time and space
Spatial heterogeneity
Diffusion
Reaction-diffusion models

Figure 2: Discrete cell modelling, continuum modelling, and hybrid modelling, respectively, can be used to mathematically study tumour
progression and metastasis. Discrete models can be classified into lattice-based models and lattice-free models. Lattice-based models can be
further classified as Lattice Gas Cellular Automata (LGCA), Cellular Automata (CA), and Cellular Potts models (CPMs). Stochastic models
and finite-difference approximation methods are used in lattice-free approaches. For continuum modelling, ordinary differential equations
(ODEs) and partial differential equations (PDEs) are used. Logistic power and the Gompertz law are the basic ODEs used for continuum
modelling. PDEs such as reaction-diffusion and partial integro-differential equations are also used for continuummodelling. Finally, hybrid
models combine discrete and continuum approaches by modelling cell dynamics as discrete and certain tissue features such as oxygen,
nutrient, drugs, etc. as continuum fields. To develop these mathematical models, various tumourmicroenvironmental factors such as matrix-
degrading enzymes, extracellular matrix (ECM), oxygen, growth factors, inhibitors, etc. are considered.

Table 1: ,e important models reviewed here are organised by modelling approach and a summary of their key finding(s). ,e list is
nonexhaustive.

Reference Model Submodel Key result

Donaghey [12] Discrete CA
Higher proportion of cells will enter the
G0 absorbing cell state as the total cell

population gets larger.

Düchting and
Vogelsaenger [13] Discrete CA

After treatment, undamaged G0 cells are
recruited into the cell cycle again and

stimulate tumour growth.

Duchting and Dehl [14] Discrete CA

Critical initial number of tumour cells
of a tumour nucleus is necessary for the
growth of a tumour. Additional high-
influence variables are the mean life

span of a tumour cell and the amount of
tumour cell loss.

Smolle and Stettner [23] Discrete CA
Histological tumour patterns depend

complexly on the autocrine and
paracrine factors.

Smolle et al. [24] Discrete CA

Relative degree of motility to
proliferation decreases from benign to
primary malignant and metastatic, but

the absolute degree of motility is
increasing.
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Table 1: Continued.

Reference Model Submodel Key result

Ferreira et al. [25] Discrete CA

Growth patterns of the tumour are
compact with gyration radius, surface
roughness, and number of peripheral

cells.

Schmitz et al. [19] Discrete CA

A tumorous subpopulation is most
highly favoured when the interfacial

area among strains is maximized. Total
volumetric fraction of nonlocalized
strains is not important in tumour

development.

Jiao and Torquato [21] Discrete CA

Quantitative properties of the host
microenvironment can significantly

affect tumour morphology and growth
dynamics.

Jiao and Torquato [22] Discrete CA

Strong cell-cell adhesion can suppress
the invasive behaviour of the tumours
growing in soft microenvironments;

cancer malignancy can be significantly
enhanced by harsh microenvironmental
conditions, such as exposure to high

pressure levels.

Xie et al. [20] Hybrid CA, diffusion reaction

In chemotherapy, constant dosing is
generally more effective in suppressing
primary tumour growth than periodic
dosing, due to the resulting continuous

high drug concentration.

Hatzikirou et al. [27] Discrete LGCA Width of the travelling front is
proportional to the front speed.

Chopard et al. [28] Discrete LGCA ,ere is a positive effect of fibre track on
glioma growth.

Graner and Glazier [29] Discrete CPM

Long-distance cell movement leads to
sorting with a logarithmic increase in
the length scale of homogeneous cell

clusters.

Jiang et al. [30] Discrete CPM

,e microenvironmental conditions
required for tumour cell survival and
growth promoters and inhibitors have
diffusion coefficients in the range 10− 6

to 10− 6cm2/h.

Turner and Sherratt [31] Discrete CPM
Increased proliferation rate results in an
increased depth of invasion into the

extracellular matrix.

Shirinifard et al. [32] Discrete CPM

Simulated avascular tumours form
cylinders following the blood vessels,
leading to a differential distribution of

hypoxic cells within the tumour.

Anderson and Chaplain
[34]

Continuum and discrete (discrete
model is the discretized form of the

continuum model)

Diffusion-reaction
equation

Random walk model
Both chemotaxis and haptotaxis are
necessary for the formation of a
capillary network at large scales.

