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Abstract The biotic and geologic dynamics of the Great
American Biotic Interchange are reviewed and revised.
Information on the Marine Isotope Stage chronology, sea
level changes as well as Pliocene and Pleistocene vegetation
changes in Central and northern South America add to a
discussion of the role of climate in facilitating trans-isthmian
exchanges. Trans-isthmian land mammal exchanges during
the Pleistocene glacial intervals appear to have been promoted
by the development of diverse non-tropical ecologies.

Keywords Great American Biotic Interchange - Central
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Introduction

The Great American Biotic Interchange (Stehli and Webb
1985) refers to the exchange of land mammals that
represents the strongest biogeographic link between North
and South America ever achieved (Simpson 1950, 1953;
Webb 1976, 1985; Marshall et al. 1982; Woodburne et al.
2006; Morgan 2008).

Woodburne et al. (2006) summarized aspects of Central
American and Mexican faunas in this context. In addition to
contributing to the mammalian range extensions of which the
Great American Biotic Interchange (GABI) is comprised,
these regions also served as a source of cladogenesis on one
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hand, and a holding pen for certain taxa, on the other. Webb
and Rancy (1996) evaluated centers of endemism for
Neotropical mammal faunas of the late Cenozoic. Webb
(1991) proposed that Great American Biotic Interchange
(GABI) dispersals were aided by the development of
Northern Hemisphere glaciations that promoted the devel-
opment of savanna-like ecologies in Central America, in
contrast to their generally tropical character, and thereby
permitted savanna-adapted mammals to cross between North
and South America. The formulation of a succession of
astronomically-calibrated oxygen isotope curves, summa-
rized in Lisecki and Raymo (2005) has provided a detailed
chronology of oceanic temperature changes during the past
5 Ma. Sosdian and Rosenthal (2009) offered a detailed scale
of sea level changes during the past 3.2 Ma, and Bartoli et al.
(2005) presented a valuable analysis of the final closure of
the Isthmus of Panama. Papers by Graham and Dilcher
(1998) and others, including Piperno (2006), Andreissen
et al. (1993), and Bush et al. (2004), aid in the discussion of
Pliocene and Pleistocene vegetation and climatic patterns in
Central and northern South America.

The purpose of the present paper is to integrate the
above and pursue the roles played by tectonics, climate, sea
level, and holding pens in facilitating or otherwise affecting
the exchange of land vertebrates across the Panamanian
isthmus during GABI. Figure 1 shows the districts and
faunal sites discussed in the text.

Abbreviations and definitions
CAS Central American Seaway; Bartoli et al.
(2005).

The region encompassed between the

southern border of Panama and the
Isthmus of Tehuantepec, Mexico (Fig. 1).

Central America
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a taxon that either phyletically
originates in, or is introduced to, but in
any case subsequently remains
restricted to, the area indicated.

Great American Biotic Interchange.
GABI began about 2.6 Ma (see text).
Glacial pulse corresponding to a MIS in
Fig. 7 that represents a strong departure
from the general pattern during a time
of stable or lowering of mean sea level
as indicated by the heavy black line
thereupon. This is noted as GP in Fig. 4
opposite MIS stages numbered in italic
boldface in both Figs. 4 and 7.
Geomagnetic Polarity Time Scale (after
Lourens et al. 2004).

this refers to situations in which a
taxon occurs earlier in a given
location, only to be found later on in
an adjacent arca. As discussed below
and by Flynn et al. (2005), a number of
taxa have an earlier record in deposits
of the Guanajuato region of central
Mexico (G; Fig. 1) relative to their first
occurrence in the United States. In that
case, the Mexican record is considered
as having been a holding pen with
respect to the later occurrence. All
references in the text to Flynn et al.
(2005) refer to this record in
Guanajuato.

Ice-rafted debris, in the context of
indicating episodes of Northern
Hemisphere Glaciation (NHG) (Bartoli
et al. 2005) and other significant glacial
events (Lawrence et al. 2009).
Kiloyear, a segment of geologic time
1,000 years in duration or the age of an
event (e.g., 200,000 years ago) without
reference to a point or a set of points on
the radioisotopic time scale.

This (also abbreviated L.F.) is an
aggregate of fossil vertebrates that have
a limited distribution in time and space,
derived from a number of closely
grouped localities in a limited
geographic area. See Tedford (1970). A
local fauna could be based on taxa from
as single locality.

Megannum. One million years in the
radioisotopic time scale (e.g., 10 Ma
refers to the 10 million year point on
that time scale).

MIS Marine isotope scale, astronomically
calibrated (Lisecki and Raymo 2005).
m.y. Segment of geologic time 1 million

years in duration or the age of an event
(e.g., 10 million years ago) without
reference to a point or a set of points on
the radioisotopic time scale.

North American Land Mammal Age
(Woodburne 2004).

The content of the Neogene System/
Period and the base of the Pleistocene
Series/Epoch at 1.81 Ma follows
Lourens et al. (2004), contra Gibbaard
et al. (2010).

NHG Northern Hemisphere glaciation, which
began at about 3.6 Ma, but exhibited its
first glacial event at about 3.3 Ma
(Mudelsee and Raymo 2005).

The North American continent north of
Central America (Fig. 1).

PCO Pliocene climatic optimum (Dowsett

et al. 1994), where temperatures rose
about 6°C (Lawrence et al. 2009)
during an interval from 3.25-3.05 Ma.
(Mudelsee and Raymo 2005).

South American Land Mammal Age
(see text).

The South American continent from the
northern border of Colombia with
Panama (Fig. 1).

NALMA

Neogene Period

North America

SALMA

South America

Tectonic background

The traditional viewpoint has been that GABI signaled the
development of an overland corridor across the Panamanian
region, and that this transpired about 3.0 Ma (e.g., Marshall et
al. 1979, 1982 and references cited therein). It also was
recognized that there had been a limited exchange of taxa in
both directions prior to this time, and presumably prior to the
development of a well-defined ‘land bridge’, with the
precursors being designated variably as ‘heralds’ (Webb
1976, 1985, 2006) or New Island Hoppers, with the latter
appellation indicating the method of dispersal (Simpson 1950).

The geologic and tectonic reconstructions of Coates
et al. (2004) indicate that the Panamanian region contained a
series of islands as early as 6 Ma (Fig. 2), with the formerly
through-going Central American Seaway (CAS) being
largely interrupted by an evolving volcanic arc as early as
about 12 Ma, as the southwestern margin of the Caribbean
Plate collided with the South American continent.
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Fig. 1 Map of Florida, Mexico,
and Central America showing
fossil localities and other areas
discussed in the text.

EG=EI Golfo, Mexico;

ES=EI Salvador; G=Guana-
juato, Mexico; Gu=Guatemala;,
H=Honduras; IT=Isthmus of
Tehuantepec; L=Leisey Bone
Bed, Florida; Ni=Nicaragua; 20
P=Panama; TMVB=Transmex-

ican Volcanic Belt.

Selected Fossil Mammal
sites, Florida, Mexico-Central
America

o Scale gqq

104
km

Mexico

Tectonic highlights include a widespread unconformity
at about 8.6-7.1 Ma that reflects complete docking and
widespread uplift of the Central American Isthmus (includ-
ing Panama). This apparently fostered the 7.3 Ma entry of
the Procyonidae to South America (Fig. 3).

From Costa Rica to Colombia (Fig. 2), marine deposits
reflect shallow marine (neritic) conditions adjacent to
emergent lands between about 7.1-4.0 Ma (and 4.8 Ma in
Colombia; 4.0 Ma in Costa Rica) subsequent to which the
region was further strongly uplifted, including the final
emergence of the Panamanian district. In this context
(including a brief increase of marine flooding about 6 Ma;
Coates et al. 2004), overall conditions reflected increased
shallowing of the CAS until about 2.8 Ma (Bartoli et al.

2005), after which time the isthmian region apparently was
dry land.

