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A link prediction method 
for MANETs based on fast 
spatio‑temporal feature extraction 
and LSGANs
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Link prediction aims to learn meaningful features from networks to predict the possibility of topology. 
Most of the existing research on temporal link prediction is mainly aimed at networks with slow 
topology changes. They ignore the information of topology interval and link duration. This paper 
proposes a link prediction model named FastSTLSG. It can automatically analyze the features of the 
topology in a unified framework to effectively capture the spatio-temporal correlation of Mobile Ad 
Hoc Networks. First, we regard the changing topology as a chaotic system, transform it into a series 
of static snapshots based on the autocorrelation function; Next, the fast graph convolutional network 
efficiently analyses the topological relationships between nodes and reduces the computational 
complexity by importance sampling. Then, the gate recurrent unit captures the temporal correlation 
between snapshots. Finally, the fully connected layer reconstructs the topological structure. In 
addition, we take full advantage of least squares generative adversarial networks to further improve 
the performance of generator to obtain high-quality link prediction results. Extensive experiments on 
different datasets show that our FastSTLSG model obtains higher prediction accuracy compared with 
existing baseline models.

Mobile Ad Hoc Networks (MANETs), as centerless, self-organizing, multi-hop wireless networks, consist of a 
set of mobile terminals carrying wireless transceiver devices1. Different from conventional networks, people 
can quickly establish the required mobile communication networks at any moment and place in the absence of 
existing network communication hardware. MANETs have been widely used in many fields, involving rescue 
and disaster relief, wireless medical monitoring systems, mobile office meetings and other fields2–4.

The movement of devices in MANETs leads to the generation or disappearance of links between nodes. The 
link relationships between devices change over time, causing the topology of the networks to evolve in con-
tinuous time steps5. Link prediction in MANETs aims to use the historical time-series topology to predict the 
future network structure. It allows us to learn appropriate MANETs structural evolution mechanisms, not only 
to gain insight into the connections between network topologies and functions, but also to analyze and control 
networks more precisely6,7.

Currently, existing link prediction methods focus on static networks. The similarity indices of nodes consider 
that the probability of link existence is positively correlated with the similarity of nodes. Common Neighbors 
(CN), Jaccard (JC), Salton, Admic Adar (AA), and Resource Allocation (RA)8,9 are all typical indices by com-
paring similarity of nodes in static networks. Further, Katz, Local Path (LP)10, and LHZ-II11 are based on path 
similarity, i.e., multi-order domain similarity of nodes, as prediction indices. The above methods have low com-
putational complexity but cannot analysis the complex nonlinear features of the topological structure. To solve 
this problem, network embedding methods such as Node2vec12 and GraphWave13 have been proposed, which 
aim to convert the nodes into low-dimensional representations and apply the feature representations to various 
graph tasks. However, these link prediction models which ignore temporal information are still not suitable 
for prediction of time-series networks14,15. In recent years, several researchers have proposed models to predict 
future links based on historical topological data. Li16 proposes SLIDE which aims to maintain and update a low-
rank sketch matrix to summarize historical data and use the sketch matrix to dynamically infer missing links. 
Moreover, with the development of deep learning, some Encoder to Decoder frameworks have been applied to 
temporal prediction of dynamic networks, such as E-LSTM-D6, DDNE17, FastGCRNN18 and TGNs19.
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Based on GNN and RNN, researchers have proposed novel temporal link prediction models named DGFT20 
and GGAN21, which have achieved excellent performance. However, these models still have the following 
shortcomings.

(1)	 Most of the existing research on temporal link prediction is mainly aimed at networks with slow topology 
changes, such as social networks. MANETs, as networks with rapid topology changes. The ordinary models 
ignore the deep potential change factors of MANETs, while lacking the ability to capture both nonlinear 
spatial and temporal features efficiently. In addition, the above models do not study the characteristics of 
MANETs. The training process is inefficient and takes a long time.

