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Behavioral inhibition in childhood predicts smaller
hippocampal volume in adolescent offspring of parents with
panic disorder
CE Schwartz1,2,3, PS Kunwar1, DR Hirshfeld-Becker2,4, A Henin2,4, MG Vangel3, SL Rauch2,5, J Biederman2,4 and JF Rosenbaum2,4

Behavioral inhibition (BI) is a genetically influenced behavioral profile seen in 15–20% of 2-year-old children. Children with BI are
timid with people, objects and situations that are novel or unfamiliar, and are more reactive physiologically to these challenges as
evidenced by higher heart rate, pupillary dilation, vocal cord tension and higher levels of cortisol. BI predisposes to the later
development of anxiety, depression and substance abuse. Reduced hippocampal volumes have been observed in anxiety disorders,
depression and posttraumatic stress disorder. Animal models have demonstrated that chronic stress can damage the hippocampal
formation and implicated cortisol in these effects. We, therefore, hypothesized that the hippocampi of late adolescents who had
been behaviorally inhibited as children would be smaller compared with those who had not been inhibited. Hippocampal volume
was measured with high-resolution structural magnetic resonance imaging in 43 females and 40 males at 17 years of age who were
determined to be BI+ or BI− based on behaviors observed in the laboratory as young children. BI in childhood predicted reduced
hippocampal volumes in the adolescents who were offspring of parents with panic disorder, or panic disorder with comorbid major
depression. We discuss genetic and environmental factors emanating from both child and parent that may explain these findings.
To the best of our knowledge, this is the first study to demonstrate a relationship between the most extensively studied form of
temperamentally based human trait anxiety, BI, and hippocampal structure. The reduction in hippocampal volume, as reported by
us, suggests a role for the hippocampus in human trait anxiety and anxiety disorder that warrants further investigation.

Translational Psychiatry (2015) 5, e605; doi:10.1038/tp.2015.95; published online 21 July 2015

INTRODUCTION
Behavioral inhibition (BI) is a distinctive, genetically influenced1,2

behavioral profile that is seen in 15–20% of children in the second
year of life.3 Children born with an inhibited temperament (BI+)
are timid with people, objects and situations that are novel or
unfamiliar.3 More than 25 years before the transdiagnostic and
subdiagnostic approaches in RDoC were articulated, a small group
of investigators recognized the value of this human phenotype as
important orthogonal approach to those then enshrined in the
DSM-III for the understanding of psychiatric disorder.4–7 BI was
shown to be a risk factor for the subsequent development of
anxiety to the unexpected and some anxiety disorders,5,7–9 as well
as depression6,10,11 and substance abuse12 in children, adolescents
and adults.
The functional neurocircuitry of BI in humans as a putative

intermediate phenotype has become an area of active investiga-
tion over the past 10 years. Longitudinal studies have shown that
BI observed in childhood, as well as infant high reactivity—a
precursor of BI than can be observed at 4 months of age—predict
enduring differences in brain function and structure in adults that
can be detected after two decades of development.13–19 Although
difficult and costly, longitudinal studies remain the gold standard
for identifying the developmental trajectory of this phenotype,
and require the direct observation of young infants or children
and multiple subsequent reassessments. Altered amygdala

function in BI subjects, characterized by either increased
responses to novel neutral faces and/or sustained responses to
neutral faces has been detected in longitudinal samples of
subjects classified in infancy or childhood,13,17 a finding replicated
in studies of adult subjects who retrospectively reported both
inhibited behavior in childhood and current high levels of social
inhibition.20,21 Investigators of BI have begun to examine aspects
of connectivity between the amygdala and other brain
regions.22–24 In addition, other longitudinal cohorts that were first
characterized in infancy have demonstrated the involvement of
striatal structures in this behavioral profile.14,16,18,19

Despite evidence of hippocampal involvement in mood and
anxiety disorders, no studies have examined hippocampal
structure or function in subjects who were characterized as BI
early in life. However, in a study of young adults who respectively
identified themselves on questionnaires as both extremely
inhibited in childhood and as adults, hippocampal (as well as
amygdala) BOLD response failed to habituate to repetitive
presentations of neutral faces.21

Reduced hippocampal volumes have been observed in
depression25,26 and anxiety disorders,27,28 and most frequently
and consistently in posttraumatic stress disorder (PTSD).29–34