From the evidence in Fig. 3 and the following discussion
of the dispersal pattern (Fig. 4) it appears that land
mammals began to extend their ranges across Central
America soon after the initial tectonic closure from about
12 Ma. Whereas the first sloths arrived in North America at
about 9 Ma, that is only a minimum age regarding their
actual crossing of the isthmian region, and whether they
were present in Central America prior to their occurrence in
continental North America remains to be determined. In
fact, the degree to which Central America acted as a
holding pen for any trans-isthmian dispersal remains an
open question, considered further below.

area of
Central American

i Costa
volcanic arc Rica

Cocos Plate

M = active emergent volcanic arc

200 km

Caribbean
Plate

neritic deposits

1-8-10

Fig. 2 Reconstruction of the geologic setting of the Central American
volcanic arc region at 6 Ma, after Coates et al. (2004: fig. 8c). The
Central American volcanic arc is still active (open triangles)
subsequent to a major plate collision between 8.6-7.1 Ma. The
presence of numerous islands as well as emergent land in Mexico,

Guatemala, Honduras, Nicaragua, and Colombia sets the stage for the
Great American Biotic Interchange well prior to the final closure of
the Central American Seaway, perhaps as late as 2.8 Ma. Neritic
conditions dominated near island segments prior to a brief bathyal
incursion.
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Fig. 3 General chronology of North and South American dispersal episodes, after Cione et al. (2007). Dispersal taxa to North and South America

modified according to the text.

Dispersal pattern

This is updated and revised from Woodburne et al. (2006)
and Cione et al. (2007), and other cited references. The
discussion recognizes the fact that the South American
record still is being developed in areas north of Argentina.
Fig. 3 shows the overall chronology of the mammal-bearing
units in North and South America, with a summary of the
faunal exchanges detailed more fully in Fig. 4. The
information also is outlined in Table 1, which additionally
shows some of the South American taxa that were endemic

@ Springer

results of the immigrations. The pattern shown in Fig. 4
indicates that the main pulse of the interchange began about
2.6 Ma, but there had been a number of more limited
dispersals prior to that time. The earliest of these (Fig. 3) is
represented by the sloths Thinobadistes and Pliometanastes
found in faunas of early Hemphillian age (ca 8.5-9 Ma) in
North America (Morgan 2008), derived from South
American mylodontid and megalonychid ancestors, respec-
tively. This is comparable to Webb (1976), modified to
reflect the origin of Megalonyx from Pliometanastes at
about 7 Ma (Fig. 3 and McDonald and Naples 2008). In the
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Fig. 4 Chronology of late Miocene through Pleistocene trans-

lowstands of Fig. 7. MIS stages such as 100 (boldface) indicate those
in Fig. 7 considered to reflect lowstands due to strong pulses in

glaciation. Chronology and list of mammalian taxa as in text.

isthmian land mammal exchanges with respect to oxygen isotope

stratigraphy. Chronologic framework (Ma, Epoch, GPTS, NALMA,
Oxygen isotope stratigraphy) follows Lisiecki and Raymo (2005).

Sigmodontine rodent as per text. Completion of Panamanian Isthmus

after Coates et al. (2004), and Bartoli et al (2005).

Interval of Pliocene Northern Hemisphere glaciation, PCO, and ice
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build-up, after Mudelsee and Raymo (2005). /RD
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overall context, in which more taxa dispersed southward
at the height of GABI (see below), the fact that the first
elements of the interchange were from South America is
noteworthy. This part of the pattern also is consistent
with most newcomers to North America being, in fact,
xenarthrans.

The first dispersal southward was accomplished by a
procyonid carnivoran, reflected by *Cyonasua (*=endemic
South American taxon that reflects a dispersal), at about
7.3 Ma (Procyonidae, Fig. 3; also Cione et al. 2007). This
was followed by sigmodontine rodents at about 6 Ma. Verzi
and Montalvo (2008) proposed that mustelid carnivorans
also entered South America at about this time, but that
chronology and identification have been questioned by
Prevosti and Pardifias (2009). Lindsay (2008) indicated that
sigmodontine rodents (cricetids, contra murids in Webb
2006 and other papers) were well developed by the
Clarendonian NALMA (ca 12 Ma) in North America.
Forasiepi et al. (2007) pointed out that the late Huayquerian
record of Cyonasua may have coincided with the last
occurrence of metatherian borhyaenids and that there was
effectively no direct competition between large terrestrial
marsupial carnivores and the placental taxa that arrived in
the early part of GABL

The next exchanges (Figs. 3 and 4) took place at about
5.0-4.7 Ma, with the Terror Bird (7itanis) in Texas (ca
5 Ma; MacFadden et al. 2007) and two South American
xenarthrans (the pampatheriid Plaina; and the mylodontid
Glossotherium) in Guanajuato, Mexico (G; Fig. 1). Flynn
et al. (2005) noted that Glossotherium is recorded in the
early Blancan (4.7-4.8 Ma) in Mexico, but significantly
later in the United States, where it persists to the
Irvingtonian (McDonald and Naples 2008). Tomida
(1987) documented Glossotherium in Arizona at about
3.0 Ma (Bell et al. 2004), an example of the Mexican
holding pen (Figs. 3 and 4). Glossotherium is considered to
have originated in South America (McDonald and Naples
2008, contra Webb 2006). Reguero et al. (2007) recorded
the presence of Plaina in South American deposits of
Montehermosan age (Fig. 3), possibly 5-7 Ma, and Flynn
et al. (2005) indicated that the genus is known from the
Guanajuato deposits about 4.7-4.8 m.y. old. Megalonyx is
also known from Mexico at this time interval (McDonald
and Naples 2008), which is the oldest record of the genus
south of the United States.

At about 3.1-3.9 Ma, the glyptodont Glyptotherium
and the hydrochoerid rodent Neochoerus are recorded
in Guanajuato, Mexico (Flynn et al. 2005). On Table 1
Neochoerus is noted from the Ensenadan NALMA, at about
1.8 Ma. Whether this indicates that the genus arose in
Central America and dispersed later to South America
remains to be determined (Woodburne et al. 2006:97).
Glyptotherium persisted at least until about 2.7 Ma, when it
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entered North America, possibly released from a holding
pen. The original dispersal episode was followed at about
3.7 Ma, as the pampatheriid xenarthran Pampatherium
entered Mexico (Woodburne et al. 2006: 95 L) and
Tayassuidae (artiodactyl peccaries) are recorded in the late
Chapadmalalan SALMA in South America (Cione et al.
2007). Shortly after, at about 3.1 Ma, the peccary,
Platygonus scagliai, is recorded in Argentina. Unless
reflecting a second immigration, this species apparently
descended from a Chapadmalalan precursor, which must
have been an un-named species of that genus (see also
Prevosti et al. 2006, and references cited therein). Platygo-
nus is shown at about 3.7 Ma in South America on Table 1.
Wright (1998) indicated that Platygonus is known from
early late Hemphillian faunas in North America (Hh3,
Fig. 3), at about 7 Ma. The former use of the hog-nosed
skunk Conepatus (e.g., Webb 1985) as a Chapadmalalan
immigrant has been discounted by Cione et al. (2007).

Also at about 3.8 Ma, the typically wet-temperate to
tropical-adapted South American hydrochoerid rodent Neo-
choerus 1s recorded in South Carolina (Sanders 2002), as
well as in Mexico. Neochoerus persisted in Florida (Maca-
sphalt Shell Pit; Bell et al. 2004) and Arizona (111 Ranch
L.F., Morgan 2005) at about 2.6 Ma, and survived on into
the Rancholabrean in coastal localities of the southeastern
United States (Morgan 2008).

At about 3.3 Ma, the North American camelid artiodac-
tyl group is represented by the South American genus
*Lama (Camelidae; Barrancalobian SALMA, Fig. 3; Cione
and Tonni 1995, 2005; Cione et al. 2007). As discussed
further below, the record of this savanna-adapted genus
occurs within the early development of prominent Northern
Hemisphere glaciation.

At 3.0 Ma, the South American mylodontid xenarthran
Glossotherium is found in Arizona and Florida (Bell et al.
2004), derived from its older Mexican record (above).

