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Abstract

In order to explore the metric structure of the space of remembered colors, a computer

game was designed, where players with normal color vision had to store a color in memory,

and later retrieve it by selecting the best match out of a continuum of alternatives. All tested

subjects exhibited evidence of focal colors in their mnemonic strategy. We found no con-

cluding evidence that the focal colors of different players tended to cluster around universal

prototypes. Based on the Fisher metric, for each subject we defined a notion of distance in

color space that captured the accuracy with which similar colors where discriminated or con-

founded when stored and retrieved from memory. The notions of distance obtained for dif-

ferent players were remarkably similar. Finally, for each player, we constructed a new color

scale, in which colors are memorized and retrieved with uniform accuracy.

1 Introduction

There is a long-standing controversy regarding the computational strategies employed by

humans to process color. In one classical research line [1–5], the accuracy with which similar

colors are discriminated was explored using purely perceptual tasks that do not require addi-

tional cognitive processing, such as language or memory. Other approaches, in contrast, spe-

cifically explored how the continuum of hues was partitioned into discrete categories, often

corresponding to the linguistic labels of different colors. Some studies concluded that the seg-

mentation process does not depend on linguistic labels, [6–8], whereas others argued that lin-

guistic labels do indeed give rise to different chromatic category boundaries [9–13, 13–15],

sometimes even differentiating between representations in the low (sensory discrimination) or

the high (attention, language) level of processing [16]. Still other studies report mixed results

that show the effect in some (but not all) category boundaries [17], that may depend on the

degree of training [18]. The physiology of human ventral V4 even provides evidence that the
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representation of color changes, depending on whether the task does or does not involve lin-

guistic components [19].

The different results obtained by different studies [20] have lead to postulate the hypothesis

that a given color-processing experiment may or may not reveal evidence of chromatic catego-

rization depending on the cognitive computations required by the task [10, 21, 22]. In this

view, the presence of categorical boundaries in one particular experiment does not imply that

the same boundaries must be found in other experiments [23]. This hypothesis challenges the

assumption that color is represented with a unique neural code, and rather suggests that there

may be several simultaneous—and not necessarily equivalent—representational drafts [24].

Some of these drafts may become instrumental in language mediated tasks, and remain dor-

mant in purely perceptual tasks, and vice versa. The codes that operate in different tasks should

hence be analyzed separately. In this study we set out to investigate the strategies that require

the transient storage and retrieval of color from memory, since it is not clear whether chro-

matic memory is organized in terms of a few focal colors, or rather makes use of the contin-

uum of possible hues. In several previous studies [6, 9, 11, 12, 15, 25–27], the strategy was to

assess the accuracy of chromatic memory throughout color space. Typically, uneven results

were obtained, with some regions of color space inducing accurate retrieval, but not others.

The goal was then to determine whether such regional variations could be related to the color

categories induced by language, i. e., whether retrieval error was larger at the focal color of

each category, and smaller at the boundary between two categories, even if the task itself was

not cued with linguistic labels. Taking a more neutral approach to the possible origin of cate-

gories, here we defined categories in terms of response properties, not linguistic labels. We

designed a computer game in which players had to store a color in memory. After a short

period of time viewing a distractor screen, players were asked to retrieve the stored color

among a continuum of possibilities. The task per se did not force players to use any linguistic-

based segmentation of colors. Participants, however, were free to employ the mnemonic strat-

egy of their preference, which could, in principle, be based on a language-based tactic, or on

associations with specific well-remembered objects that could act as a reference.

On one extreme, a completely unstructured mnemonic strategy is possible, by which the

player memorizes and retrieves an unbiased representation of each color. In this case, the

retrieval errors corresponding to a fix target color have zero mean, and a variance that repre-

sents the necessarily limited accuracy of the storage and retrieval process. If the variance is

constant throughout color space, the mnemonic accuracy of the player is uniform. If the vari-

ance varies from color to color, the strategy is not completely unstructured, since the chro-

matic memory of the player is capable of making finer discriminations in some regions of

color space than in others.

On the opposite extreme, a completely categorical strategy is possible, by which the player

divides the continuum of hues into discrete categories, and only memorizes the category.

When asked to retrieve the original color, the player may use different procedures to select the

responded color from the remembered category. They may use a representative color for each

category, also called a focal color, and use this color as the referent of the whole category. Alter-

natively, they may retrieve a color chosen randomly within the category. For a fixed target

color, the probability distribution of the response may or may not be flat. A flat distribution

has no focal colors, but still retains category boundaries. A delta-shaped distribution in which

all the probability is concentrated at certain specific colors is both categorical and organized in

terms of attractors, or foci. All these categorical strategies, however, produce retrieval errors

that do not average out to zero, at least, for all the stored colors that do not coincide with a

focal color. The uncovering of non-zero average retrieval errors, hence, is a symptom of a

mnemonic strategy based on the existence of categories. Therefore, in this paper, we carefully
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assess whether mean retrieval errors are significantly different from zero. If they are, this con-

dition is taken as a symptom of a categorical strategy.

Among the previous studies that addressed the effect of categories in chromatic memory,

the most relevant for the present paper are two analyses of Bae et al [26, 27], since they tested

retrieval accuracy using a continuous repertoire of colors forming a closed locus that con-

tained all hues. Their main finding is that the accuracy of chromatic memory is not uniform

throughout color space. Both the mean and the variance of retrieval errors vary systematically

with the color stored in memory. The variations are consistent throughout the sample, and

they are related to purely perceptual variations. Here, we expand those initiatives in three new

directions. First, we test color memory in a closed locus in color space, in which equi-distant

steps are defined by an objective criterion. Second, we assess individual differences between

observers. Third, chromatic memory is explored with the specific aim of constructing, for each

observer, a mnemonically uniform chromatic scale.

The natural tool to construct this scale is the so-called Fisher information [28]. This tool can

be used to bound the maximal accuracy with which two remembered colors can be discrimi-

nated [29]. An additional—and less advertised—functionality of the Fisher information, is that

it constitutes a metric, allowing us to calculate distances between pairs of colors [30, 31]. As

opposed to, for example, the Euclidean distance, lengths based on the Fisher metric represent

how differently each individual observer holds the two colors, in terms of his or her ability to

discriminate them in mnemonic tasks. Moreover, individually tailored notions of distance can

be used to build a new, mnemonically uniform color scale for each observer. This scale may be

useful both from a theoretical and a practical perspective. From the theoretical persepctive,

assessing individual differences in the mnemonically uniform chromatic scale of different

observers may provide information about the generality of the mechanisms underlying the

representation of colors in memory. From the practical perspective, individually tailored mne-

monically uniform scales could be useful, for example, to design applications for cell phones

and computer screens that define the colors of stimuli intended to be memorized in such a

way that any observer (including color blind people) can maximally profit from mnemonically

discrimination abilities.

In this paper, we use the experimental data gathered from a color memory task to character-

ize the strategies used by humans to store and recall colors. We find evidence that individual

subjects employ category-based strategies, and we calculate the Fisher metric for each observer.

Although we find no conclusive evidence that different players build categories around univer-

sal focal colors, we do observe some regularities in the mnemonic discrimination ability of the

tested subjects. These regularities give rise to individually tailored mnemonically uniform

color scales that are fairly similar across the sample of tested observers.

2 Results

2.1 A computer game to test chromatic memory

The computer game consisted of a sequence of memory tests. Players sat at approximately 60

cm from the computer screen. Fig 1 illustrates the structure of each test. First, playerd were

instructed to remember the color that would be shown next, the so-called target color.

Immediately after, the screen displayed an 11 cm × 11 cm square filled with the target color

for 2.5 sec (Fig 1B). The area of the square was chosen large and the background achromatic,

so as to minimize perceptual shifts due to contrasts [32, 33]. Then, a random Mondrian screen

lasting for 5 sec separated the target color from the test period (Fig 1C). The 5-second interval

of the mask ensured that retrieval happened once memories were stabilized [34], and the Mon-

drian display was intended to eliminate the afterimages introduced by uniformly colored
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masks [35]. In the test period, a second colored square appeared (Fig 1D), the hue of which

varied continuously, as the player displaced a cursor on a bar. The bar swept over 743 possible

responded colors. The task was to move the cursor until the target color was recovered. The

player scrolled freely along the bar for as long as they wished (typically a few seconds), until he

or she identified the color considered to be the best match to the target color. The choice was

reported by clicking on an Ok! button (Fig 1E). The score of the trial depended on the distance

between the target color and the responded color. The player received feedback on their per-

formance in the form of numerical points, and also with an emoticon whose expression

depended on the score (Fig 1F). Feedback was included because it helped players maintain

their attention in an otherwise boring game, and its presence probably also improved perfor-

mance [36]. Each game tested 32 target colors, the order of which was randomly selected at the

beginning of each game. Each subject played the full 32-target game at least 10 times.