Given these volumetric findings, and the demonstration that BI in
childhood is a prospective risk factor for mood and anxiety
disorders later in life,5–11 it is surprising that there are no previous
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studies of hippocampal structure in BI. Animal models provide
clear evidence that severe chronic stress can damage the
hippocampal formation.35 Cortisol, a stress-related hormone that
can be neurotoxic, has been implicated in these effects.36

Behaviorally inhibited children are more reactive physiologically
as well as behaviorally to unfamiliar or threatening situations, as
evidenced by higher heart rate, pupillary dilation, vocal cord
tension and, most salient here, higher levels of cortisol at some
ages.3,37 We, therefore, hypothesized that the hippocampi of late
adolescents who had been behaviorally inhibited early in life
would be smaller compared with those classified as not inhibited.

MATERIALS AND METHODS
The Massachusetts General Hospital institutional review board approved
the experimental protocol. Informed consent was obtained after the nature
and possible consequences of the study were explained. Hippocampal
volumes were examined in 83 late adolescents enrolled in a longitudinal
study who had been assessed for BI in the laboratory as young children
using standardized batteries as detailed previously.8,38,39

Each subject underwent two three-dimensional magnetization-prepared
rapid gradient-echo (MPRAGE) structural scans on a 3T Siemens
(Malvern, PA, USA) TrioTim scanner (128 sagital slices; 1.3 × 1.3 × 1mm;
TR= 2530ms; TE = 3.39 ms; flip angle 7°, bandwidth 190 Hz/Px). The two
three-dimensional MPRAGE structural scans from each subject were
averaged, after motion correction, to create a single high signal-to-noise
volume.40,41 This volume was analyzed using Freesurfer v5.0.0 (www.nmr.
mgh.harvard.edu/martinos) to calculate left and right hippocampal
volumes in cubic millimeters, as previously described.42,43 Freesurfer
v5.0.0 computer code is available at https://surfer.nmr.mgh.harvard.edu/
fswiki/ReadOnlyCVS. Each scan was manually inspected in simultaneous
sagittal, coronal and axial planes by an investigator (PSK) who was masked
to the subject’s BI status to ensure accurate segmentation. The effects of
both BI and familial loading (parental illness type, PIT) on hippocampal
volume were analyzed with mixed models (PROC MIXED with LSMEANS/
tdiff; SAS v9.3, SAS Institute, Cary, NC, USA), with left and right
hippocampal volumes as intra-subject repeated measures, controlling for
age, sex, socioeconomic status and intracranial volume. All the statistical
tests were two sided. We controlled for socioeconomic status because
studies have suggested a relationship between hippocampal volume and
social class.44,45 Additional analyses were tested for interactions between
sex, BI and PIT.

RESULTS
High-resolution structural magnetic resonance imaging was used
to determine the volume of the left and right hippocampi in 43
females (mean age 17.7 ± 1.9 years) and 40 males (mean age
17.4 ± 1.7 years) from this longitudinal cohort. Twenty-two of the
subjects who were imaged had been categorized as behaviorally
inhibited (BI+) and 61 as not behaviorally inhibited (BI− ) in
childhood. Fourteen females and eight males were BI+; 29 females
and 32 males were BI− . These subjects were offspring recruited
from one of three groups of parents (1) parents with either panic
disorder, or panic disorder with comorbid major depression (PD);
(2) parents with major depression and no history of panic disorder
(pure MD); and (3) control parents without any history of major
anxiety disorder or mood disorder (CN).8,38,39 The young adult
subjects therefore had both a measure of familial loading PIT

(offspring of PD, pure MD or CN) and a measure of BI (BI+ or BI− ).
Table 1 gives the mean age and s.d., and the number of subjects
in each cell of this 2 × 3 matrix.
Table 2 presents the mean (± s.e.m.) hippocampal volume

(average of left and right) for 83 BI+ and BI− subjects in each of
the three PIT groups (PD, pure MD, CN). The mean hippocampal
volume in BI+ subjects when pooled across the three PIT groups
(4367±126 mm3) did not differ compared with that in BI−
subjects (4330 ± 58mm3; F(1,71) = 0.09, P= 0.77). However, those BI
+ subjects who were offspring of PD parents did have smaller
hippocampal volumes (4080 ± 88mm3) compared with BI−
offspring of PD parents (4346 ± 73mm3; t(74) = 2.53, P= 0.01). This
reduction in hippocampal volume was seen only in the BI+
offspring of PD parents, reflecting a significant BI × PIT interaction
(F(2,71) = 3.52, P= 0.03). In contrast, in the offspring of pure MD
parents, no difference was seen in hippocampal volume in BI+ vs
BI− subjects (4620 ± 147 mm3 vs 4390 ± 99mm3; t(71) =− 1.32,
P= 0.20).
Underlining the fact that familial loading (PIT) alone did not