GABI began in earnest (GABI 1, Figs. 3 and 4) at about
2.6-2.4 Ma, with the first major dispersal of both North
American and South America taxa. This is comparable to
the time of final closure of the CAS (Bartoli et al. 2005)
but, as discussed below, climate change was a key factor
without which such a strong interchange would not have
taken place. In general, the taxa discussed here resemble
those typically having been involved in the interchange by
Webb (1985) and Marshall et al. (1984) at about 2.5 Ma,
and as discussed by Cione et al. (2007). Regarding the
South American record, Cione and Tonni (1995) and Cione
et al. (2007) pointed out that the interchanges took place as
a number of pulses, as did North American entrants as well,
as indicated here. As noted in Figs. 3 and 4, Glyptotherium
arrived in North America at about 2.7 Ma, but this is not
considered part of GABI 1 due to its previous presence in
Mexico (ca 3.8 Ma).
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Reguero et al. (2007) recorded the first occurrence of the
porcupine Erethizon in South America at about 2.6 Ma,
essentially coeval with its dispersal to North America. Until
this update, Flynn (2008) as well as (Webb 1985, 2006, and
other papers) indicated Erethizon had been introduced to
North America, even though that genus or a close relative
still had been unknown in South America. Flynn (2008)
included in Erethizon the North American fossil species
referred to *Coendu by White (1970) that ranged from the
late Blancan to Irvingtonian, the earliest record of which is
the ca 2.6 Ma Wolf Ranch L.F. of Arizona (see also
Harrison 1978; Albright 1999). *Coendu remains an
endemic South and Central American porcupine that is
found today no farther north than Honduras (Flynn 2008).

As clarified by Cione et al. (2007), a large number of
taxa dispersed to South America at this time, including a
mustelid carnivoran (*Galictis; Table 1), a canid carnivoran
(*Dusicyon—also known as *Pseudalopex; Prevosti 2006),
and equid perissodactyls (*Hippidion, *Onohippidium;
both genera have an earlier record in North America, but
subsequently are indigenous to South America). Lopez et
al. (2001) add a ?gomphotheriid proboscidean. The South
American elements of this dispersal are thus reflected in the
Vorohuean record of the Canidae, Equidae, Mustelidae, and
Gomphotheriidae in Fig. 3.

Beginning about 2.4 Ma, the pampatheriid xenarthran
Pampatherium entered the United States from Mexico (a
laggard from a 3.7 Ma holding pen; Morgan and Hulbert
1995; Flynn et al. 2005) along with its through-moving
relative Holmesina, a dasypodid armadillo (Dasypus), a
glyptodontid (Pachyarmatherium), and a megatheriid sloth
(Eremotherium) (Bell et al. 2004; Morgan 2005). On Figs. 3
and 4, this is the last interval assigned to GABI 1.

As indicated in Fig. 4, four families of xenarthrans—
Dasypodidae (Dasypus), Pampatheriidae (Holmesina),
Glyptodontidae (Pachyarmatherium), and Megatheriidae
(Eremotherium)—and an erethizontid rodent dispersed to
North America during GABI 1, with previously dispersed
elements of the Pampatheriidae (Pampatherium) and
Glyptodontidae (Glyptotherium) having been released from
Mexico. This compares with four non-xenarthran placental
families having entered South America (Mustelidae, Can-
idae, Equidae, and Gomphotheriidae). In that the southward
contingent included two families of carnivorans as well as
advanced herbivores, it can be argued that the diversity of
that group is greater than the northward dispersants, as
discussed further below.

An apparent gap in dispersals from 2.4 to 1.8 Ma
seems to have been a tropical holding pattern for
hydrochoerid rodents. Hydrochoerus is present in Florida
at about 2.2 Ma in presumably wet conditions and might
have been lingering in local sites in the Isthmian region in
any case.

At approximately 1.8 Ma South America witnessed a
strong dispersal pulse (GABI 2, Figs. 3 and 4) from North
America. This pulse is represented in South America by the
Ursidae (*4rctotherium), the felid cats Felis, Puma and
Panthera, the saber-toothed cat Smilodon, the peccary
Catagonus, the camels *Palaeolama and *Hemiauchenia,
Cervidae (endemic representatives being the marsh deer
*Epiuryceros and the South American deer *Antifer;
Table 1), the tapir Zapirus, and the gomphotheriid probo-
scideans Stegomastodon and Cuvieronius. All of these taxa
have first South American appearances in the Ensenadan
SALMA (bracket, Fig. 3, and Tonni et al. 1992; Cione and
Tonni 1995, 2005; MacFadden 2000; Pomi and Prevosti
2005; Soibelzon et al. 2005). In that context, *Palaeolama
and *Hemiauchenia are considered endemic South Amer-
ican taxa subsequent to their dispersal from their congeners
in North America (Honey et al. 1998; Woodburne et al.
2006). This episode also records the presence of the USA
endemic mylodontid Paramylodon in Florida (Morgan
2005), and the South American vermilinguan immigrant
Myrmecophaga (Morgan 2008), known from the El Golfo
L.F. of Sonora, Mexico (North America) at about 1.6—
1.8 Ma (Shaw and McDonald 1987). McDonald and Naples
(2008) indicated that Paramylodon descended from the
North American taxon Glossotherium chapadmalalense.

Single-taxon dispersals took place at 1.5 and 1.3 Ma.
Mixotoxodon is recorded from the early Pleistocene
Barranca del Sisimico Local Fauna of El Salvador, along
with Pteronotus (bat), Cuvieronius (gomphotheriid pro-
boscidean), Eremotherium (megatheriid sloth), and Mega-
lonyx and Meizonyx (megalonychid sloths). The 1.5 Ma
age is an approximation, but Webb and Perrigo (1984)
considered this the earliest occurrence of Mixotoxodon in
Central America. The record of Megalonyx may represent
the oldest and southern-most occurrence of that genus
south of Mexico. The other taxa in the Barranca del
Sisimico L.F. were not involved in immigrations at this
time.

The dispersal at 1.3 Ma is represented by the megatheriid
Nothrotheriops from the Leisey Shell Pit, Florida. Bell et al.
(2004) considered the genus to be present in the Vallecito
Creek L.F. of California, dated at about 2.1 Ma, but Morgan
(2005) revised that record to the endemic Megalonyx.
Morgan (2005) is followed here for the age of the Leisey
Shell Pit.

At about 0.8 Ma (~ 0.8—1.0 Ma) the marsupial Didelphis
entered North America (Fyllan Cave; Bell et al. 2004;
Morgan 2008), likely coincident with a dispersal at about
0.7 Ma to South America by the jaguarundi *Herpailurus,
the cervid *Paraceros, and the peccary *Pecari, taxa
known from faunas of Bonaerian age (Mustelidae, Cervi-
dae, and Tayassuidae, Fig. 3 and Cione and Tonni 2005;
Prevosti 2006; Cione et al. 2007). This interval is dubbed
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GABI 3 (Figs. 3 and 4) in representing a bi-polar exchange
of at least four taxa.

Finally, at about, or subsequent to, 0.125 Ma, a major
dispersal (GABI 4, Figs. 3 and 4) to South America is
recorded by the glyptodontid xenarthran Glyptotherium, the
coati Nasua, the river otter *Lutra, the canid Canis, the
ocelot *Leopardus (Oncifelis), the sylvilagine rabbit Syl-
vilagus, and the equid Equus: a relatively diverse if not
balanced assemblage of Lujanian age (Mustelidae, Canidae,
Felidae, Leporidae, Equidae, and Glyptodontidae, Fig. 3
and Tonni et al. 1985; Cione and Tonni 1995, 2005;
Prevosti 2006; Carlini et al. 2008). Hulbert and Pratt (1998)
record Leopardus from about coeval deposits in Georgia.
Prevosti and Rincén (2007) also record the entry of
Urocyon (gray fox) to northern South America at about
25 ka.

In summary, the GABI can be considered as a series of
pulses, possibly reflecting the impact of glacial conditions
in the Northern Hemisphere (see below). A major exchange
(GABI 1) from 2.6 to 2.4 Ma resulted in a porcupine and
variety of xenarthrans coming to North America, a group of
carnivorans and equids and a gomphotheriid proboscidean
to South America. The just antecedent dispersal of a
camelid to South America at about 3.3 Ma likely records
the earliest glacially-coeval southward dispersal of North
American savanna-adapted mammals, but is not considered
part of GABI 1 as defined above.

A dispersal gap from about 2.4-1.8 Ma saw limited
northward ingress of a hydrochoerid rodent, possibly
representing an earlier presence in an isthmian tropical
holding pen.