2.2 The choice of color coordinates

Experiments aiming at revealing categorical effects in color perception, color discrimination

or color memorization must always be reported in specific color coordinates. The choice of

coordinates has a profound impact on the reported accuracy of performance, since accuracy is

Fig 1. Organization of each memory test. A: Explanatory screen where the player is instructed to remember the color

shown next. B: Target color to be remembered. C: Mask containing the instruction to recover the target color in the

screen shown next. D and E: Searching screens, where the player continuously changes the color of the central square

by displacing the cursor in the bottom bar. The aim is to recover the target color shown before (panel B). The selected

color is chosen by clicking on the button labeled “Ok!”. F: Feedback screen, where the expression on the emoticon

(that may vary from happy to sad) and the obtained punctuation are determined by the similarity between the target

and the responded colors.

https://doi.org/10.1371/journal.pone.0207992.g001
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typically informed with some measure of distance in color space. When the color coordinates

are changed with a nonlinear transformation, expanding certain regions of color space and

contracting others, distances change non-uniformly. These alterations only depend on the

transformation, and not on the way information is processed by the visual system. There is

previous evidence [26, 34] that results vary when reported in different color coordinates.

Response distributions that appear broad in one set of coordinates become narrow in another,

and vice versa. When these discrepancies are consistent across subjects, it is difficult to con-

clude whether the shape of the measured distributions reveals a property of the visual system

of all observers, or a property of the chosen coordinates. When only a single set of coordinates

is considered, but multiple behavioral tasks are tested [17, 27], distributions that are narrow

(or broad) consistently across tasks may indicate that all tasks share the same metric proper-

ties, or alternatively, that the coordinates where colors are represented allocate a small (large)

volume to a region where the visual system is precise (imprecise).

To avoid the arbitrariness of the choice of coordinates, many studies report the analysis of

higher cognitive functions (as color naming, color categorization, or chromatic memory)

using a scale of colors where chromatic perception is supposedly uniform, as the OSA System,

or CIELUV, or CIELAB. The alleged uniformity, however, is only approximate [17, 26, 37].

Another possibility is to work in the DKL space, constructed to represent the natural scale of

geniculate neurons [38]. Perception, however, is not uniform in this scale either, since discrim-

ination ellipses vary in size and eccentricity from point to point [32, 39]. Moreover, in the

DKL space, the iso-luminant plane is only approximately L + M, and the degree of involve-

ment of cones S is observer-dependent [40]. In fact, there is ample evidence that even beyond

luminance, and irrespective of the chosen coordinates, there are significant perceptual differ-

ences among trichromats [26, 39, 41–44], implying that there is no single coordinate system

that can be viewed as perceptually uniform by several observers. One way to tackle this prob-

lem is to define color coordinates individually tailored for each observer [31]. This solution,

however, does not allow results to be reported in an objective set of coordinates.

For these reasons, in the present study, and following previous policies [26], we opt to be

cautious, and not to emphasize the size of retrieval accuracy in different regions of color space.

Our main objective, however, is to construct a mnemonically uniform set of coordinates for

each observer, and to assess the significance of the differences between observers. These aims

can be reached irrespective of the initial color coordinates (see below), so perceptual unifor-

mity is not mandatory in our study. In view of the aforementioned shortcomings of the alleg-

edly perceptually uniform color coordinates, and of the main focus of the present study, we

selected the color locus of the experiment using physical criteria to fixate the total brightness,

the set of hues, and the scale along the curve. Coordinates were chosen with the following

requirements:

1. All colors of the locus of tested target and response colors had the same light intensity, mea-

sured as the amount of energy within the visible range.

2. In order to work with the widest possible collection of hues available in our computer mon-

itor, all colors on the locus were maximally saturated, so that at least one of the coordinates

R, G or B vanished.

3. Equally-spaced steps along the locus corresponded to shifting a fixed amount of energy

from one range of wavelengths to another. That is, two consecutive colors on the locus were

chosen in such a way that the integral of the modulus of the difference of their spectra

remained constant.

The metric of remembered colors
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Physical criteria 1-3 do not produce colors that are perceptually uniform, so they have the

drawback of not allowing a neat separation between perception and memory. The advantage is

that there is an objective logic behind the resulting metric. The procedure required to con-

struct the chromatic locus is described in Sect. 4.1.

The set of target colors t tested in the experiment formed a closed locus in color space. All

colors on the locus had equal light intensity and maximal saturation, and the distance between

two neighboring colors was proportional to the difference between the two spectral densities

(see Methods, Sec. 4.1). The colors on a closed locus can always be parametrized with a phase

t 2 (− π, π]. We arbitrarily assign t = 0 to a deep shade of blue, and as a consequence, the oppo-

site color t = ±π corresponds to red. For each target color t, a player generated n responses,

with n ranging between 10 and 26 (mean 12, SD 5.2). The sample average �rðtÞ of these

responses was calculated for each player and each t, together with the sample variance �2(t).

2.3 Characterizing the players’ responses

The computer game was played by 11 subjects (see Sect. 4.2). The probability of retrieving

color r when the target color was t is P(r|t). A perfect player has P(r|t) = δ(r − t). Inaccuracies

in the retrieval process are due to the fact that P(r|t) differs from δ(r − t). In Fig 2 the response

histograms of an example player are displayed.

The unimodal nature of the histograms implies they can be well approximated by a Gauss-

ian function

PðrjtÞ ¼
e� ½r� mðtÞ�2=2s2ðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps2ðtÞ

p ð1Þ

of mean μ(t) and variance σ2(t). All other players yielded qualitatively similar results.

Inaccuracies in retrieval can be attributed to two different causes:

• μ(t) may differ from t, implying there is a bias: When color t is stored in memory, the

retrieved color r is on average shifted from t.

Fig 2. Histograms of responses conditional to a fixed target color. A subset of 10 histograms (out of the tested 32,

one per target color) obtained when sampling the probability P(r|t) of responding color r when presented with target t.
Each curve is obtained for a different t, for a subject who played the game 26 times.

https://doi.org/10.1371/journal.pone.0207992.g002
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• σ(t)>0, so there is trial-to-trial variability in the retrieved colors.

The first cause gives rise to systematic errors, whereas the second, to fluctuations.

Averaging in target colors and in subjects, the absolute value of the difference between the

responded color and the target color was approximately 0.15 radians (� 9˚), an amount that is

of the order of the angular separation of two consecutive target colors (2π/32� 11˚). The sub-

ject-to-subject variability of the absolute value of the error (measured as the standard devia-

tion) was 0.023 radians (� 1.3˚), implying that the tested sample of players displayed a rather

uniform response accuracy. Since the maximum error was π, the mean error was * 5% of the

maximum attainable. No evidence was found of improving performance with practice, as can

be deduced from Fig 3. We conclude that players constructed their strategy in the very first tri-

als, with no relevant modification thereafter. The essentially flat behavior of the boxes of Fig 3

implies that the steady state was reached rapidly.

Hence, there is no need to discard the initial responses due to a transient learning process.

In the rest of the paper, we focus on the dependence of response errors on the target color.