(2)	 Lack of the appropriate interval between each snapshot. Considering the rapid change of MANETs, deter-
mining a reasonable time interval for static snapshots is crucial to the accuracy of prediction. The above 
models simply take the changed topology as the input of deep learning frameworks. In Table 1, the topol-
ogy of a dynamic network is named A in 1 s and 2 s. The network changes in 3 s, 4 s, 5 s, 6 s, 8 s, 9 s, and 
the topology is named B, C, D, E, F, H respectively. The inputs of the ordinary models are A, B, C, D, E, F, 
H. This will lead to the following negative effects: (i) The difference between each snapshot is very small 
because only one link has changed. When analyzing the rapidly changing large-scale MANETs, it will bring 
a large amount of redundant data, which is not conducive to the training of the model. (ii) The interval 
time of each snapshot is different. In existing models, each snapshot is simply regarded as equally interval 
data, ignoring the different link duration between them.

(3)	 Lack of prediction about link duration. The existing methods only predict the existence or non-existence 
of links at the future moment. In practical, the link duration in MANETs contains important information 
about the node behaviors and network state at the future time. The existing models regard continuous 
snapshots as equal interval data. Although we can predict the network as a certain topology, we cannot 
predict the duration of this topology, which limits the application of the models.

(4)	 Most deep learning-based models utilize network embedding to mine features and capture the spatio-
temporal dependencies. However, because of the sparsity of the network topology, it is difficult to accurately 
recover the original topology from low dimensional dense representation data17. Based on the embedding 
data, how to enhance the ability of the model to reconstruct network snapshots is one of the problems we 
need to address.

To solve the above problems, we propose a link prediction model for MANETs called FastSTLSG, which is 
based on fast spatio-temporal feature extraction and LSGANs. We regard MANETs as a kind of chaotic system, 
refer to the phase space reconstruction technology22 of coordinate delay in chaotic time series theory, use autocor-
relation function to determine an appropriate interval of snapshots, and take the device connection duration as 
the link weight. In Table 1, we slice the MANETs into multiple fixed interval snapshots (G1, G2, G3, G4, G5), and 
take these five snapshots as the inputs of the proposed model. On this basis, Fast Graph Convolutional Networks 
(FastGCN)23 and stacked Gated Recurrent Unit (GRU)24 are used to efficiently process the high-dimensional 
and nonlinear historical structure data of MANETs. To improve the performance of generator, we construct 
a generator and a discriminator based on Least Square Generative Adversarial Networks (LSGANs)25, obtain 
high-quality generator and accurate prediction results of MANETs by adversarial training. In addition, we also 
construct penalty terms to guide the model to generate existing links rather than nonexistent ones in the corre-
sponding position of the adjacency matrix, to avoid the negative impact of topology sparsity. In short, the main 
contributions of this paper are as follows.

(1)	 Adaptive slicing time calculation. We are the first to use chaotic time series theory to determine the slicing 
time of MANETs and use the link duration within different snapshots as link weights. Our model has the 
following advantages. (i) It reduces redundant data and compresses input data. More than one link may 
change between adjacent snapshots. The reduction of redundant data will prevent the model from extract-
ing useless information. The data compression can make the model better adapt to the rapid changes of 
topology. (ii) The time interval between adjacent snapshots is equal, which avoids the negative impact of 
different link connection duration on graph feature extraction. (iii) Based on the slicing time, we can predict 
the connection duration of each link in the next time interval.

(2)	 High-quality generator. FastGCN and GRU are used to capture the consistency of spatio-temporal features, 
while considering the network structure and evolution pattern of each time. In addition, we improve the 
prediction performance of the model by exploiting the adversarial training based on LSGANs. Besides 
adversarial training, we also use reconstructing loss and penalty matrix to balance the negative effect of 
sparsity, and finally generate high-quality prediction results based on historical structure data of MANETs.

Table 1.   The input of different temporal prediction models.

Time 1 s 2 s 3 s 4 s 5 s 6 s 7 s 8 s 9 s

Topology A A B C D E E F H

Input

Existing model A B C D E F H

Our model G1 G2 G3
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(3)	 Better performance than previous works. We evaluate the proposed model FastSTLSG on real MANETs 
datasets and compare it with several existing baseline methods. The results show that our model outper-
forms all competitors.

Related works
Link prediction for MANETs.  Figure  1 represents a brief model of MANETs in which different nodes 
move in the direction of arrows at different times, resulting in changes in the topological structure1–4.