Anderson et al. [35]
Continuum and discrete (discrete

model is the discretized form of the
continuum model)

Diffusion-reaction
equation

Random walk model

ECM structures can aid or hinder the
migration of individual cells that have
the potential to metastasis. As time
increases, small cell clusters can be

observed.
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simulations on cheap graphical processing units (GPUs) that
can be deployed in standard PCs that may speed up sim-
ulations by several orders of magnitude, placing this tech-
nology at the bedside.,e simulations can be combined with
advanced visualization techniques.

Models can also be used to enhance either missing data
or data that hard to collect. Statistical or machine learning/
artificial intelligence techniques can then be used to char-
acterize or learn about important features. ,is is not
possible if data are sparse, since these approaches require
large amounts of high-quality data for training the system.

Models can also be used to make sense of data that are
highly variable, for example data collected from a cohort of
patients in some disease state. ,is can be done by cali-
brating not a single model to, say, the mean of the highly
variable data but by calibrating a population of models (with
the same framework but different parameters) against the
data. ,is population of models can be studied statistically,
quantifying the uncertainty, or run forward in time to
provide probabilistic outcomes, that is beyond just a single
model. Such an ensemble is sometimes called a virtual
population [81, 82].

Before data collection, a new experimental protocol
requires testing and optimisation. To identify what types of
data should needed for the experiment, a mathematical
model can be used. ,erefore, mathematical models rep-
resent a natural framework for experimental protocols. To
improve the quality and the practical use of mathematical
models and to generate qualitative and quantitative pre-
dictions, stronger collaboration of mathematicians and
biomedical researchers is needed.

,e models of tumour cell plasticity we surveyed here
illustrate and colour the discussion above. For example, using
a discrete model, one can identify biological factors such as
heterogeneity and interaction between cells. However, it can
be difficult to investigate the model behaviour because many

simulation runs are required. Continuum models provide
tools to describe movement and aggregation patterns of cell
populations under various tumour microenviornmental
factors. In this way, for example, the effect of micro-
enviornmental factors for the tumour progression and the
mechanism of cancer cell plasticity can be observed. Hybrid
models combine discrete and continuum descriptions of
cancer biology by bridging the gap between the cellular scale
and tumour scales. Hybrid models attempt to combine the
best features of discrete models and continuum models.

,e challenge, going forward, for mathematical mod-
elling in cancer in general and plasticity specifically, is
moving from a descriptive to a prescriptive power, for
example, generalizing their findings after appropriate
validation so that they can be used to design a priori novel
effective treatment strategies, rather than showing a good
match with existing experimental or clinical data, as tends
to be the case.

4. Conclusions

Mathematical models can be used to study the different
stages of tumour progression such as avascular and vascular
tumour growth, angiogenesis, invasion, and metastasis
under the effects of TME factors. Because of tumour cell
plasticity, cancer cells are able to escape from the TME and,
further down the cascade, resistance to therapies as well as
immune system evasion arises. By studying quantitative
models, the factors and influences leading to cell plasticity
can be identified. For example, as many models now con-
firm, ECM stiffness, hypoxia, nutrient deprivation, hypoxia,
and acidity all promote cell plasticity and motility within the
TME [2]. Most quantitative models described above are
developed considering cell-cell adhesion, cell-ECM adhe-
sion, hypoxia, etc. Escaping from the TME as a collection of
cells or as an individual cell, together with patterns of cell

Table 1: Continued.

Reference Model Submodel Key result
Chaplain and Stuart [65] Continuum PDE Possible explanation for anastomosis
Bazaliy and Friedman
[66] Continuum PDE Establish the existence and uniqueness

of a solution for some time interval

Friedman [69] Continuum PDE

For the densities of three types of cells:
proliferating, quiescent and necrotic,
the nutrient concentration, fluid

velocity, and pressure have a unique
smooth solution, with a smooth free
boundary for a small time interval

Chen et al. [68] Continuum Partial integro-differential
equations

Stationary solution of the model is
linearly asymptotically stable

Cui and Friedman [71] Continuum ODE

Initial value problem has a one-
parameter family of solutions and there
exists a unique solution to the free

boundary problem.
Zhang and Tao [75] Continuum PDE Prove the global solvability of the model

Xu and Wu [74] Continuum PDE

Prove the existence and stability of the
steady-state solutions when the rate at
which the tumour attracts blood vessels

is constant.
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aggregation, can also be better understood with these types
of models.
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