Averaging in target colors and in subjects, the mean standard deviation of the responses

was 0.17 radians (� 9.7˚). A Gaussian function with a standard deviation of 0.17 radians con-

tains 99% of its mass in a region of angular width 0.88 radians, which represents the 14% of the

interval (− π, π]. For all players and all tested colors, hence, the response probabilities P(r|t)
were concentrated around the mean, and the tails were not wide enough to notice the circular

nature of the variable r. The maximal standard deviation (the subject and color with widest dis-

tribution) was 0.85 radians (� 48˚), implying that the widest distribution concentrates 99% of

its mass around 27% of the available interval (−π, π]. These response accuracies justify the

choice of non circular functions, as Gaussians, to fit the response probabilities. Gaussians are

Fig 3. Constancy of the response error throughout the playing history. Box histograms of the sample distribution of

the absolute value of the error, averaged in target colors, in 10 consecutive runs of the game. The error of player i in the

k-th game is defined as hjrikðjÞ � tðjÞji, where the angular brackets represent an average over the 32 target colors j. Each

box represents the histogram collected from the 11 players (i 2 [1, 11]). Dot: sample mean. Horizontal line: sample

median. Upper and lower borders of the box: 25% and 75% percentile of the responses. Whiskers: 5% and 95%.

Horizontal bars: maximum and minimum responses.

https://doi.org/10.1371/journal.pone.0207992.g003
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defined on the set (−1, +1), whereas responded colors belong to the locus (−π, π]. Hence,

circular distributions, as for example von Mises’, are in principle better suited for the angular

variable r. Yet, the small value the standard deviations implies that for all practical purposes,

the Gaussian approximations coincided with a von Mises distribution of the same mean and

variance. We chose to work with the Gaussian approximation, since it is analytically tractable

(see Sect. 2.5). A Smirnov-Kolmogorov check for gaussianity of the 352 recorded distributions

(32 per player) showed that all data sets were compatible with the Gaussian hypothesis (p-

value of 0.05, corrected for multiple comparisons).

At the top panels of Fig 4, the mean responses �rðtÞ of two example players are displayed,

together with the expected error of the mean εðtÞ=
ffiffiffi
n
p

, where n is the number of times the

game was played.

For some colors, the departure of �rðtÞ � εðtÞ=
ffiffiffi
n
p

from the target color t suggests that the

responded color deviates systematically from the target. To confirm whether such deviations

are significant, and to evaluate whether this effect is also verified in other players, for each sub-

ject we evaluated the null hypothesis that the mean responses �rðtÞ were equal to the test colors

t with added Gaussian noise εðtÞ=
ffiffiffiffiffiffiffiffi
nðtÞ

p
. Performing a chi-squared test on the accumulated

squared error

S ¼
X32

i¼1

�rðtÞ � t
�ðtÞ=

ffiffiffiffiffiffiffiffi
nðtÞ

p

" #2

; ð2Þ

using a pvalue of 0.01, and then correcting it to account for Bonferoni’s multiple tests, we

rejected the null hypothesis for all subjects. In other words, the discrepancy between �rðtÞ and t
was significantly greater than expected by fluctuations of the order of the standard deviation

εðtÞ=
ffiffiffiffiffiffiffiffi
nðtÞ

p
alone. We conclude that it would be remarkably unlikely to obtain such systematic

errors from a limited number of samples of a Gaussian function centered in t.
Both example players make positive errors around the blue-violet border. Moreover, for

both of them the standard deviation seems to become particularly small in the yellow-orange

zone. In order to assess whether these characteristics also held with other players, we calculated

the sample histograms of the mean response error �rðtÞ � t and of the standard deviation of

responses �(t) as a function of the target color t, as shown in Fig 5.

Panel A confirms that for the collection of sampled payers, specific colors are associated

with specific errors, for example, in the red-purple and in the violet-blue region, errors tend to

be positive, whereas in the orange zone, they tend to be negative (stars in Fig 5A). From panel

B we deduce that for the sampled players, the standard deviation is particularly high in the vio-

let-blue region, and particularly low in the yellow-orange zone.

2.4 Attractor and repulsor colors

Several studies [6, 9, 11, 12, 15, 25–27] have assessed whether the accuracy of chromatic mem-

ory could be related to color categories, the latter defined in terms of linguistic labels. Either

the borders of such categories and/or the focal color (or best representative) of each category

were determined in one experiment. Then a second experiment was performed, in which the

accuracy of chromatic memory was evaluated (a) on colors that were near a boundary between

categories, (b) on colors that were far from a boundary, (c) on colors that were near a focal

color, and/or (d) on colors that were far from a focal color. If the accuracy of chromatic mem-

ory was confirmed to be modulated by the proximity to category boundaries or to focal colors,

the performance of memory was concluded to be influenced by the linguistic segmentation of

the continuum of colors.
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This paradigm requires two experiments: One to determine category boundaries, or alter-

natively, category focal colors, and another to measure the accuracy of chromatic memory.

The accuracy was assessed using some measure of spread of the colors retrieved in response to

a single memorized target, larger spread implying poorer performance. In the present study,

and following [26, 27], we changed the classical paradigm in two ways. First, we did not anchor

the concept of categories to linguistic labels. This policy was adopted in order to also detect

non-linguistic categories. Second, the presence of categories was not assessed by changes in

the spread of the colors retrieved in response to a single target, but by changes in their mean.

As explained below, certain systematic variations in the mean allow us to define the concept of

Fig 4. Characterization of the responses. Panels A and B correspond to two example players. Top: Black line: Mean response �r as a

function of the target color t. Gray area: Range of values in �rðtÞ � εðtÞ=
ffiffiffi
n
p

. Middle: Mean error �rðtÞ � t (black line), together with

expected error of the mean εðtÞ=
ffiffiffi
n
p

(gray area). Bottom: Fitted curve Δ(t), together with the experimental data �rðtÞ � t (black dots)

and the expected error of the mean εðtÞ=
ffiffiffi
n
p

(error bars). In the middle and bottom panels, the vertical scale spans from −π/6 to +

π/6.

https://doi.org/10.1371/journal.pone.0207992.g004
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attractor colors and of repulsor colors for each player, both of which can be linked to the con-

cept of categorical memory. The advantage of assessing categorization with a measure defined

in terms of the mean (as opposed to the spread) is that the mean is less sensitive to the choice

of coordinates than the spread. Imagine, for example, that when memorizing a certain shade

of blue, a given player tends to retrieve colors that are shifted towards the violet side. The

spread of the responses may be large or small, depending on the chosen coordinates. In fact,

by performing a nonlinear change of coordinates that expands or contracts the responded col-

ors, the spread will appear to increase or diminish accordingly. However, the fact that the

majority of responses are systematically biased towards the violet side (as opposed to the green

side) does not depend on the choice of coordinates.

Fig 5. Sample statistics of the recorded responses. Sample histogram of the mean error �rðtÞ � t (panel A), and of the

responses’ standard deviation �(t) (panel B) for the 11 players. In A, the yellow stars indicate the target colors for which

a two-sided t-test evaluating whether �r � t is significantly different from zero yields a particularly small pvalue. From

left to right: p = 0.004, 0.004, 0.004 and 0.002. Boxed-histogram conventions same as in Fig 4.

https://doi.org/10.1371/journal.pone.0207992.g005
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If players use a purely categorical strategy to memorize colors, then each target color t is

represented internally as a member of a category c(t). If only the category of the color is stored

in memory, the mean μ(t) of the conditional response probability of Eq 1 depends on the target

color t only through its category, that is, μ(t) = μ[c(t)]. Under these circumstances, the mea-

sured �rðtÞ, as displayed in the upper panels of Fig 4, appears as a staircase, with a flat mean

response �rðtÞ inside each category c(t), and a discontinuous jump when passing from one cate-

gory to the next. The mean error �rðtÞ � t, as displayed in the middle panels of Fig 4, appears as

a jigsaw, composed of segments of straight lines inside each category, each of them crossing

the horizontal axis with slope −1. The point where each segment of the error �rðtÞ � t vanishes

can be thought of the center of the corresponding category, because at that point, the mean

responded color coincides with the target color. Moreover, the colors where the mean response

(and also the mean error) displays an upward discontinuity constitute the borders between

categories.

The mean response μ(t) is only expected to be flat inside each category if players only

memorize the category of the target color. This is a rather radical strategy. A more plausible

mechanism is that players employ a mixed strategy, so that the mean response μ(t) is partly

determined by the category, and partly by the particular color t [27]. In this case, the well

defined staircase of the purely categorical case is expected to smooth out up to a certain degree,

becoming a continuous function of t. Inside each category �rðtÞ will no longer be flat. Yet, the

categorical component of the strategy should still be visible in a mean response �rðtÞ that

increases slowly with t, with a slope that is somewhere between 0 (fully categorical strategy)

and 1 (no categories at all). In turn, when crossing a category boundary, �rðtÞ is no longer

expected to be discontinuous, but it should still grow with a slope that is larger than unity.