Renewed dispersal at about 1.8 Ma (GABI 2) entailed a
diversity of carnivorans, artiodactyls, a perissodactyl, and
two proboscideans to South America, and a myrmeco-
phagid xenarthran to the north.

Another gap from about 1.7-0.7 Ma saw limited
dispersal to Central America by a toxodont at 1.5 Ma and
by a megatheriid sloth to North America at 1.3 Ma. GABI
3 recognizes a bi-polar exchange of an opossum at 0.8 Ma
northward and a carnivoran and two artiodactyls at 0.7 Ma
to the south. The last major dispersal, GABI 4, at about
0.125 Ma reflected a diversity of carnivorans, a sylvilagine
rabbit, the equid Equus, and a glypdodont xenarthran
having dispersed to South America.

The above indicates that, overall, somewhat more
mammalian genera dispersed southward (32) than north-
ward (17, excluding the bird, Titanis), with that pattern
being most sharply evident in GABI 2, 3, and 4. As
indicated above, the phyletic diversity was always greater
in the southern contingent, with the northern comprised
mostly of xenarthrans, a minor contribution of an
erethizontid rodent, two hydrochoerid rodents, and a
marsupial.
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Fig. 5 Distribution of Pleistocene landscape types in North and South
America. After Webb (1991: fig. 3). a. Interglacial (present-day)
conditions result in rainforest habitats dominating the isthmian region,
as well as in the Orinoco and Amazon basins of South America. In
this situation, arid or savanna habitats of North America are
completely separated from South American counterparts. b. Northern
Hemisphere glacial conditions result in the preponderance of savanna
and other open landscapes that allowed the extensive population of
South America by North American taxa during the Great American
Biotic Interchange. Note the many apparently close correlations
between multi-taxon dispersal events and glacial pulses (GP) in Fig. 4.

Climate

Under the above tectonic interpretation, elements of the
isthmian land bridge were physically present well before
the major GABI dispersals transpired, and in this context
the climatic stimulus invoked by Webb (1991) is even more
appropriate as identifying the major dispersal instigator.
Regardless of the presence of a pathway composed at least
of a series of islands, major overland dispersal of terrestrial
mammalian taxa apparently did not take place until the
climate was conducive to support the temperate-adapted
taxa that experienced the changes in their respective home
ranges. It seems strongly credible that climate was the
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primary control for the initiation (2.6-2.4 Ma; GABI 1,
Figs. 3 and 4) and subsequent development of the Great
American Biotic Interchange.

As indicated in Fig. 5, a glacially driven climate would
have resulted in the development of savanna-like conditions
in the isthmian region in contrast to the tropical rainforests
of Pleistocene interglacial (and present-day) settings that
would have presented (and now does present) a major
ecologic barrier regardless of it being a dry-land route. The
ecologic adaptations and diversity of the dispersing taxa
witnessed throughout the GABI episodes are largely
consistent with their having occupied a savanna environ-
ment (Webb 1991), although the floral pattern likely was
not as generalized as suggested in Fig. 5b (see below).
Implicit in this scenario is the thesis that pre-GABI climates
in Central America were essentially tropical (Graham and
Dilcher 1998) even though differently constructed than at
present. In contrast, the dispersals during this earlier
interval lack a similarly-focused mechanism, and are
perhaps more difficult to interpret.

The data in Figs. 3 and 4 indicate that in the pre-GABI
interval, from about 9 Ma to 3 Ma, South America
contributed five genera in three families of xenarthrans
Mylodontidae and Megatheriidae (9 Ma), Pampatheriidae
and Mylodontidae (4.7 Ma), and Pampatheriidae (3.7 Ma),
plus one genus of hydrochoerid rodent (3.8 Ma). This
compares with a similar number of genera (4) passing
southward: a procyonid carnivoran (7.3 Ma), a sigmodon-
tine rodent (6.0 Ma), a peccary (3.7 Ma), and a camel
(3.3 Ma). Typically, the northward contingent was com-
posed mostly of xenarthrans, whereas the southward group
was more diverse, and even picked up a few apparently
savanna-adapted genera toward the end of the interval
(Platygonus, Camelidae) at, or slightly prior to, the
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Fig. 6 Schematic portrayal of NHG climatic transition in the Pliocene
after Mudelsee and Raymo (2005). NHG began about 3.6 m.y. with
increase in ice volume (solid line); increase was 0.39% (6180
equivalent). Shaded band shows §'30 fluctuation relative to the ice
volume trend. The warm deviation from 3.25-3.0 Ma represents the
Pliocene Climate Optimum. M2-MG2 (3.2 m.y.), 110 (2.7 m.y.), 96—
100 (2.4-2.5 m.y.) are oxygen isotope cycles showing glacial pulses.
Ages are in m.y. rather than Ma to reflect astronomically-based
chronology.

Pliocene Climatic Optimum (3.25-3.05 Ma; Mudelsee and
Raymo 2005).

This interval definitely preceded both the beginning of
the main episodes of the Great American Biotic Interchange
and Northern Hemisphere glaciation. Whereas the general
trend in global climate shows a cooling after the Mid-
Miocene Climatic Optimum at about 15 Ma (Zachos et al.
2001), significant pulses of NHG did not take place until
about 3.3 Ma (Fig. 6 and Mudelsee and Raymo 2005).
Under those conditions it is most plausible that the isthmian
region supported a tropical ecosystem, at least until about
2.7 Ma, when the major episodes of NHG began in earnest.

In that context, Webb (1976) suggests that Thinobadistes
and Pliometanastes likely swam across minor stretches of
ocean in their northward dispersal adventures. Based on
McDonald (2005) and McDonald and Naples (2008), it
appears that virtually all of the xenarthrans that crossed the
Panamanian isthmus to reach North America were some-
what smaller than their contemporaries and also, of the
other members of their respective families, were generalists
in habit and ecology rather than specialists. It also appears
that the digestive system (no caecum) used by some of
these xenarthrans—in contrast to many contemporary
artiodactyls and other ungulates—allowed them (except
for Myrmecophaga and insectivorous dasypodids) to utilize
food types comparable to those of non-ruminant artiodac-
tyls and that, hence, they were not in direct competition
with either ruminant artiodactyls or proboscideans. This
adaptation apparently was heightened by the low metabolic
rate for xenarthrans in comparison with other mammals,
and in contrast with non-ruminant peccaries and camels.

Thus, the North American xenarthran immigrants appar-
ently succeeded by accessing ecologies not occupied by
other herbivores. This is consistent with the fact that, with
the exception of Eremotherium—which retained a mainly
southeastern coastal distribution in the United States—other
xenarthrans became widely distributed across the continent
in a variety of habitats (McDonald and Naples 2008). It
thus is perhaps not surprising that xenarthrans fared so
successfully in trans-isthmian dispersals. It also appears
instructive that the only non-xenarthran immigrants to
North America were omnivorous marsupials, a porcupine,
and aquatic (and probably tropically adapted) hydrochoerid
rodents. It seems reasonable to suggest that these northward
dispersants were ecologically gregarious.

The coincidence between tectonic uplift in Central
America and the southward dispersal of Cyonasua at about
7.3 Ma has been noted above. Although not closely related
to the living coati (Nasua), Cyonasua is a member of its
sister-group. Both appear to be omnivorous, rather than
dietarily specialized, and likely shared forested habitats
(Baskin 1998; Koepfli et al. 2007). Arctonasua, the
purported sister-taxon to Cyonasua (Baskin 1982, 1998),
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is found in deposits of late Barstovian through late
Hemphillian age in North America with all but A.
floridana, chiefly represented in the Great Plains (Texas,
Oklahoma, Nebraska) states. 4. floridana is of late
Clarendonian age, from the Love Bone Bed of Florida, ca
9.5 Ma (Tedford et al. 2004), and 4. eurybates is
represented in the late Hemphillian, Upper Bone Valley L.
F. of Florida, ca 5.5 Ma. These records suggest that species
of this genus were capable of living in moist, humid
conditions that likely were similar to those exploited by
Cyonasua regardless of whether this genus was phyletically
close to either 4. floridana or A. eurybates. Note, however,
that these species bracket the age of the dispersal of
Cyonasua. Webb (2006) recounts the aquatic expertise of
raccoons (and living sloths).