We define MANETs as a series of network snapshots G = {G1,G2 · · · ,Gs}, i ∈ {1, 2, . . . , s} , where i represents 
the serial number of the snapshots and the i-th network snapshot Gi is represented by Gi= (V ,Ei,Wi) . The all 
snapshots have the same node set V, Ei and Wi are link set and weight set, respectively. Considering that the 
adjacency matrix A can completely describe the topological structure of the snapshot, a series of Ai are used as 
input and output data of the prediction model FastsSTLSG.

In static networks, link prediction aims to analyze the links that exist but have not yet been discovered based 
on the observed topology26. Approximately, the link prediction in MANETs uses the information extracted from 
the previous network topology to reveal evolution pattern of networks27. In short, the purpose of link prediction 
for MANETs is to predict the links that appear or disappear in the next time stage, that is, the network snapshot 
Gs + 1 , based on the previously observed networks {G1,G2, · · · ,Gs} of length s.

GCN.  Convolutional Neural Network (CCN) has strong feature extraction and integration capabilities when 
processing image data, thanks to the parameter sharing and weighted averaging of convolution kernels28. How-
ever, the network topology belongs to non-Euclidean data, that is, the number of neighbor nodes of each node in 
graph is not necessarily the same. To solve this problem, researchers have exquisitely designed a variant of CNN 
to extract features from non-Euclidean structured data, named GCN, which can operate directly on graphs29,30.

Suppose there is a static network G(V ,E) composed of |V | nodes, and the |V | × |V | dimensional adjacency 
matrix A is composed of the link relationships between |V | nodes. If each node has |M| dimensional features, the 
feature matrix Z is |V | × |M| dimensional. The A and Z are the input data of the GCN, the convolution process 
between layers as follows:

where Ã = A+ I , I is unit matrix, degree matrix D̃ =
∑

u Ãuv , H is the feature matrix in each layer, W(l) rep-
resents the weight matrix to be trained in the l-th layer, σ is a nonlinear activation function.

GCN has achieved good performance in many graph tasks, but it has poor scalability because GCN is a trans-
ductive learning method. In MANETs, the generation of new nodes and the change of links make it difficult to 
extend GCN to networks with unknown topological structures. When using GCN to train some networks with 
high density, neighbor extension of an exceedingly small number of nodes will contain a large portion of the full 
graph in a noticeably short time, which can bring a huge computation cost. In fact, the ordinary GCN cannot 
satisfy the application in the fast-changing MANETs.

Methodology
In this section, we introduce in detail the link prediction model for MANETs named FastSLSG proposed in 
this paper. The framework of FastSTLSG is shown in Fig. 2, which is mainly divided into three units: (1) Time 
Slice; (2) Generator (including FastGCN, GRU, Desne Layer); (3) Discriminator. The following describes our 
motivation for adopting each unit.

Specifically, Time slice unit is placed at the input of the model to convert the MANETs topological data into 
a series of continuous static snapshots by a reasonable timestamp. It can compress data, reduce data redundancy, 
and improve the ability of information extraction. Based on the snapshots with the same interval, we can esti-
mate the duration of each link in the future. In Generator, FastGCN extracts the spatial features of each static 
snapshot and feeds the results of network embedding into GRU to extract the network temporal features, to gain 
the continuous evolution law of MANETs. Dense Layer is used as a decoder to transform the extracted features 
back to the original space and generate prediction results. Considering the sparsity of the network, that is, the 
linked node pairs in the network are far smaller than the non-linked node pairs, which has a negative impact on 
the recovery of the topology, we use LSGANs to improve the generalization and generation ability of the model. 
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Figure 1.   A brief model of MANETs.
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In the process of model training, we use the observed network structures as the inputs of Discriminator to guide 
Generator to generate high-quality prediction results. In addition, the adoption of LSGANs is also due to the 
use of FastGCN. Based on node sampling, FastGCN greatly improves the training speed, but it will lead to the 
loss of information of some nodes. Therefore, we use LSGANs to improve the performance of the model. In the 
following, we describe each unit separately in detail.