These characteristics can also be recognized in the mean response error �rðtÞ � t as segments

where the error diminishes and crosses the horizontal axis with a negative slope (inside each

category), and segments where the horizontal axis is crossed with a positive slope (transition

between categories). These ideas are now formalized by defining attractors and repulsors.

An attractor is a target color ta that tends to concentrate the responses to neighboring target

colors. Mathematically, an attraction implies that target colors lying to the right of ta elicit

responses with a negative mean error, and target colors to the left of ta elicit responses with a

positive mean error. Exactly at ta, the mean error vanishes. The basin of attraction of each

attractor corresponds to a color category.

A repulsor color tr, in contrast, tends to defocus responses. In other words, responses to tar-

get colors that are close to a repulsor are systematically deviated away from the repulsor tr.
Mathematically, a repulsion implies that target colors lying to the right of ta elicit responses

with a positive mean error, and target colors to the left of ta elicit a negative mean error. Again,

at ta, the mean error vanishes.

The sign of errors does not depend on the choice of coordinates. If the scale used to mea-

sure colors around the locus is changed with an invertible and nonlinear transformation, the

magnitude of errors may vary from point to point, but positive errors will remain positive, and

negative errors, negative. Hence, the significance with which attractors or repulsors can be

detected may suffer, but not their existence, nor their position.

To verify the number and location of attractors and repulsors of a given player, we modeled

the mean responses �rðtÞmeasured experimentally as a continuous function of t

mðtÞ ¼ t þ DðtÞ; ð3Þ

where Δ(t) is the difference between the mean response and the target color, and is a periodic
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function of t. As such, it can be modeled as a trigonometric sum

DðtÞ ¼
Xm

j¼1

aj sinðjtÞ þ
Xm

j¼0

bj cosðjtÞ: ð4Þ

In Eq 4, all sums are restricted to fall in the interval (−π, π]. The number n of terms in the

sum, as well as the coefficients aj and bj, are fitted through a Maximum Likelihood procedure

described in Methods, Sec. 4.3. The procedure calculates not only the optimal n, ai and bi val-

ues, but also their uncertainties. In the bottom panels of Fig 4 we see the maximum likelihood

fit of the errors of the two displayed example players.

For one given player, a target color ta was considered to be a candidate attractor if

1. the optimal fit of the error vanished, that is, Δopt(ta) = 0, and

2. the optimal fit of the error crossed zero with a negative slope, that is, dDopt
ðtÞ=dtjt¼ta < 0.

Repulsors tr were defined analogously, but replacing negative derivatives by positive ones.

Caution is required, however, since the fitted model Δopt(t) contains a certain level of uncer-

tainty. Even in the hypothetical case that responses were generated from a Gaussian function

with mean μ(t) = t, implying that the mean error Δ(t) is identically zero, just from the unavoid-

able fluctuations that appear in any finite sample of responses, the fitted Δ(t) will most likely

not vanish, and conditions 1 and 2 will still detect spurious attractors and repulsors. To decide

whether a candidate attractor or repulsor is spurious or not, a criterion is needed, ensuring

that the negative (or positive) derivative remains negative (positive) when the uncertainties in

the fit of Δ(t) are taken into account. The coefficients that define the expansion of Δ(t) as a trig-

onometric series have a varying degree of reliability, depending on the size of the error bars of

the recorded responses. Maximum likelihood estimation of the coefficients provides not only

the value of the optimal coefficients, but also, their degree of reliability. Changing the coeffi-

cients of the expansion from their optimal values to some other nearby suboptimal—but still

highly probable—values is likely to cause spurious attractors to disappear, but not significant

ones. Hence, we add a third condition that screens all attractor (and repulsor) candidates, and

only retains as significant those that pass the following criterion:

3. Deviations from the maximum likelihood fitted model Δ(t) with the highest 95% of prob-

ability also fulfilled condition 2 (see Methods, Sect. 4.4).

We have verified that criteria 1-3 detect no significant attractors and repulsors with simu-

lated subjects whose responses are generated with Gaussian distributions of mean μ(t) = t,
playing the same number of games as the real subjects.

Both the number of attractors per player and the number of repulsors per player ranged

between 1 and 6 (mean number of attractors 3.5, SD 1.4, mean number of repulsors 3.5, SD

1.6). In Fig 6A we see the fit Δ(t) for all 11 players, and also the sample average.

Players tend to recall attractors, and not to recall repulsors. The set of attractors and repul-

sors of a player, hence, characterizes his or her personal mnemonic strategy. To assess whether

individual strategies are shared by the collection of sampled players, we analyze the empirical

accumulated distributions (Fig 6B and 6C) of the attractors and the repulsors of the whole

sample. If the set of all attractors and repulsors are scattered uniformly in the interval (−π, π],

there is no universal strategy. In contrast, if attractors and repulsors tend to cluster around spe-

cific colors, the hypothesis that human trichromats tend to share the same prototypes (the

attractors), and category boundaries (the repulsors) gains strength. In Fig 6B and 6C we com-

pare the empirical cumulative distribution function (gray data points) with the expected
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accumulated distribution under the uniform hypothesis (dotted line). Clusters, if present, are

evidenced as sequences of data points with a significantly larger slope than the dotted line. The

Smirnov-Kolmogorov test, however, does not confirm a significant deviation of the data points

from the dotted line (p = 0.8 for attractors, and p = 0.5 for repulsors). Hence, there is no evi-

dence to conclude that individual mnemonic strategies be shared by the sample of 11 subjects.

Fig 6. Analysis of attractors and repulsors for the collection of sampled players. A: Thick line: Sample average of

the fitted error hΔ(t)i. Gray area: Region of values contained in hΔ(t)i ± standard error of the sample mean. Thin lines:

individual fits Δ(t) for each of the 11 players. B: Data points: Empirical cumulative distribution function of the set of

attractors obtained from the 11 players. Dotted line: Accumulated distribution expected for a uniformly distributed

process. C: Same as B, for repulsors. In B and C, the vertical axis extends from 0 to 1.

https://doi.org/10.1371/journal.pone.0207992.g006
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2.5 The metric of remembered colors

The experiment aims at revealing whether chromatic memory is equally accurate throughout

color space. In other words, whether a certain color (for example, blue) can be recalled with

more or less accuracy than some other color (for example, orange). The magnitude of a mis-

take is quantified by the distance between the target and the recalled color. This quantification

procedure requires a notion of distance in color space. The colors of the experiment were cho-

sen in such a way that when moving from one color to the next, the corresponding spectra

were equal, except for a fixed amount of energy that was displaced from the blue LED to the

red, or from the red to the green, or from the green to the blue (see Methods, Sec. 4.1). The

metric of the game, hence, is defined in terms of physical properties. The recall accuracy of

human players, however, need not be constant in this physical metric. Indeed, both the mean

and the variance of the experimental data vary with t. If the recall accuracy of a given player

varies from color to color, one can argue that, from the subjective point of view, the colors of

the game are not equi-distant. Those that are recalled accurately can be said to be subjectively

distant from their neighbors, whereas those that give rise to errors are subjectively near to

their neighbors.