account for the observed differences, neither the hippocampal
volume of the BI− offspring of PD parents (4346 ± 73mm3) nor
the hippocampal volume of BI− offspring of pure MD parents
(4390± 99mm3) differed from controls (4254 ± 84mm3). These
volumetric differences were seen in both and right hippocampi;
there were no significant interactions with side (BI × PIT × sides
(F(2,71) = 0.01, P= 0.99)). Additional analyses revealed no significant
interactions involving sex (BI × sex: F(1,70) = 0.03, P= 0.86; PIT × sex:
F(2,70) = 0.3, P= 0.74; BI × PIT × sex: F(1,70) = 0.21, P= 0.65).

DISCUSSION
We believe this is the first study to demonstrate a relationship
between a temperamental profile observed and measured in the
laboratory in early childhood, BI and hippocampal structure at
adolescence. In this 16-year longitudinal study, a behaviorally
inhibited temperament in childhood was associated with smaller
bilateral hippocampal volumes in late adolescence in the offspring
of parents with PD. The reduction in hippocampal volume was not
observed unless both childhood BI and parental PD were present.
If we had not possessed these data on parental psychopathology,
we would have come to the erroneous conclusion that there was
no relationship between BI in childhood and hippocampal

Table 1. Age (mean years± s.d.) and number of subjects (n) by childhood behavioral inhibition and parental illness type

Childhood behavioral inhibition Parental illness type (PIT) All

PD Pure MD Controls

BI− 17.68± 2.04 (n= 29) 17.71± 1.28 (n= 11) 17.24± 1.86 (n= 21) 17.54± 1.85 (n= 61)
BI+ 17.46± 1.76 (n= 16) 18.08± 2.39 (n= 5) 18.36 (n= 1) 17.64± 1.84 (n= 22)

Abbreviations: BI, behavioral inhibition; MD, major depression; PD, panic disorder.

Table 2. Hippocampal volume (mean R/L mm3± s.e.m.) at
adolescence (n= 83) by childhood behavioral inhibition and parental
illness type

Childhood
behavioral
inhibition

Parental illness type (PIT) All

PD Pure MD Controls

BI− 4346± 73 4390± 99 4254± 84 4330± 58
BI+ 4080± 88 4620± 147 4401± 332a 4367± 126

Abbreviations: BI, behavioral inhibition; MD, major depression; PD, panic
disorder. an= 1 for this cell (Table 1).
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volumes in adulthood. Imaging studies of BI have not typically
examined such relationships.
What mechanisms and pathways might lead to the decreased

hippocampal volume observed in BI+ offspring of parents with PD,
and what is the functional relevance of the small hippocampal
volumes to state and trait anxiety, including the vulnerability to
develop anxiety disorders? We suggest that the reduced
hippocampal volume detected in this subset of young adults
who had been behaviorally inhibited as young children reflects
the interplay of genetic and environmental factors that might
emanate from both child and parent. Inhibited children in the
second year typically interrupt ongoing play, cease vocalizing,
seek comfort from a familiar person or withdraw when presented
with people, objects and situations that are novel or unfamiliar.
When presented with such situations in the laboratory, behavior-
ally inhibited children show enhanced physiological reactivity as
evidenced by a higher heart rate, decreased heart rate variability,
pupillary dilation, increased vocal cord tension and higher levels
of cortisol.3,37 The hippocampus is densely populated with
receptors for cortisol; stress and glucocorticoids not only cause
cell and atrophy but also inhibit adult neurogenesis.46 Animal
studies suggest that impairing neurogenesis in the hippocampi of
adults slows the recovery of glucocorticoid levels after stress
responses and increases depression-like behaviors in behavioral
tests commonly used to assess antidepressant response.47