Time slice unit.  The Time slice unit draws on the analysis method for time series data and divides the origi-
nal continuously changing MANETs topological structure into a series of static snapshots through time slicing, 
which is used as the input data of the FastSTLSG for spatial and temporal feature extraction.

When the interval between consecutive slices is t, the number of network snapshots is c = T/t . At a slicing 
time ti ∈ (t1, t2, · · · , tc) , the elements timeiuv in the adjacency matrix Ai of snapshot Gi as link weights, represent 
the link duration of nodes u and v from the previous timestamp ti to the next timestamp ti + 1.

We partition the MANETs topology into c discrete static weighted snapshots using the slicing time t. Obvi-
ously, the value of t directly affects the accuracy of the model. If t is too short, the input data is highly correlated, 
and the model tends to be insensitive to relatively independent new features, and prediction results are more 
biased to the data derived from these redundant features; if t is too long, input data contain too many new fea-
tures, it is difficult for the model to extract the effective features from the large number of new features, resulting 
in low prediction accuracy.

In this paper, the dynamical behavior of the nodes in MANETs is regarded as a chaotic system31. The auto-
correlation function method is used to determine a reasonable slice time length t by borrowing the coordinate 
delay phase space reconstruction technique in chaotic time series theory.

where R(t) is the correlation of each network snapshot when the slicing time is t, c represents the number of 
static snapshots, Ai is the adjacency matrix of the i-th snapshot, Ai is the mean value of the elements in corre-
sponding adjacency matrix Ai . For most self-learning models, the lower the correlation between the input data, 
the higher the independence of the data features. Related studies have shown that it is usually more appropri-
ate to determine the value of R(t) when it drops to 1/e for the first time in practical applications22,32, which is 
the basis for selecting the optimal slice time in this paper. After determining the appropriate t, the MANETs is 
transformed into c weighted network snapshots. We use a time window of length s to move smoothly over the 
snapshot sequence to obtain a series of consecutive snapshot sets of length s. So far, the subsequent training 
task of the FastSTLSG model is to learn a function that maps the input sequence to Gt after given a sequence of 
snapshots {Gt − s,Gt − s + 1, · · · ,Gt − 2,Gt − 1} of length s.
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Figure 2.   The framework of FastSTLSG.
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FastGCN unit.  In Section “GCN”, we have introduced the basic idea of GCN, which designs a subtle way to 
extract features from graph data and obtains embedding representations of the networks. Considering the draw-
backs of poor scalability and high complexity of neighbor computation in GCN, we adopt FastGCN for spatial 
feature extraction of network snapshots. In FastGCN, the nodes in the snapshot are considered as independent 
identically distributed samples based on a probability distribution, and the convolution operation and loss func-
tion in GCN are transformed into an integral calculation of the embedding function based on a certain probabil-
ity measure. The graph convolution operations and loss functions in the form of integrals can be approximated 
using Monte Carlo methods, and thus the nodes can be selected in batches for model training. Like inductive 
learning, the structure of the graph can be separated when the FastSTLSG is trained and predicted. The con-
nection state of nodes can change, which effectively improves the generalization ability and scalability of the 
model in MANETs. In addition, compared with embedding methods such as GCN and GraphSAGE33, FastGCN 
can reduce the time complexity and improve the efficiency of the algorithm by using Monte Carlo method to 
approximate the computation of the convolution and loss function by node sampling. In FastGCN, the simplest 
way to sample nodes is to use a uniform distribution for sampling. It can also make selected nodes close to the 
real distribution through importance sampling, which can reduce the error caused by uniform sampling and 
improve the performance of the model. In summary, FastGCN can effectively solve the defects of ordinary GCN 
in spatial features extraction for large-scale and fast-changing MANETs and make the proposed model Fast-
STLSG more suitable for the practical application.