Here we introduce a notion of proximity based on the idea that two colors t1 and t2 are to

be considered near if the corresponding responses are governed by similar probability distri-

butions P(r|t1)� P(r|t2). The Fisher information J(t) is a metric tensor that captures this notion

locally. It is defined as the rate of change of the Kullback-Leibler divergence when passing

from the probability distribution P(r|t) to the distribution P(r|t + dt), that is, (Amari 2000)

JðtÞ ¼ �
@

2

@t2
lnPðrjtÞ

� �

; ð5Þ

where the mean value is calculated with respect to P(r|t). If the response probability can be

modeled by the Gaussian function of Eq 1, the Fisher information becomes

JðtÞ ¼
m0ðtÞ
sðtÞ

� �2

þ
1

2

½s2ðtÞ�0

s2ðtÞ

� �2

: ð6Þ

An important property of the Fisher metric is the Crámer-Rao bound, stating that 1/J(t) is

the minimum mean square error that any estimator can make of the target color t from the

response r. In other words, if the Fisher information J(t) is small for a certain t, then the proba-

bility P(r|t) hardly varies with t, implying it is impossible to make accurate estimates of t from

r. The conclusion holds irrespectively of the decoding algorithm [29, 45]. This property allows

us to associate J(t) with a measure of discriminability. Broadly speaking, J is somehow similar

to the parameter κ controlling the width of Von Mises response distributions in [26], or the

inverse of the just-noticeable differences in discrimination experiments in [17]. Yet, from Eq

6, one should bear in mind that variations in J(t) not only reflect variations in the response var-

iance σ2(t), but also, in the mean response μ(t).
With the Fisher metric, the distance element between two neighboring colors t and t + dt is

ds ¼
ffiffiffiffiffiffiffiffi
JðtÞ

p
dt; ð7Þ

so that the total distance between two target colors t1 and t2 is

Dðt1; t2Þ ¼
Z t2

t1

ds ¼
Z t2

t1

ffiffiffiffiffiffiffiffi
JðtÞ

p
dt: ð8Þ
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Replacing Eq 6 into Eq 8,

Dðt1; t2Þ ¼
Z t2

t1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m0ðtÞ
sðtÞ

� �2

þ
1

2

½s2ðtÞ�0

s2ðtÞ

� �2
s

dt: ð9Þ

From Eq 6, we see that the calculation of J(t) requires the derivatives dμ/dt and dσ2/dt.
Those derivatives were obtained from the analytic fit μ(t) = t + Δ(t) of the experimental mean

�rðtÞ, and another similar fit of the experimental variance �2(t), also modeled as a trigonometric

series σ2(t), using the same procedure employed to fit Δ(t).
The thin lines of Fig 7A represent the amount of Fisher information obtained for each of

the 11 players.

The thick line is the sample average of the thin lines, and the gray area represents the stan-

dard error of the sample mean. Individual players exhibit a sequence of maxima and minima,

implying that they recall some colors accurately (the maxima) and some others, poorly (the

minima).

The local maxima in J(t) represent colors that are particularly well recalled. Not all local

maxima, however, have the same relevance; only those with particularly large numerical value

are noteworthy, since
ffiffiffiffiffiffiffiffi
JðtÞ

p
determines the distance between colors (Eq 8). For each player,

therefore, we identified all the local maxima of J(t) that were at least as large as �J þ 2SJ , where �J
is the average value of J(t) throughout the interval t 2 (−π, π], and SJ is the standard deviation.

The collection of such maxima obtained for the 11 players is displayed in Fig 7B. In turn, the

local minima of J(t)—or equivalently, the maxima of 1/J(t)—represent colors that are particu-

larly difficult to recall. Since again, the numerical value of the minimum is relevant, for each

player we identified the local minima in J(t) whose value was such that 1/J(t) was larger than

J � 1þ2SJ� 1 . These minima are displayed in Fig 7C. For comparison, panels B and C also display

in dotted line the theoretical cumulative distribution expected under the hypothesis of uniform

probability density. A Smirnov-Kolmogorov test evaluating the difference between the empiri-

cal distributions and the straight line gives a highly significant result, p = 0.00007 in the case of

maxima (panel B), and p = 0.006 in the case of minima (panel C). We therefore conclude that

throughout the collection of sampled players, observers tend to recall the colors cyan, green,

yellow and red accurately (clusters in panel B), and colors purple and blue poorly (clusters in

panel C).

Once J(t) is known, it is possible to define a new color scale s = s(t) that is recalled with uni-

form accuracy by a given observer. Mathematically, this means that J(s) = cnst.

cnst ¼ JðsÞ ð10Þ

¼ �

Z

PðrjsÞ
@

2

@s2
log

2
PðrjsÞ dr ð11Þ

¼ �
dt
ds

� �2 Z

P½rjs� 1ðtÞ�
@

2

@s2
log

2
P½rjs� 1ðtÞ� dr ð12Þ

¼
dt
ds

� �2

JðtÞ: ð13Þ

Hence,

ds ¼ cnst�
1
=2

ffiffiffiffiffiffiffiffi
JðtÞ

p
dt; ð14Þ
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implying that

sðtÞ ¼ s0 þ cnst�
1
=2

Z t

t0

ffiffiffiffiffiffiffiffiffi
Jðt0Þ

p
dt0: ð15Þ

Fig 7. Amount of Fisher information along the locus of sampled colors. A: Thick line: Sample average of the

amount of Fisher information obtained by the individual players. Gray area: Region of values contained in hJ(t)i ±
standard error of the sample mean. Thin lines: individual curves J(t) for each of the 11 players. B: Data points:

Empirical cumulative distribution function of the set of relevant maxima of J(t) obtained from the 11 players. Dotted

line: Accumulated distribution expected for a process with uniform probability density. C: Data points: Empirical

cumulative distribution function of the set of relevant maxima of 1/J(t) obtained from the 11 players. Dotted line: Same

as in B. In B and C, the vertical axis extends from 0 to 1.

https://doi.org/10.1371/journal.pone.0207992.g007
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The proportionality between Eqs 15 and 8 implies that the perceptually uniform variable

s(t) represents the subjective distance between t and some reference color t0. The new notion

of subjective distance introduced here represents the cumulative mnemonic discriminability

∑ds with which the observer differentiates all pairs of neighboring colors t0 and t0 + dt0 along

the way from t0 to t. In Fig 8 we compare the original color scale t, with the new uniform scale

s(t) individually tailored for each observer.

In all cases, we see that the violet-blue region is compressed, whereas the green-yellow-red

range is expanded. At the bottom, the uniform color scale of the average observer is displayed,

and quite evidently, it differs only little from the scales of individual observers.

The amount of Fisher information is calculated with Eq 6, which contains two positive

terms. The first term weighs the contribution of the rate of change in μ(t). Colors for which μ
(t) varies rapidly with t allow observers to detect differences between neighboring colors. The

second term weighs the rate of change in σ2(t). For all subjects, the first term was always more

important than the second. The ratio first/second ranged between 4.1 and 57 for all players

(mean 19, SD 14). The rate of change of σ2(t), hence, has a relatively minor effect.

The mean responded color μ(t) is equal to t + Δ(t), so its derivative is μ0(t) = 1 + Δ0(t). The

relative contribution of the 1 and the Δ0(t) terms is also uneven. The ratio of the former to

the latter ranged between 1.9 and 62 for the different subjects (mean 16, SD 21). As a conse-

quence, for many subjects, the global behavior of J(t) was mainly determined by 1/σ2(t). The

Fig 8. A mnemonically uniform color scale. Comparison between the original color scale t used in the game (A) with

the new uniform color scales s designed for each player (B). C: uniform color scale obtained with the sample average of

J(t).

https://doi.org/10.1371/journal.pone.0207992.g008

The metric of remembered colors

PLOS ONE | https://doi.org/10.1371/journal.pone.0207992 January 2, 2019 17 / 30

https://doi.org/10.1371/journal.pone.0207992.g008
https://doi.org/10.1371/journal.pone.0207992


experimental data �(t) that were used to fit the continuous function σ2(t) are displayed in Fig 5.

The large value of σ(t) in the violet/blue region, and its drop in the green/yellow/red zone par-

allels the behavior of J(t)−1.

In Fig 7, the Fisher information J(t) seems to have roughly the same behavior for all players.

This result may seem at odds with the previous finding, that the location of attractors and

repulsors varies from player to player. The location of attractors and repulsors, however, is

only weakly linked to the behavior of J(t).
To see the link between the two, we rewrite Eq 6 as

JðtÞ ¼
1þ D

0
ðtÞ

sðtÞ

� �2

þ
1

2

½s2ðtÞ�0

s2ðtÞ

� �2

: ð16Þ

Attractors and repulsors are located at colors t in which Δ(t) = 0, and Δ0(t) ≶ 0. From Eq 16,

we see that a positive sign of Δ0(t) (a repulsor) will tend to increase J(t), whereas a negative sign

(an attractor), to decrease it. Indeed, finer discriminations are expected in regions where the

mean response varies with the target color more steeply than the correct response (the error

has a positive derivative), and coarser discriminations, where the mean response is shallower.