In this general context the ca 6.0 Ma dispersal of a
sigmodontine rodent to South America was considered
sufficiently remarkable climatically that Verzi and
Montalvo (2008) chose to align this record with a cool
spike in the MIS chronology. The associated mammalian
fauna includes a diversity of marsupials, xenarthrans,
litopterns, and hystricomorph rodents considered to have
lived in relatively cool, arid, and open conditions in
southern, in contrast to more tropical settings of northern,
South America. Whereas this interpretation is highly
interesting, the actual age of the faunas considered by
Verzi and Montalvo (2008) has been questioned and
discounted by Prevosti and Pardifias (2009), so whether
the cooler climates envisioned by Verzi and Montalvo
(2008) can be applied to the basic sigmodontine
immigration in Central America remains to be seen.
Whether or not comparably cooler and drier conditions
were present in Central America at the 4.7, 3.7, and
3.3 Ma dispersal events (Fig. 4) also remains to be
ascertained, but the southward dispersal of a peccary at
3.7 Ma and a camel at about 3.3-3.1 Ma is perhaps
suggestive of at least drier environments. This peccary is
well represented in continental deposits of Hemphillian
and Blancan age in the North American Great Plains
region (Wright 1998) and savanna-like ecologies (Prothero
1998; Janis et al. 1998; Mio-Pliocene Chronofauna), and
appears to have been the earliest savanna-adapted element
to have traversed the isthmus to South America. Whereas
the northward dispersals of Pampatherium and Glyptothe-
rium might be ascribed to the adventurous dispersal
capabilities of xenarthrans, the 3.8 Ma entry of Neo-
choerus to Mexico (and South Carolina) certainly carries
connotations of at least local humidity, as well, reflective
of a diversity of habitats.

Webb (1991) noted that prior to the advent of Northern
Hemisphere glaciation, faunal exchanges between North
and South America had been relatively balanced numeri-
cally, if not necessarily ecologically. This is consistent with
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the numbers of taxa discussed above, with four genera in as
many families having dispersed southward from the
Huayquerian to Barrancalobian SALMAs, in comparison
to six genera in four families going northward (Fig. 3)
during an equivalent interval.

Similarly, about the same number of genera moved
southward (five) as northward (five) in GABI 1, from
2.6-2.4 Ma, distributed among a mustelid, a canid, two
equids and a gomphotheriid moving southward, and a
porcupine, an armadillo, a pampatheriid, a glyptodontid,
and a megatheriid xenarthran going north. Of those
moving northward at 2.4 Ma, the still living Dasypus
now inhabits warm-temperate to subtropical districts in the
Gulf and Atlantic Coastal plains and formerly occurred as
far north as Iowa in the Pleistocene (Morgan 2008).
Overall, the GABI 1 interval appears to include mostly
savanna- (or at least non-tropical) adapted taxa As
indicated on Fig. 4, this interval coincides with the first
episode of Northern Hemisphere glaciation after the
Pliocene Climatic Optimum, with major pulses at 3.3,
2.7 and 2.5 Ma (also Figs. 6 and 7).

The sole hydrochoerid immigrant to Florida at 2.2 Ma
likely reflects the presence of humid, and potentially
tropical, conditions in Central America with the family
having been present there at least by 3.8 Ma (the family is
present as early as the Chasicoan SALMA in South
America; Fig. 3 and Cione et al. 2000). As summarized
by Morgan (2008) Hydrochoerus persists into the late
Pleistocene of wet temperate to tropical North America
(South Carolina, Florida) as well as Honduras and Mexico,
but is not found at the present time north of southern
Panama.

GABI 2 at 1.8 Ma shows the pattern typical of Webb
(1991), with a much greater number (11) and diversity of
taxa moving southward than the reverse (one xenarthran),
and the presence of numerous glacial pulses at about this
time (Fig. 4) is consistent with his proposal that the
dispersals reflected episodes of Northern Hemisphere
glaciation. The pattern in Fig. 4 suggests (along with
Zachos et al. 2001) continued climatic cooling between the
intervals described as GABI 1 and GABI 2, which
apparently resulted in a much stronger development of
savanna-like conditions at that time (see discussion of
Central American plants below). This seems to be reflected
in the strong ecologic diversity displayed by the southern
contingent of GABI 2.

If the pattern in GABI 1 is consistent with the
exchange of taxa being coeval with major Northern
Hemisphere glaciation, that of GABI 2 would appear to
be even more so, based on the strength of its southward
contingent and depending on the actual age of the
1.8 Ma dispersal relative to the major glacial pulses
(GP) shown on Fig. 4. A similar suggestion can be made
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Fig. 7 Chronology of sea level changes during the past 3.2 Ma. After Sosdian and Rosenthal (2009), with MIS units after Lisiecki and Raymo

(2005), and vertebrate exchanges added.

relative to GABI 3, with a number of glacial pulses from
MIS 16 to MIS 20. GABI 4 is a strong example of the
pattern espoused by Webb (1991), with a virtual absence
of northward dispersants versus a strong diversity of

savanna-adapted taxa moving southward. The interval
beginning with GABI 2 and continuing through GABI 4
is unusual in not having witnessed northward incursions
of tropical taxa perhaps attesting to overall cooler
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conditions regardless of any potential interglacial influ-
ence during the NHG. The 1.5 Ma immigration of
Mixotoxodon as far north as El Salvador appears to reflect
South American savanna affinities.

Regarding the NHG, Bartoli et al. (2005) consider
the beginning of severe Northern Hemisphere glaciation
to have been aided by the final closure of the Central
American Seaway (CAS), with the effect that Pacific
Ocean waters no longer advected into the Atlantic
Ocean. Bartoli et al. (2005) proposed that closure of
the CAS was virtually complete by 2.8 Ma; they noted
that ice-rafted debris (/RD in Fig. 4), generally consid-
ered to reflect major continental glaciation, is recorded
as early as 2.82 Ma, and pointed out that a major
expansion in global ice volume occurred during an
interval from 2.93-2.82 Ma (MIS G16-G10; Fig. 4).
Under these scenarios, the climatic as well as CAS
closure factors were in place prior to the apparent
beginning of the GABI.

This is compatible with conclusions of Mudelsee and
Raymo (2005), who portray a gradual build-up in ice
volume from 4.0 to 2.0 Ma (Fig. 6), with the NHG pulses
beginning at about 3.6 m.y., and the first glacial event (MIS
M2 and MG2) recorded at about 3.3 m.y. Stage M2
apparently reflects a stronger glaciation than stage MG2,
has a stronger 5'%0 excursion (Fig. 4) and a strong IRD
record, as well.

In distinct contrast, the Pliocene Climatic Optimum
from about 3.25-3.05 m.y. saw a rise in sea level and
deglaciation. Cronin and Dowsett (1991) indicated that at
3.1 Ma, the Atlantic coast shoreline was 35+18 m higher
than at present (also Fig. 7). This secular reversal,
however, is part of an overall pattern of gradual cooling
of the Northern Hemisphere. Mudelsee and Raymo (2005)
indicated that further glaciations occurred at 2.7 m.y.
(compatible with the second NHG and strong /RD pulse
of Bartoli et al. 2005), and also at 2.4-2.5 m.y., with
strong oxygen isotope excursions shown at MIS 100-96
(Fig. 4). Figure 7 indicates that sea level lowstands
ranging from about 50 m—75 m occurred at MIS 100-96
as well, indicated here as a glacial pulse (GP) on Fig. 4. In
summary, the Mudelsee and Raymo (2005) compilation
indicates that not only was the onset of Northern
Hemisphere glaciation part of a gradual process, but also
that the shallowing of the CAS had been underway for
several millions of years (also Coates et al. 2004), and
was unlikely to have been the root cause of the NHG.
Lawrence et al. (2009) concurred with the gradual
development of NHG and demonstrated the prominence
of IRDs in the glacial record subsequent to about 2.7 Ma.
It also seems clear from Lawrence et al. (2009: Fig. 2) that
their IRD record closely parallels the intervals labeled as
GP on Fig. 4 of the present article.
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Sea level

Figure 7 shows sea level curves interpreted by Sosdian
and Rosenthal (2009), with MIS units added from
Lisecki and Raymo (2005) and times of trans-isthmian
land mammal exchange from Fig. 4. It is recognized that
the correlation of the terrestrial mammals is less precise
and thus less accurate than the MIS chronology. Still, the
ages of the land mammal events were developed
independently of any consideration of the MIS or sea
level scales, so the apparent alignment of many of those
events with strong MIS excursions or drops in sea level
is at least compatible with the thesis of Webb (1991)
that trans-isthmian dispersals that involved mammals
having an affinity with savanna-like environments most
likely transpired during times of Northern Hemisphere
glaciations (Fig. 5). It is possible that at least some of the
pre-GABI dispersals were aided by cooler, if not glacially-
associated, conditions with respect to their impact on
vegetation patterns.