Because stress and glucocorticoids regulate the production of
new neurons, a positively reinforcing toxic loop could be created
for aberrant and pathological responses to stress in the future.
Such a mechanism of reduced hippocampal reserve might be
important in the genesis and subsequent maintenance of clinical
anxiety and mood disorder in humans.
It has been suggested that an impairment in contextual fear

discrimination could cause a bias towards encoding potentially
ambiguous cues as threatening (the thud of fireworks vs the thud
of a mortar explosion), providing a possible explanation for the
overgeneralization seen in PTSD and PD.48,49 Neuroimaging
studies have implicated the hippocampus in the contextual
modulation of both fear-conditioning50 and fear-extinction
recall51 in healthy adults. Deficient extinction retention and
attendant decreases in hippocampal activation have been
reported in patients with PTSD when compared with subjects
without PTSD who have been exposed to major emotional
trauma.52 Antidepressant medications, which are also anxiolytic,
increase adult hippocampal neurogenesis.53–55 A genetically
induced increase in hippocampal neurogenesis enhances the
ability of animals to differentiate between two similar condition-
ing contexts.56 Small hippocampal volumes, on the other hand,
are associated with a failure to learn to discriminate between
conditioned contexts in a contextual fear-conditioning paradigm
in humans.57 A study of autonomic responses and contingency
awareness during fear conditioning demonstrated that individuals
with smaller hippocampal volumes were less successful in
identifying the safety signal represented by the conditioned
stimulus that was never followed by a painful electric shock
during acquisition.58 Another line of research has demonstrated
reduced hippocampal volume in subjects with childhood
maltreatment31,32,34,45 and one longitudinal study discovered that
a reduction in hippocampal volumes not only mediated the
relationship between early-life stress and trait anxiety but also
predicted the levels of anxiety symptoms in response to stress 1
year later.59

The studies reviewed above suggest a functional link between
the small hippocampal volumes in BI+ offspring of parents with
PD, and the increased vulnerability of behavioral inhibited
subjects to anxiety and anxiety disorders. Larger samples would
permit mediation analyses to explore the pathways between
parental illness, BI, hippocampal volume and specific illnesses or
symptoms in the offspring. However, consistent with the notion of

antecedent-reduced hippocampal reserve, a twin study has
suggested that a smaller hippocampal volume may be a pre-
existing vulnerability factor for the development of PTSD.60

Unfortunately, the incidence of serious trauma and PTSD is too
low in our sample to directly investigate this potential link.
Parental PD, the second factor required for the observed

reduction in hippocampal volume, could relate to the influence of
parenting style and family stress on the developmental trajectory
of children with BI.61–68 A particularly elegant longitudinal study
by Kiel and Buss68 measured both BI and maternal overprotective
behavior at 2 years, as predictors of social withdrawal at 5 years of
age when the children entered kindergarten. The authors defined
overprotective behavior as protective behavior that occurs in
novel or uncertain situations that, despite inducing discomfort for
some children, present no actual danger.68 Path analyses
suggested that at 2 years of age, temperamentally fearful children
elicited protective behaviors from their mothers (occurring most
strongly when mothers accurately predicted that their child would
become upset by an upcoming situation), and that this over-
protective behavior at 2 years of age, in turn, predicted social
withdrawal 3 years later.68 Taking the next step along this
translational path, investigators have sought to influence the
interactions of parents with their BI+ offspring to decrease the
probability of developing anxiety disorders.69–73 One longitudinal
intervention study targeted the parents of BI+ children between 3
and 5 years of age at risk for anxiety with a brief education
program that specifically addressed the role of overprotective
behavior in maintaining anxiety. One, 2 and 3 years after the
parental intervention,70,73 the offspring of parents in the
intervention group had lower rates of anxiety disorders—and 11
years later, at age 15, they showed lower rates of both anxiety
and depression, when compared with a passively-monitored
control group.69 These studies of parenting and studies of
interventions aimed at changing parental behaviors support the
plausibility and developmental salience of the BI × PIT interaction
reported here and, in turn, generate testable hypotheses
regarding mechanistic paths to the reduced hippocampal
volumes detected in BI+ offspring of parents with PD. For
example, if parents with PD were more likely to interact with
their inhibited children in a stress-inducing overprotective manner
that led to elevated cortisol levels in their child, this could impair
hippocampal neurogenesis resulting in the decreased volumes
that we detected.
Turning to consider genetic factors, twin studies have demon-