It is therefore natural to expect the Fisher information to drop around attractors, and peak

around repulsors. Yet, since the role of Δ0(t) is comparatively small when compared with

unity, and since J(t) is more determined by σ(t) than by Δ(t), the mapping between the shape

of Δ0(t) and of J(t) cannot be expected to be highly predictable. The loose dependence between

the two variables, however, may still be weakly perceived in Fig 9, where the locations of attrac-

tors and repulsors are compared to the positions of prominent maxima and minima of J(t).
There seems to be a certain degree of coincidence in the locations where the two sets of data

points increase rapidly, marked by the colored bars.

3 Discussion

Here we aimed at testing chromatic memory as devoid as possible from the interference

with other cognitive abilities. We therefore designed a task where stimuli consisted of large

squares of uniform color, lacking spatial structure, texture, and intuitive semantic

associations.

In order to work with a circumscribed set of colors, we selected a closed locus in color

space. The chosen locus contained hues with the maximal saturation attainable from a com-

puter screen. A set of 32 target colors was chosen from the locus, and the accuracy with which

these colors were stored and retrieved from memory was measured. The retrieval error was

calculated as the angular distance between the target and retrieved colors. This notion of error

naturally depends on the chosen coordinates to designate different colors on the locus. If a

nonlinear transformation t0 = φ(t) is used to define a new chromatic scale, the colors that

yielded accurate responses in the scale t need not yield an accurate response in the scale t0. In

our study, color coordinates were defined by the physical properties of the light spectrum cor-

responding to each stimulus. Specifically, two neighboring colors associated with spectra E(λ)

and E(λ) + δE(λ) were associated with angles t and t + δt, where dt was proportional to
R

|δE
(λ)|dλ. All our measures must therefore be interpreted with reference to this objective scale.

For example, if for a given target color t, an observer produces particularly accurate responses,

we may conclude that he or she can accurately represent the difference δE(λ) from neighboring

colors.
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3.1 The accuracy of chromatic memory

The first main conclusion is that colors in the yellow-orange region are memorized more accu-

rately than in the violet-blue region. The effect was highly significant throughout the 11 play-

ers, and was evident both in the mean error, and its standard deviation. We emphasize that

this result is linked to the choice of coordinates reflecting the physical properties of spectra.

The same result was observed in [34] and [26].

3.2 Attractors and repulsors

The mean retrieval error of the 11 players was significantly different from zero for many target

colors. The mean error Δ(t) could be satisfactorily fitted with a smooth periodic function. The

Fig 9. Relation between attractors, repulsors and Fisher information. Comparison of the locations of attractors and repulsors of

Fig 6 with that of prominent maxima and minima in J(t) (Fig 7). A: Empirical cumulative distribution of repulsors (gray) and of

prominent maxima of the Fisher information (black). Colored boxes highlight the regions of color space where both distributions

appear to increase with slope larger than unity. B: Empirical cumulative distribution of attractors (gray) and of prominent minima of

the Fisher information (black). Colored boxes: same as in A. In both panels, the vertical scale ranges between 0 and 1.

https://doi.org/10.1371/journal.pone.0207992.g009
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zeros of the fitted function represented target colors that yielded unbiased responses. Among

them we could identify several target colors that were significantly stable to variations in the

fitted function, defining attractors and repulsors. Attractors correspond to focal colors, since

they tend to concentrate the responses to neighboring colors. Repulsors, in contrast, separate

the basins of attraction of two attractors, and therefore, lie at the border between two catego-

ries. The location of attractors and repulsors does not depend on the choice of coordinates.

The widths of categories, however, defined as the separation of the two repulsors to either side

of an attractor, may depend on the choice of coordinates.

Our significance criterion to define attractor and repulsor colors for each player was strict,

and still, all players revealed the presence of attractors and repulsors. We therefore conclude

that observers make use of at least some degree of categoric strategies. When conversing with

the players, we observed that they often made reference to mnemonic strategies based on the

association of the target color with some familiar object with a similar hue. Examples such as

“the color of my couch”, “the color of my partner’s eyes”, or “the color of my favorite pair of

slippers” were heard frequently. We hypothesize that such personal referent objects gave rise

to idiosyncratyc focal colors. The absence of clustered attractors and repulsors in the whole

collection of sampled players hints to the hypothesis that each player had his or her own pri-

vate collection of mnemonic referents. Yet, it may still be the case that our failure to confirm a

significant degree of clustering may be due to our limited number of subjects.

The presence of attractors and repulsors confirms the findings of Bae et al. [26, 27], who

show that the width of response distributions is not constant throughout color space, and that

response distributions are determined, at least to a certain extent, by the way observers catego-

rize colors. Our results are also compatible with their model combining categories and particu-

lars in chromatic working memory [27]. The most important difference between our results

and theirs is that they seem to obtain more consistency across subjects in the location of

attractors.

Consistency across observers can be interpreted in two different ways: As an artifact of the

choice of coordinates, or as a property of a universal mnemonic strategy shared by all the sam-

pled players. The first interpretation holds if the width of the response distributions is a direct

consequence of the coordinates of color space being too densely (or dispersedly) parsed in that

region. If this is the case, some regions of color space should produce broad response distribu-

tions for all sampled players, and others, narrow. Moreover, the regions of color space produc-

ing broad distributions in the mnemonic task should also produce broad distributions in

perceptual tasks, or in color naming tasks, since the breadth is supposed to arise from an inher-

ent property of the coordinates. A nonlinear transformation of the coordinates should exist,

producing more uniform response distributions for all players, and all behavioral paradigms.

In fact, the pursuit for a nonlinear transformation that homogenizes the variable discrimina-

tion ellipses initially measured by MacAdam [2] has lead to the definition of several alternative

color spaces, as the UCS diagram CIE 1960, the CIELUV and CIELAB coordinates [46, 47],

and the individually tailored space of da Fonseca and Samengo [31].

The second interpretation, instead, is likely to hold if the breadth of the response distribu-

tions in a mnemonic task is not congruent with the breadths obtained in perceptual or naming

tasks, or in other mnemonic tasks performed in different behavioral conditions. For example,

in [18] the responses of a speeded task are compared to those conducted at a comfortable

velocity, and the responses of naïve observers are compared to those of trained ones.

Both [27] (testing memory) and [18] (testing discrimination) compare the responses of

pairs of colors astride the border defining two linguistic categories, and pairs that fall on the

same category. In the present study, we identify focal colors (attractors), and category bound-

aries (repulsors) with criteria constructed with respect to a physically defined chromatic scale.
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Hence, our categories are not anchored to the linguistic definition. The subject-to-subject vari-

ability that we find rules out a spurious effect purely based on the choice of coordinates, and

hints to idiosynchratic categories.

3.3 A mnemonically uniform color scale

The amount of Fisher information J at a certain color t quantifies the ability of a player to store

two similar target colors t and t + dt and recall them as distinct. One naïvely expects that such

ability is diminished around attractors, and enhanced around repulsors, since the former focus

responses, whereas the latter defocuses them. The Fisher information, however, is not entirely

determined by the behavior of the mean response μ(t), actually, in the recorded data, the

dependence of the variance σ2(t) on the target color t is more relevant. The main trend in J(t),
related to the fact that the information is low in the violet/blue region and high in the green/

yellow/orange/red region, is indeed explained by the behavior of σ2(t). Still, Fig 9 suggests that

there might be some degree of coincidence between the location of attractors and repulsors on

one side, and that of minima and maxima in J(t), on the other. Since no significant clustering

was detected in the location of attractors and repulsors, we simply take this finding as a sugges-

tion, without drawing a definite conclusion from it. An experiment performed with a larger

sample may settle the matter.

The amount of Fisher information is not only useful to measure discriminability between

neighboring colors, but more importantly, to construct a mnemonically uniform color space

individually tailored for each observer. The uniform color space is defined as the one in which

the differential ds is equal to
ffiffiffiffiffiffiffiffi
JðtÞ

p
dt, in the same spirit of previous studies [48, 49]. We have

found that even in spite of individual differences in the location of attractors and repulsors, the

integrals are quite similar throughout the collection of sampled players, giving rise to a collec-

tion of congruent mnemonically uniform spaces (Fig 8). The uniform scale does not depend

on the coordinates in which the original experiment was performed. The integration process

compensates for the variations in the lengths of the differentials corresponding to different

coordinates.