After slicing the network and obtaining a snapshot set {Gt − s,Gt − s + 1, · · · ,Gt − 2,Gt − 1} , s snapshots 
are fed into the FastGCN unit for spatial feature extraction, and the graph convolution operation of FastGCN is 
described below. If there exists a static snapshot G with weighted matrix Z in the snapshot sequence, v is a node 
in G. The convolution operation for G in FastGCN can be regarded as the integral calculation of the embedding 
function about node v and all other nodes in the upper layer, as shown in Eq. (3).

where v and u are nodes in snapshots, which are treated as independent random variables with the same prob-
ability measure; Â(v, u) is the element of the adjacency matrix Â at (v, u) ; W(l) is a set contained the parameters 
to be trained in l-th layer; h(l)(u) is the embedding result of node u in l-th layer, which is calculated from the 
integral transformation of the embedding functions of all nodes in the upper layer. In particular,h(0)(v) , the data 
of input layer, is the representation of the corresponding nodes on the characteristic matrix.

The convolution operation of graph is expressed in the form of integral function, which makes Eq. (3) to 
be approximately calculated by Monte Carlo method. In the l-th layer, the nodes are sampled independently 
and uniformly with probability p to obtain tl sampling nodes u(l)1 , · · · , u

(l)
tl

∼ P . Equation (3) can be expressed 
approximately as:

We uniformly sample nodes at each layer and finally get nodes u(l)t , i = 1, · · · , tl , l = 0, . . . ,M − 1 . Uniformly 
sampling nodes in each l-row of  H(l) can be recursively represented as:

Figures 3 and 4 show the comparison between GCN and FastGCN.

(3)
h̃(l+1)(v) =

∫
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Figure 3.   Convolution operation of node a, c, e in GCN.
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In GCN, the spatial feature of each node is obtained by the aggregation of feature from all nodes in the upper 
layer. The computational complexity of GCN is o(n2) ; In FastGCN, the large graph is divided into several small 
graphs through batch, and only tl nodes are required to sample for convolution operation. The computational 
complexity of FastGCN is o(n× tl) . Because of the sparsity of the network, tl ≪ n , the training efficiency of 
FastGCN is greatly improved compared with GCN.

To further improve the ability of spatial feature extraction, we use importance sampling instead of uniform 
sampling in FastGCN, that is, each node is sampled by each probability distribution Q, which effectively reduces 
the sample variance and makes the distribution of sampled nodes closer to the real network structure. The Prob-
ability Mass Function (PMF) of each node in the network is shown in Eq. (6).

From Eq. (6), we can see that the PMF does not depend on parameter l, i.e., the sampling distribution is the 
same in all layers, and there is no need to update the sampling distribution function in real time as the training 
proceeds. Update Eqs. (5)–(7) after sampling u1, . . . , ut nodes according to this distribution.

In this paper, we use two layers for spatial feature extraction. The initial data H(0) is the characteristic matrix 
Z that represents the link weights of the snapshot. In summary, FastGCN unit extracts spatial features based on 
adjacency matrixes {At − s,At − s + 1, . . . ,At − 2,At − 1} of the input MANETs snapshots and the correspond-
ing feature matrixes {Zt − s,Zt − s + 1, . . . ,Zt − 2,Zt − 1} , and then outputs a series of network embedding 
results {Xt − s,Xt − s + 1, . . . ,Xt − 2,Xt − 1}.

GRU unit.  After obtaining a series of the embedding results of snapshots series, capturing the long-term 
temporal correlation of each snapshot in time sequence is a key issue to predict the future structure of MANETs. 
RNNs can effectively process time series data, analyze the temporal characteristics of sequence data by using 
the temporal dependence of historical data, and complete the prediction of current and future moments. When 
the input data is a long sequence, the upper layers in RNN will be unable to learn the sequence features because 
of gradient disappearance. As a result, RNN only has the ability of short-term learning, it is difficult to use the 
previous historical information when handle the later data of the sequence. To solve the problem of short-term 
memory, Long Short-Term Memory (LSTM) network elaborately designs the gates to selectively change the flow 
of information in the historical sequence, decides whether the information in the historical sequence needs to be 
retained or discarded, which can keep the important features in front34. As a variant of LSTM, GRU has simpler 
structure and fewer training parameters, and can also avoid the gradient disappearance while retaining long-
term sequence information35. In order to improve the training efficiency of the FastSTLSG and better apply it to 
the fast-changing MANETs, GRU is used in this paper to extract the temporal features of the network snapshot 
sequences.