The pattern in Fig. 7 suggests that, subject to strong
departures in some cases, mean sea level fluctuated within
a range of —10 to —40 m during the past 3.2 Ma, with an
eventual drop toward the present. It appears that signifi-
cant episodes of mean lowstand occurred at about 2.5, 1.9,
1.6, 0.7, and 0.1 Ma. The coincidence in timing between
these ages and those of the dispersals shown on those
figures is striking, even after the Isthmus of Panama is
considered to have been closed. It is tempting to suggest
that increased development of coastal plain settings during
lowstand intervals contributed to the successful overland
dispersals, in addition to general climatic influence. This
is discussed further below.

Plants and ecologies

Plant megafossils apparently are not well represented in
Central America (and Mexico). Graham (1998) and a series
of publications (Graham and Dilcher, 1998; Graham 1999,
2010; Burnham and Graham 1999) provided seminal
studies and discussions regarding the Neogene pollen and
spores from this region. Even though the records reported
upon are derived from lowland swamps and comparable
settings, the discussions also provide insight on the plant
community composition at higher elevations. Central
America is presently typified by its tropical rain forest
(Fig. 5), but many plant communities of Miocene, Pliocene,
and Pleistocene ages have different compositions, as
discussed below. A major factor as regards GABI is the
virtual absence of any fossil record of early Pleistocene
floras. Therefore, the following begins with a Pliocene
background for an interpretation of what was a likely floral
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Fig. 8 Location of Neogene
floras of Central America. After
Graham and Dilcher (1998:

fig. 30).

in Central America

Neogene floral sites

Pliocene: Paraje Solo (1), Herreria (5), Rio Banano (6)

Mio-Pliocene: Artibonite (9), Gatun (7), Padre Miguel (4)

Mid Miocene: Ixtapa (2), Mendez (2)

Early Miocene: Cucaracha, Culebra, La Bocha (7), Uscari (8), La Quinta (3)

bold = northern temperate elements; italic = no lowland temperate rainforest (also 1 and 4).

Sites affiliated with diverse topography are (1), (4) and (7, Gatun). Other sites record lowland/lignite associations.

and environmental scenario during the Pleistocene, dis-
cussed subsequently.

Graham and Dilcher (1998) surveyed a number of
Neogene plant communities from Central America, and
indicated that the region supported a tropical rain forest
during the Miocene and into the Pliocene. These conditions
began to change about in the Pliocene. The coastal Paraje
Solo flora, SE Veracruz, Mexico (Fig. 8) shows evidence of
at least local cooling (presence of Picea) and lowering of
ecotones, perhaps due to the effects of local upwelling in
the adjacent ocean (Graham 1973, 1976; Akers 1979). In
any case the rainforest association was disrupted in this area
at about 4-5 Ma (the palynoflora is associated with strata
that yield Plantkic Foraminiferal Zone N19; chronology
follows Lourens et al. 2004). Farther south, in inland
Guatemala, the Padre Miguel flora at about 7 Ma contains a
sedge marsh association with grasses and composites along
with a pike-oak temperate forest (Alfaroa-Oreomunnea,
Juglans, Ulmus) and possibly a cool-temperate forest
(Picea, Pinus, Quercus) in upland settings. Another
Guatemalan plant community in its southeastern coast, the
Herreria flora, about 3.1 Ma (Fig. 8), reflects a mangrove
setting and surrounding swampy conditions. Individually
and collectively these plant communities contrast with the
others shown on Fig. 8 in diverging from the otherwise
typical lowland rainforest of the region, and suggest a
distinct level of diversity. In that the region had achieved
nearly its present elevation and topography by about this
time, it is plausible that the current eastern moist versus a
western drier distinction also was manifested, at least in the
Panamanian district.

Another aspect of floral change is shown by the first
occurrence of northern temperate elements in these Central

American settings. Graham and Dilcher (1998) indicated
that the Paraje Solo flora (ca 4-5 Ma) records the
appearance of Abies, Picea, Pinus, Alnus, Celtis, Juglans,
Liquidambar, Myrica, Populus, Quercus and Ulmus,
whereas the Padre Miguel flora, farther south and older
(about 7 Ma), contains even earlier records of Picea, Pinus,
Juglans, Quercus, and Ulmus. In fact, the approximately
coeval Gatun flora of Panama records an even more distant
record of Ulmus.

From these examples, it appears that the typical Neogene
lowland tropical rainforest of Central America underwent
certain degrees of alteration toward the end of the Miocene
and possible cooling or drying as suggested by the
incursion of temperate elements and potentially compatible
with the late Pliocene land mammal dispersals discussed
above. A more coherent pattern is shown at the nearly
opposite end of the Neogene/Quaternary interval, as
summarized by Piperno (2006), with inferences that this
pattern also was manifested in earlier parts of the
Pleistocene.

Currently, the Central American lowlands are humid
areas. Figure 9, however, shows a reconstruction of the
vegetation between 20,000 and 10,500 ybp, including the
time of the Last Glacial Maximum (LGM; 18,000 ypb). By
this time Central America had achieved its full tectonic
uplift (Piperno 2006). Note especially on the Caribbean
side the increased coastal area afforded by maximum
lowering of sea level. Such then-exposed areas mostly lie
adjacent to the thorn woodland, low scrub, and wooded
savanna vegetation (type 3 on Fig. 9) but, also in Honduras
and Nicaragua, adjacent to forests that were significantly
drier than at present, but still moist enough to support that
type of forest (type 1 on Fig. 9). These floral associations
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Fig. 9 Reconstruction of distribution of lowland Neotropical forest
associations at the Last Glacial Maximum (18,000 ybp). After Piperno
(2006: fig. 1). Gray areas indicate land exposed by lowered
Pleistocene sea level during maximum glacial advance. Black areas
are elevations above 1,500 m. 1. Largely unbroken moist forest, often
with a mixture of present-day high-elevation and lowland forest
elements. In some areas montane forest elements (Podocarpus,
Quercus, Alnus, Ilex) were conspicuous. Annual precipitation less

reflected climates that were significantly drier and cooler
than at present, with surface temperatures 4°C—7°C lower
than now, and forest canopies possibly more open than at
present due to lower levels of atmospheric CO, (Piperno
2006). Rainfall was less, possibly by 30%—50%.

The general conditions shown on Fig. 9 persisted until
about 10,500 yrs ago, which indicates that the modern
lowland tropical forest of Central America did not develop
until after that time (also Leyden 1984). Piperno (2006)
noted that even today, the flora of western (Pacific) coastal
Panama is a deciduous tropical forest living under fairly dry
conditions, which, in the above late Pleistocene reconstruc-
tion, was the thorn woodland, low scrub, and wooded
savanna association (type 3, Fig. 1), and consisted of many
grasses, sedges, and herbaceous plants, along with the
archetypal savanna indicator shrub or small tree, Curatella
americana. The grasses (short and tall) used the C4
photosynthetic pathway, indicative of a dry and open
landscape. Palms adapted to dry land habitats also were
present. Modern deciduous trees were present only spar-
ingly, likely along watercourses. Rainfall was reduced by
35%. Piperno (2006) suggested that much of the Panama-
nian land bridge at this time likely was a dry open habitat,
but perhaps not exactly a savanna.