In the new scale, the classical color categories “red”, “purple”, “blue”, “green” and

“orange” comprise intervals whose lengths are more uniform than in the original scale. For

example, in the upper stripe of Fig 8, the blue sector is clearly longer than the orange one,

and this discrepancy becomes less evident in the lower stripe. The mnemonically uniform

scale contracted the blue region, in view of its large errors. This result is in agreement with

the findings of Bae et al. [27], where the width of response distributions scaled with the width

of color categories. A similar effect was found by Witzel and Gegenfurtner [17], when assess-

ing just-noticeable differences in a perceptual discrimination task. The discrimination ability

between two colors that belonged to categories (for example green, or red) occupying a large

sector of the space (no matter whether DKL, CIELUV or CIELAB) was lower than in narrow

sectors. In all these cases, the co-variation between the width of color categories and the

width of response distributions hints to a certain arbitrariness in the choice of coordinates in

the tested color space. The new mnemonically uniform color scale is designed to compensate

for this arbitrariness. Performing future experiments in this compensated scale would be

equivalent to the carefully calibrated experiment of Witzel and Gegenfurtner [18], where

residual effects of categories are assessed in discrimination experiments in which the percep-

tual irregularities are evened out.

The integral of J(t) dt can always be performed, so for 1-dimensional spaces, as the one

explored here, it is always possible to find a coordinate transformation that defines a new

space where the Fisher information is a scalar and constant matrix. Such a coordinate
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transformation, however, is not guaranteed to exist in experiments testing higher-dimensional

color spaces. The Fisher tensor defines not only the metric, but also the curvature of the space.

And although the components of the metric depend on the choice of coordinates, the curva-

ture is invariant. The Fisher matrix of a uniform color space is proportional to the identity

matrix, and the curvature of such a space necessarily vanishes everywhere. Therefore, only flat

spaces (i. e., with zero curvature) may be transformed into a uniform space. Moreover, a van-

ishing curvature is a sufficient condition for the transformation to be achievable. The new

coordinates can be found by integrating the geodesic equation, using the vectors of an ortho-

normal base starting from a given point as initial conditions [50, 51]. Previous theoretical

work performed on chromatic perception (as opposed to chromatic memory) defined a per-

ceptually uniform color space using this procedure, starting from a Fisher matrix that

described the physiological properties of cones [31]. Another study, describing the nonlineari-

ties and the adaptation phenomena taking place in the first stages of visual processing, imple-

mented this integration procedure numerically [52]. Both examples were successful, because

they operated in flat spaces. The feasibility of the pursuit of uniform coordinates in higher-

dimensional color spaces, hence, hinges upon the curvature of the space of remembered colors,

which is in turn determined by the way in which the size, shape and orientation of the ellipses

describing the variance of the responses vary throughout color space.

4 Methods

4.1 Calibration of screen colors

The color of each pixel on the screen is determined by coordinates (R, G, B) set by the pro-

gram, yielding 3-dimensional space. Achromatic stimuli are located along the direction α (1, 1,

1), with pure black at the point (0, 0, 0) (that is, α = 0), and increasingly lighter shades of gray

corresponding to larger α values. Saturated colors, instead, are located in the regions of space

that are as far from the (1, 1, 1) direction as possible. These regions coincide with the coordi-

nate planes, that is, at R = 0 (from blue, to cyan, to green), G = 0 (from red, to purple, to blue),

and B = 0 (from green, to yellow, to red). The RGB coordinates used in the game defined a

closed locus in color space. The colors on the locus were chosen with the criteria described in

Sect. 2.2.

Each pixel in the computer screen can be instructed to emit light with controlled RGB
intensities, by regulating the amount of energy emitted by the three corresponding LEDs. The

spectra of the LEDs in the computer screen used in the experiment (Dell Inspiron N5010) were

recorded with a spectrometer Ocean Optics USB controlled with the software Spectra Suite.
The spectral power densities are displayed in Fig 10A. The coordinates R, G and B could vary

between 0 and 255. The mapping between the RGB coordinates and the light intensity on the

computer screen was non-linear, as shown in Fig 10B. That is, when the screen represented the

coordinates (128, 128, 128), the measured spectrum differed from the one predicted by adding

the three spectra in Fig 10A. We therefore constructed a quadratic model that allowed us to

predict the spectrum generated by the screen as a 2nd order polynomial of the RGB coordi-

nates. The quadratic model was significantly more accurate than a linear model (compare Fig

10C and 10D).

The quadratic model provided an analytical expression of the spectrum for each RGB trio,

with which it became possible to calculate the amount of energy for each point in RGB space,

as illustrated in Fig 10E. Intensity grows fastest in the direction of G, at an intermediate speed

in the direction of R, and slowest in the direction of B. These features are not surprising, since

the human visual system is most sensitive to light intensity of intermediate wavelengths [53],

and screen technologies are designed to match the visual capacities of human observers.
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Fig 10. Calibration of the game. A: Spectra of the three LEDs of the computer screen, with coordinates (128, 0, 0)

(red), (0, 128, 0) (green) and (0, 0, 128) (blue). B: Measured (gray) and linearly predicted (black) spectra, for a gray

screen where RGB = (128, 128, 128). C: Black curves: measured spectra for RGB = (255, 0, 0), (0, 255, 0) and (0, 0, 255).

Light colors (pink, light green and cyan): spectra predicted with the linear model. Dark colors (red, green, blue):

predictions for the quadratic model. Inset: comparison between predicted and measured intensities for the two
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The quadratic nature of the mapping implied that the iso-intensity colors required by crite-

rion 1 of Sect. 2.2 formed an ellipsoid in the RGB space (Fig 10F). The colors of the game

belonged to the surface of the maximal ellipsoid that could be fit in the range of RGB values

emitted by the screen. To compensate for the screen’s intensity dependence on hue, the

selected ellipsoid had large B values, intermediate R, and comparatively small G values. To sat-

isfy the saturation condition imposed by criterion 2, the colors of the game were chosen as the

locus defining the outer borders of the chosen ellipsoid, that is, the locus lying on the coordi-

nate planes. The step between two consecutive colors was chosen according to criterion 3

defined above, giving rise to the curve in Fig 10G. The linear parametrization of the colors of

the scrolling bar are displayed in Fig 10H. Table 1 contains a the CIE xy coordinates or the tar-

get colors.

Since the locus of responded colors is closed, target and responded colors are labeled with

an angle in (−π, π]. All averages and standard deviations of colors, hence, are calculated using

circular statistics. That is, for a collection of angles r1, . . ., rn, the mean value is calculated as

�r ¼ ArcTanðSn=CnÞ with Sn ¼
1

n

Xn

i¼1

sinðrÞ; Cn ¼
1

n

Xn

i¼1

cosðrÞ: ð17Þ

In turn, the standard deviation is calculated as

� ¼ � 2 logð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2
n þ C2

n

p
Þ: ð18Þ

models. D: Square residuals of the two proposed models as a function of wavelength. Black: quadratic model. Gray:

linear model. E: Total light intensity as a function of the coordinates R, G and B. Intensity is represented by the volume

of each sphere. Each axis ranges between 0 an 255. F: Quadratic fit of a surface with constant intensity. Each axis ranges

between 0 and 255. G: Locus of colors used in the game. Continuous colored curve: the 743 colors swept by the

scrolling bar. Black points: the 32 target colors. H: Linear parametrization of the colors displayed in G.

https://doi.org/10.1371/journal.pone.0207992.g010

Table 1. CIE xyY coordinates of the tested target colors.

x y Y x y Y

0.640 0.330 8.293 0.582 0.298 8.332

0.502 0.254 8.250 0.427 0.212 8.147

0.362 0.177 8.041 0.310 0.148 7.937

0.268 0.125 7.833 0.233 0.106 7.721

0.207 0.091 7.600 0.188 0.081 7.454

0.174 0.073 7.246 0.162 0.067 6.889

0.151 0.060 5.394 0.151 0.064 6.384

0.154 0.074 7.997 0.160 0.096 9.736

0.167 0.120 10.955 0.175 0.151 12.056

0.195 0.221 12.365 0.201 0.244 13.997

0.219 0.309 14.808 0.242 0.390 15.527

0.268 0.485 16.121 0.294 0.577 16.450

0.308 0.593 18.203 0.342 0.567 19.117

0.390 0.529 18.420 0.443 0.487 17.066

0.503 0.438 15.237 0.566 0.389 13.051

0.616 0.349 10.767 0.638 0.331 8.577

https://doi.org/10.1371/journal.pone.0207992.t001
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4.2 Data collection

The game was played by 11 subjects, 5 females, 6 males, with ages between 23 and 43. They

had normal or corrected-to-normal visual acuity, and they all had normal color vision, as

assessed by the Farnsworth-Munsell 25-hue color vision test [54]. All players were native Span-

ish speakers, and were fluent in English. They all gave their written informed consent. The

experiment was approved by Insituto Balseiro’s ethics committee.