strated the substantial influence of genes on inhibited tempera-
ment. In a population-based sample of more than 4500 4-year-old
twin pairs,74 the largest heritability estimates (64–76%) were
observed for inhibition/shyness. Overall, estimates of the herit-
ability of BI in these studies have ranged from 0.41–0.76, with
estimates as high as 40.9 for extreme BI.1,74–78 These estimates
are substantially higher than those reported for social anxiety
disorder and other anxiety disorders (range 20–40%), suggesting
that the temperamental precursor phenotype is under stronger
genetic influence than the disorders to which it predisposes.
Therefore, although our discussion to this point has posited a
central role for environmental stress in generating the decreased
hippocampal volumes in the subset of behaviorally inhibited
adolescents reported here, it is also possible that the reduction in
hippocampal volumes reported could have genetic determinants,
and constitute a pre-existing risk factor that is subsequently
amplified by experience during development. In line with this
possibility, there is evidence that genetic factors independent of
environmental stress can influence hippocampal size. A long-
itudinal study in monkeys found that hippocampal volumes in
early adulthood did not differ on the basis of experimentally
induced stress in the postnatal period, but the observed variation
in monkey hippocampal volumes was heritable.79
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Given that the reduction in hippocampal volume in our study
occurred only in the subset of those BI+ subjects with PD parents,
BI and PD might be characterized by partially overlapping
polygenetic influences, both of which are required for the
observed change in hippocampal structure. Consistent with this
notion, and in light of the role, as suggested by us, of cortisol in
these findings, it is interesting that an association between BI and
a microsatellite marker tightly linked to the corticotropin-releasing
hormone gene in 84 families of children assessed for BI was
particularly marked in the offspring of parents with PD.80 This
marker and multiple single-nucleotide polymorphisms encom-
passing the corticotropin-releasing hormone gene were subse-
quently genotyped in an expanded sample of families of children
at risk for PD.81 The BI phenotype remained significantly
associated with the microsatellite marker and was associated
with several single-nucleotide polymorphisms including a single-
nucleotide polymorphism in the coding sequence of the
corticotropin-releasing hormone gene; haplotype-specific tests
revealed an association for a haplotype comprising all the
markers.81

Methodological considerations, limitations and directions for
future inquiry
The present study cannot definitively disentangle the potential
contributions of the genetic, developmental and environmental
mechanisms to the behaviorally inhibited phenotype, including
the structural differences reported here. New longitudinal studies
will be needed to identify and image high-reactive infants, the
infant precursor profile to BI in childhood and define the state of
brain circuitry at the very beginning of the developmental
trajectory of this phenotype, while gathering home-based
measures of parenting and other environmental variables such
as social class and the size of social networks, in concert with
genome-wide association studies and studies of gene regulation
and expression. Following such a cohort of infants throughout
their development into young adults would elucidate both
causality and mechanism, and suggest new strategies for early
intervention. As the above discussion of the present findings
demonstrates, the study of BI has required translational bridges
between psychology and psychiatry, with a longitudinal multi-
methods developmental approach that could be a fruitful model
for the study of other psychiatric symptomatology such as
psychosis.
This report demonstrates that data about parental psycho-

pathology may reveal relationships between brain circuitry and BI
in their children that are otherwise not detectable. The finding
that hippocampal volume in the offspring of pure MD parents did
not differ significantly on the basis of BI status must be interpreted
with caution, given the small number of subjects in the BI+/pure
MD cell relative to the other main cells of interest. Although this
represents a limitation of this study, one hint that this cell might
convey a meaningful biological signal in the opposite direction of
that seen in the offspring of PD parents was the fact that the mean
hippocampal volume of subjects in this cell (4660 ± 138mm3) was
larger than the hippocampal volume of the BI− offspring of
controls (4262 ± 67mm3; t(74) =− 2.60, P= 0.01). Studies in larger
samples will be required to clarify this. The fact that there was just
one behaviorally inhibited subject among the offspring of the
control parents (that is, families without parental PD or major
depression) is consistent with reports in larger samples that BI is
rare in parents without a history of PD or major depression.4,38

The preponderance of neuroimaging literature on anxiety and
anxiety disorders in humans to date has focused on the amygdala,
ventromedial prefrontal cortex and anterior cingulate. The
reduction in hippocampal volume reported in this longitudinal
study in a subset of behaviorally inhibited adolescents, when
considered in concert with a previous functional magnetic

resonance imaging study showing impaired hippocampal habit-
uation in adults who retrospectively identified themselves
as inhibited children21 and recent studies in non-human
primate models of anxious temperament,82–85 suggests that the
hippocampus has an important role in human trait anxiety and
anxiety disorder that warrants further investigation.
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