Middle-elevation Panamanian late Pleistocene sites
(such as La Yeguada, El Valle, Fig. 9) then as now occur
at 500-650 m. The Pleistocene vegetation was composed
of a forest with trees that nowadays live at 1500 m, but at
that time had descended downslope by 800-1200 m,
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than at present, but sufficient to support a forest. 2. Forest containing
drier elements than typical of the present. High-elevation forest
elements occur in moister areas of the zone. 3. Mostly undifferentiated
thorn woodland, low scrub, and wooded savanna vegetation. Some
regions (such as Guatemala) with temperate elements (Juniperus).
Areas that presently receive>2000 mm annual rainfall may still have
supported a drier forest, as in 2. River- and stream-side locations
supported a forest.

compatible with the dry climate indicated by enclosing
sediments (illite clays), as compared to the present 3—4 m
annual precipitation.

Piperno (2006) characterized the Pleistocene lowland
Neotropical climate as being substantially drier and cooler
than at present, as a result of a peculiar combination of low
temperature, low precipitation, and low atmospheric CO,.
Areas having what is now arboreal forest vegetation
supported herbaceous types instead. Some upland areas
still would have been moist enough to support C; plants,
but in general drier-adapted C,; grasses prevailed. In
situations where the present forest exists in high rainfall
zones, the late Pleistocene flora was a savanna/thorny scrub
association. The modern flora thus is not analogous to that
of the late Pleistocene, and the latter flora contained
associations of taxa not presently found together. Forest
elements now found at elevations at or above 1500 m
descended to much lower elevations (ca 800-1200 m) in
the late Pleistocene.

Piperno (2006) noted that, on average, glacial periods
last four to five times longer than interglacials, so during
the past ca 2 m.y., plants and animals of Central America
spent over 80% of their time in, and must have been
adapted to, the above-summarized climatic conditions. The
modern closed-canopy forests apparently represent those
typical of the short-term interglacial floral associations,
whereas those of the more prevalent glacial conditions are
not like modern floras, and contain combinations of species
not presently found together. In that sense, the glacial floras
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Fig. 10 Schematic representation of present-day a and last glacial b altitudinal distribution of the zonal vegetation belts in the Colombian Eastern
Cordillera. After Andriessen et al. (1993: fig. 6). H6 in inset map=Hill of Six Lakes, Brazil (Bush et. al. 2004).

are not analogous to those of the present. As indicated by
Bush et al. (2004) for Brazil, the pre-modern Pleistocene
floras there contain associations of elements not found
together today, and also represent ‘non-analog’ forests. This
appears to be comparable to the situation in Central
America and, overall, the general patterns are similar. In
this context it seems reasonable to project deeper into the
early Pleistocene the environmental setting and composi-
tion of the late Pleistocene floras of the region, with
implications for similar climatic conditions during those
older times.

It thus appears that, at the very least, conditions
amenable to the dispersal of non tropical-adapted land
mammals must have predominated in the Pleistocene of
Central America, as well as Amazonia (i.e., Andreissen
et al. 1993; below). The increased area of at least dry and
open, if not completely savanna-type, environments along
coastal Central America during times of decreased sea level
must have played a part in facilitating GABI dispersals
across the region. Whereas the early Pleistocene record of
the strong onset of cooler, glacial conditions seen at
Bogota, Colombia (Andreissen et al. 1993), is not yet
recorded in Central America, the Colombian record
validates the above proposed projection of late Pleistocene
conditions into the earlier part of the epoch, which must
have affected Central America, as well.

Andreissen et al. (1993) summarized the palynology and
climatic implications of extensive cores drilled in the
vicinity of Bogota, Colombia (Fig. 10) at an elevation of
about 2500 m. In contrast to the record in much of
Amazonia, as well as Central America, the sequence in
the cores, Funza I and Funza II, extends nearly continu-
ously from the Pliocene through the Pleistocene, and
records the climatic and tectonic conditions that were in

effect during that interval. Funza I core is 357 m deep,
Funza II, 586 m deep.

The interval between 541 and 586 m in Funza II has few
pollen grains, but in the interval between 465 and 540 m
palynofloras show high arboreal percentages and a warmer
climate than subsequent parts of the core. The open character
of the Andean forest is indicated by high percentages of
arboreal taxa (Ilex, Rapanea, Myrica, Eugenia, plus the shrub
Borreria, and high maxima of Graminae).

At 465 m in Funza II (and 357 m in Funza I) pollen
indicate that conditions became much colder, and the
Bogota basin became alternately covered with Andean
forest and open paramo (basically high country tundra)
vegetation. The age of this level is estimated at 2.7 Ma,
near an ash at horizon 506 m dated at 2.7+0.63 Ma. The
climatic conditions recorded here represent the beginning
of global glacial influence in this part of Colombia, and
was accompanied by the onset of mountain glaciation
around Bogota. Interestingly, the onset of glaciation here
fits well with the later part of NHG and onset of GABI I,
as discussed above.

The interval between 320 and 357 m (Funza I) or 320—
465 m (Funza II) yields alternate indications of cold and
warm climates considered to reflect major pulses of
glaciation in the vicinity of Bogotd. At 233 m in both
Funza cores, the palynofloral record indicates that climatic
oscillations became longer and of greater amplitude. The
upper 233 m in these cores is interpreted as reflecting ten
major climatic cycles, apparently beginning with MIS 23 at
about 0.9 Ma (Lisecki and Raymo 2005) and extending to
MIS 3 at about 0.05 Ma (50 ka). During these cold
episodes, the forest line shifted between about 3400 and
1800 m (arrows on Fig. 10), to follow a decrease of mean
annual temperature from 15°C to about 6°C.
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Based on the taxonomy of the units, Andreissen et al.
(1993) arranged the succession into biozones. In Biozone I,
which ranges in age from about 5.0 Ma to about 4.2 Ma,
the plant community consists of lower elevation tropical
vegetation. Hedyosmum, a northern taxon, dispersed into
the region at this time.

Biozone II ranges in age from about 4.2 Ma to 3.2 Ma,
and reflects the presence of tropical to sub-Andean
vegetation at relatively low elevations. The floras previous-
ly characteristic of the lowlands were replaced by those
from intermediate altitudes. Floras indicate a lower tropical
to lower sub-Andean forest belt, between ca 1,000 and
1,500 m, as at present (Fig. 10a). Hedyosmum is present,
but Myrica still absent.

Biozone III, of 3.2-2.5 Ma is represented by an upper
sub-Andean vegetation, and continues to reflect communi-
ties characteristic of intermediate altitudes. Myrica dis-
perses into the region. Note that, as discussed above, the
Paraje Solo flora (ca 4-5 Ma) of Mexico contains the first
record of Myrica in Central America (also as summarized
in Graham 1999).

Biozone 1V ranges from about 2.5 Ma to 1.2 Ma. In the
lower part, plants of Andean type predominate, but in the
upper part of the section these alternate with paramo
vegetation, and show a consistently high representation of
Borreria. The Biozone IV flora is of high-altitude type, and
its upper part begins to show the alternating vegetation
types reflective of cool and warmer climates and Pleisto-
cene glaciations.

Biozones V-VII range from 1.2 Ma to 0.2 Ma, and
contain vegetation that alternates between cool and warm
climates considered to be related to major Quaternary
climatic changes. A/nus disperses at beginning of biozone
VI, Quercus at beginning of biozone VII. Biozone V begins
at about 1.2 Ma, Biozone VI at ca 0.8 Ma, and Biozone VII
at about 0.2 Ma. Note that the Padre Miguel flora of
Guatemala contains the first Central American record of
Quercus at about 7 Ma (discussed above).

Tectonic activity in the region is related to Andean uplift
(Andreissen et al. 1993). The sediments associated with
Biozone I reflect ongoing uplift, and the presence of
tropical lowland forests with extensive stands of Mauritia.
Biozone II reflects the final Andean uplift in this region.

As indicated above, Myrica dispersed into the region in
Biozone III, prior to Pleistocene glaciations, but Alnus still
is absent. The associated plants reflect an upper sub-
Andean forest, which would have a modern elevation of
about 2,200 m (Fig. 10a). By the early part of Biozone IV
(ca 2.5-1.8 Ma), the Bogota area (black dot in valley,
Fig. 10a, b) supported an Andean forest belt that would
occur at a modern elevation of about 2,600 m (Fig. 10a).
Beginning with the later part of Biozone IV and on into
biozones V—VII, the Pleistocene changes in climatic
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conditions resulted in downward altitudinal shifts of
vegetation belts along the Cordillera. Paramo vegetation
dominated during glacial conditions in the Bogota district.
As at present (Fig. 10a), Andean forests returned to this
area during interglacial intervals. Mountain glaciers were
present in the glacial times. Quercus entered the record in
Biozone VII, likely at 200,000 yrs.