Subjects were not time-constrained to select the responded color, and they often explored

the bar at leisure. In all trials, the colors of the bar were displayed with the same ordering, with

the middle position of the cursor corresponding to cyan, and the two extremes to pinkish-red.

Although in principle this constancy could induce a motor bias, we observed that players,

before selecting the responded color, they typically oscillated back and forth around their zone

of interest, so that the final choice was approached sometimes from the left and sometimes

from the right. Due to the long duration of each game (� 15 minutes), some players could

not avoid an occasional distraction, which meant that they missed the target color completely.

On such occasions, they had no alternative but to respond a randomly selected color. Such

responses do not reflect the discriminability of remembered colors, since no color was remem-

bered. To discard such (rare) events, all responses that differed in more than 3 standard devia-

tions from the mean response of that player to each presented color were discarded, and not

used in the analysis. The total number of discarded responses was smaller than 0.3% of the

total number of responses.

4.3 Fitting the mean response error

In Eq 4, Δ(t) is defined in terms of 2m + 1 parameters s aj and bj, and m determines the maxi-

mal frequency of the expansion. The optimal fitting parameters aopt
i and bopt

i were obtained by

minimizing the sum of the squared differences

w2 ¼
X32

j¼1

�rðtjÞ � mðtjÞ
�ðtÞ= ffiffiffiffinj

p

" #2

; ð19Þ

where nj is the number of times that the player responded to the color tj. Under the assumption

that fluctuations are Gaussian, minimizing the value of χ2 is equivalent to a maximum-likeli-

hood estimation. The optimal coefficients were calculated for increasing m values, starting

from m = 2. The best model is the one with the optimal m value, and for that m, the coefficients

obtained from the maximum likelihood estimation. To select the optimal m value, we consid-

ered the fact that as m grew larger, the fitting accuracy of Eq 4 improved, but at the cost of

increasing the risk of overfitting. To evaluate the trade-off between these two factors, for each

m value we constructed the null hypothesis that the data were generated from a normal distri-

bution of mean μ(t) = t + Δ(t) and variance �2(t), where the shape of Δ(t) is defined by the fitted

parameters ai and bi that were optimal for the chosen m value. Under the null hypothesis, the

probability of obtaining a χ2 value at least as large as the one as the numerical value obtained

from Eq 19 is

pvalue ¼

Z þ1

w2

PdfðzÞ dz; ð20Þ

where Pdf(z) is the χ2 distribution with dg = 32 − (2m + 1) degrees of freedom. Hence, each fit-

ted coefficient in the expansion of Eq 4 subtracts one degree of freedom of the distribution

Pdf(z), thereby properly weighing both the improvement and the drawback of adding new

parameters. The null hypothesis is accepted, unless the Pvalue is too small to make the null
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hypothesis plausible. We defined the optimal m as the one yielding the smallest local maxi-

mum in the curve Pvalue(m) for which χ2� 32. The optimal m-values ranged from 4 to 12

(mean 8.2, SD 2.7).

To verify whether the recorded data allowed us to make reliable estimates of the fitted func-

tions Δ(t), two control experiments were performed. The first control (Fig 11A) determined

whether the 32 sampled colors sufficed to obtain a continuous curve Δ(t), without missing

some relevant structure in the intermediate, non-sampled colors.

One of the observers played the normal 32-color game, and also a modified version of the

game that tested 96 target colors, with fine graining in three regions of the chromatic locus: a

magenta zone, a blue zone and a yellow zone. The fitted error functions Δ(t) obtained with

coarse and fine sampling differed only little from one another, with very few discrepancies in

the green-yellow-red zone, and some more in the magenta-blue region. The difference

between the curves was in all cases of the same order of magnitude as the standard error of the

mean responded color, obtained from the trial-to-trial fluctuations. The second control tested

whether playing the game 10 times was sufficient to estimate Δ(t). One of the observers played

the game 26 times, and the derived curve Δ(t) was compared with the one obtained by using

Fig 11. Fitted errors Δ(t) in two control experiments. A: Fitted error obtained for an observer that played the normal

32-color game (gray data points, black fitted curve), and a modified 96-color game (cyan data points, blue fitted curve).

Both games were played 10 times. B: Fitted error obtained for an observer that played the normal 32-color game 10

times (gray data points, black fitted curve), and 26 times (cyan data points, blue fitted curve).

https://doi.org/10.1371/journal.pone.0207992.g011
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only the first 10 trials (Fig 11B). The derived fits were similar, and their difference was always

of the same order of magnitude as the expected error of the mean response calculated with 10

trials.

4.4 Significance of attractors and repulsors

An attractor (repulsor) is defined as a target color t for which Δ(t) = 0, and dΔ(t)/dt< 0 (dΔ
(t)/dt> 0). However, the fitted error Δ(t) may change sign due to the fact that the amount of

recorded data is limited. Due to chance alone, fluctuations in a certain region of target colors

may well have a different sign from fluctuations in some other region. Since we associate a cog-

nitive function to attractor and repulsor colors, it is important that a given target color t only

be considered an attractor or a repulsor if we are confident that the conditions Δ(t) = 0 and dΔ
(t)/dt≶ 0 hold beyond stochastic fluctuations. To assess whether such is the case, we con-

structed a significance criterion for identifying attractor and repulsor colors, by evaluating the

degree of certainty in the fit Δ(t), and the degree up to which the condition dΔ(t)/dt≶ 0 holds

not only for the optimal fit, but also, for a whole family of fitting functions that, though not

optimal, are still in some sense near the optimal fit.

Maximum likelihood estimation produces the optimal parameters aopt
i and bopt

i , as well

as their expected estimation errors. Since the parameters form a (2m + 1)-dimensional vec-

tor, the errors are captured by a (2m + 1) × (2m + 1) covariance matrix C. The diagonal

terms Cii are the expected square errors of the fitted parameters, and the non-diagonal

terms, their mean-subtracted correlations. We can therefore assume that the vector of coeffi-

cients q = (b0, a1, b1, . . ., am, bm) is governed by a multivariate Gaussian distribution of

mean q0 ¼ ðb
opt
0 ; aopt

1 ; bopt
1 ; . . . ; aopt

m ; b
opt
m Þ and covariance matrix C. In other words,

ProbðqÞ ¼
exp½� ðq � q0ÞC� 1ðq � q0Þ

t
=2�

ð2pÞ
ð2mþ1Þ=2

ffiffiffiffiffiffiffiffiffiffiffi
detC
p ; ð21Þ

where the supra-script t indicates vector transposition. Assessing whether the condition dΔ
(t)/dt ≶ 0 holds with a certain degree of significance amounts to evaluating the fraction of

models (weighted with the distribution of Eq 21) for which the condition is verified. A highly

significant attractor is one for which a large fraction of models fulfill the condition. Here we

accepted a target color t as a significant attractor only if the set of suboptimal fits Δ(t) that

captured 95% of the probability of the distribution of Eq 21 still verified the condition dΔ(t)/

dt ≶ 0. We also verified that with this criterion, simulated responses obtained from a fic-

tional player with flat Δ(t), and who played the game the same number of times as the real

players, never gave rise to significant attractors or repulsors.

Supporting information

S1 File. Experimental data. Raw list of responses, trial by trial, of the 11 sampled players to

each of the 32 target colors, in xlsx format.

(XLSX)
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