In summary, the Colombian succession records the
presence of an open Andean forest that lived under a warm
climate at the elevation of Bogota in the late Pliocene. In
the Pleistocene the situation changed markedly in which
plants of high-altitude character descended several hundred
kilometers to co-exist with lowland elements under much
cooler conditions, with mean annual temperatures near 6°C
in contrast to the current 14°C. The cool versus warmer
pattern is manifested throughout the Pleistocene in these
cores and provides empirical demonstration of the older, as
well as late, Pleistocene age of such changes. The
Colombian record gives credence to the above supposition
that late Pleistocene floral configurations in Central
America may be projected into earlier times.

Bush et al. (2004) reported on a pollen succession
derived from cores drilled in the Hill of Six Lakes district at
an elevation of about 300 m in the Amazon Plain of
northwestern Brazil (H6 on inset map of Fig. 10). The site
thus represents conditions that occurred at lowland settings
in this part of Amazonia. A record developed from three
drilled cores extends to about 140,000 yrs and records at
least two major glacial cycles.

The results indicate the Hill of Six Lakes region
supported a mesic lowland forest that became infiltrated
with montane elements during the last two glacial cycles, as
a result of major climatic cooling. The arrival and departure
of these montane elements occurred in the context of a
stable backdrop of a lowland forest. The pollen in the cores
indicate that upland elements descended into the lowland
environment, with the amount of descent being 800-900 m
relative to the modern upland setting. The development of
these glacially-timed non-analog mixed lowland and mon-
tane communities was in response to the periodic cooling of
mean annual temperatures by 5-6 °C. It appears that the
indigenous lowland flora was able to withstand the
temperature changes that drove the montane taxa to lower
elevations.

From the examples cited here, it appears that Pleistocene
cooling from Central America to Amazonia was on the
order of 9°C to 6°C, respectively, and was the greatest
cause of environmental and floral change, regardless of the
potential effects of diminished levels of CO, or rainfall.
The effect in Brazil was to periodically lower the elevation
at which montane forests existed into those areas where
lowland mesic forests already were present, and which
remained under the new circumstances. This pattern, over
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the past 140,000 yrs in the Hill of Six Lakes, Brazil, is
comparable to that seen in the temporally more extensive
record in the Bogota plain of Colombia (Andreissen et al.
1993). If these comparisons are used as a model, it suggests
that the late Pleistocene floral configurations reconstructed
in Central America by Piperno (2006) also can be extended
to glacial conditions earlier in the Pleistocene of that region.

An interesting aspect of Fig. 10 is the location of
savanna floras in the low, coastal regions of Colombia,
comparable to their setting in Central America (Fig. 9).
Floral changes in Central America include the emergence of
a broader coastal region at times of lowered sea level that
nominally would be expected to support savanna-like
ecologies, based on those that are reconstructed as lying
adjacent to the coast at that time. Graham and Dilcher
(1998) consider it unlikely that any given floral association
formed a through-going avenue across the whole of Central
America during the Pleistocene. Still, it appears that an
expanded coastal environment during the 80% of the
Pleistocene occupied by glacial conditions would have
supplied at least one of the avenues in support of GABI
dispersals.

Holding pens and dispersal times

Flynn et al. (2005) demonstrated numerous cases in which
taxa considered to be part of the GABI phenomenon
occurred earlier in Guanajuato, Mexico, than in the United
States, and Woodburne et al. (2006) reviewed this in the
context of other instances that demonstrate or suggest the
strong role played by the Mexican-Central American region
as a center of cladogenesis for diverse mammalian groups
in the Neogene. In the present report, the holding-pen
aspect of this situation has been emphasized. The pattern
mostly involves various xenarthrans moving northward,
and results in an apparent embargo on border crossing that
lasted as long as 1.7 m.y. (Glossotherium) to 1.3 m.y.
(Pampatherium) and 1.1 m.y. (Glyptotherium). It may turn
out that Neochoerus entered South America at about
1.8 Ma, well after its earlier presence in Central America
is suggested by a 3.8 Ma record in Mexico and South
Carolina. Examples of this order of magnitude, for which
there is no obvious physical, geologic, or biologic cause,
raise the question of the fidelity of the paleontological
record, also voiced by Verzi and Montalvo (2008), as to the
actual age of dispersals when found at their eventual
endpoints (see also Dispersal Lag; Woodburne and Swisher
1995). In this regard it is encouraging that the Neogene
fossil mammal record for Central America is improving
(Cisneros 2008; Lucas 2008; Lucas et al. 2008), which may
further aid in addressing the question of the times when
mammals actually transgressed the Panamanian Isthmus.

Campbell et al. (2000, 2001, 2010) have described
gomphotheriid fossils identified as Amahuacatherium peru-
vium from deposits in the Cerro Colorado region of Peru,
and have discussed stratigraphic, radioistopic and paleo-
magnetic data that collectively form the basis for assigning
an age of somewhat greater than 9 Ma to these remains. If
accurate, this would place the entry of gomphotheriid
proboscideans in South America substantially earlier than
their currently understood record of about 1.8 Ma (above).
In those papers Campbell et al. also assert that at least one
species of peccary and a camel co-occur with Amahuaca-
therium, in which case that would also pre-date significant-
ly the otherwise known first occurrences of these taxa in
South America, 3.7 and 3.4 Ma, respectively.

The above hypotheses include a geological perspective
that favors a fairly simple and regionally more or less
uniform Neogene stratigraphy of western Amazonia. That
proposal is challenged to a large degree by papers of
Latrubesse et al. (2007, 2010) that address evidence
suggesting a more complicated, terrace complex series of
stratigraphic relations for Neogene deposits across western
Amazonia. It is possible that the beds that overlie
Amahuacatherium at Cerro Colorado are not as old as
conventionally thought, which also might elevate the age of
Amahuacatherium, itself.

Whereas the a number of the diverse demonstrations and
interpretations presented by Campbell et al. (2000, 2001,
2010) have merit, it still is not clear how a proposed 9+ Ma
record of gomphotheriids, peccaries, and camels in Peru
can be reconciled with their essential absence for 6+ m.y. in
the fossil mammal record of all of South America. The
Amahuacatherium situation remains unresolved.

Summary

Whereas closure of the Central American Seaway at about
2.8 Ma set the stage for major episodes of trans-isthmian
land mammal exchanges, the well-known intervals of prior
dispersals are compatible with the dynamic tectonic activity
that affected the region from at least 9 Ma. Apparently
those dispersals took place under generally tropical conditions
in Central America, but the climate potentially was modified
somewhat just before and after the Pliocene Climatic
Optimum (3.25-3.05 Ma) and perhaps at about 6.0 Ma, as
well, when nominally savanna-adapted taxa dispersed south-
ward (3.7 Ma, Tayassuidae; 3.3 Ma, Camelidae).

The first significant episode of faunal exchange is
recognized as GABI 1 (2.6-2.4 Ma) concurrent with the
initiation of major Northern Hemisphere glaciation. Then,
as well as earlier and later, most northward-moving taxa
were xenarthrans, with hydrochoerid and porcupine rodents
being another conspicuous contingent. Eventually (GABI 2)

@ Springer



262

J Mammal Evol (2010) 17:245-264

more taxa dispersed southward than the reverse, but up to
about 1.8 Ma, the average count for either direction was about
equal. In all cases the southward contingent was phyletically
more diverse and tended to include taxa of clear savanna-like
ecologies. On the other hand, the northward dispersants
typically included forms that exhibited a wide range of
ecological diversity (xenarthrans, porcupines, and, in GABI
3, opossums). GABI 3 represents a relatively minor episode,
but is so identified on the basis of involving at least four
genera in a bi-polar pattern. GABI 4, at nearly the end of the
Pleistocene, shows a singularly one-way, and quite diverse,
southward dispersal.

It seems that the four GABI episodes correspond at least
generally to times of sea level lowering and it is tempting to
suggest that expanded coastal regions contributed to
dispersal in addition to a role played by climatic cooling
during glacial episodes with concomitant floral changes in
Central and northern South America.
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