In FastSTLSG, the embedding results after FastGCN unit {Xt − s,Xt − s + 1, . . . ,Xt − 2,Xt − 1} are input 
to the GRU unit sequentially to capture the dynamic evolution of the MANETs in time sequence. The GRU can 
be described as a packaging module that repeatedly combines multiple multiplication gate cells (unit status, 
update gate, reset gate). Taking a time step t as an example, the inputs of the GRU unit are the input vector xt 
at the current moment t and the state vector ht − 1 at the previous moment t − 1 . The statuses of gates in GRU 
are shown below.
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Figure 4.   A batch convolution operation of node a, c, e in FastGCN with sampling node b, c, d.
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where, zt and rt represent the update gates and reset gates, respectively. zt is used to control how much informa-
tion from the previous state is brought into the current state. The larger the value of zt , the more information 
from the previous state is brought in. rt is used to control how much information from the previous state is 
written to the current candidate set h̃t . The smaller the value of zt , the less information from the previous state 
is added. Wz , Wr , Wh are the parameters that GRU needs to train. [·] means two vectors are concatenated and 
∗ means the product of matrices.

We choose GRU as the basic unit because it has fast convergence speed and can improve the training speed. A 
GRU needs to maintain three parameters, corresponding to update gates, reset gates and candidate sets respec-
tively. In FastSTLSG, the output size and hidden size are equal. Therefore, the complexity of the GRU unit is 
l × 3× (ns ×ms + ns2 + ns) , where l  is the number of GRU in the GRU unit, ns is the hidden size, ms is the 
input size.

To sum up, in FastSTLSG, the inputs of GRU unit are the embedding results of historical network snapshots 
{Xt − s,Xt − s + 1, . . . ,Xt − 2,Xt − 1} , and the output is the hidden layer of the last cell in GRU. Feed ht − 1 
to the fully connected layer, train and generate the predicted MANETs structure in the next time.

LSGANs unit.  In this paper, we employ LSGANs to further improve the ability of feature extraction and data 
generation. Generative Adversarial Networks (GAN), a generative model that has received much attention in 
recent years, have achieved widespread success in the fields of computer vision, image recognition, and natural 
language processing.

The core idea of GAN is derived from the Nash equilibrium from game theory, mainly composed of Genera-
tor (G) and Discriminator (D). The goal of G is to try to learn the real data distribution and generate fake data 
G(z) . The input of D is real data and fake data G(z) , and the output of D is a probability value that D identifies the 
input is from real data. The D wants to correctly distinguish whether the input data is from real data or from G. 
Meanwhile, the output of D will be fed back to G to guide G’s training. In the ideal case where the model reaches 
optimality, D is unable to distinguish the source of the input data. In the process of training, G and D will each 
update their own parameters to minimize the loss function. Through continuous iterative optimization, a Nash 
equilibrium state in finally reached, when the model is optimal. The objective function of GAN is defined as:

where x is the input data and z represents the noise generated based on the probability distribution. However, 
the standard GAN has the problem of gradient disappearance. The training process is unstable, which leads to 
the unsatisfactory generation results. The reason for the problem is that although correct classification results 
can be obtained using cross-entropy, but some data that are classified as true and far away from the real samples 
will not be used to iterate anymore because they have successfully cheated D. It leads to saturation state easily 
because of gradient dispersion in G’s updating. LSGANs use least-squares loss to replace the cross-entropy loss 
in standard GAN, construct Pearson χ2 divergence instead of Jensen-Shannon (JS) divergence. It can finally 
construct a stable, efficient, and more powerful adversarial network with different distance metrics36. The specific 
loss function and training procedure of LSGANs are described in Section “Loss function”.

In FastSTLSG, we consider the adversarial between generator and discriminator as a minimax game in 
LSGANs. The input of G is a sequence of historical network snapshots, and the output is the predicted future 
network structure. D uses the real future network structure as a condition to discriminate whether the generated 
prediction results come from G or not, until the training is stable. When the prediction results generated by G 
can deceive D, it is considered that G is high quality to complete the link prediction for MANETs.

Generator.  As shown in Fig. 2, the generator in FastSTLSG is composed of FastGCN, GRU and Dense Layer unit. 
The FastGCN unit extracts the spatial feature of the historical network snapshots, and its inputs are a adjacency 
matrices {At − s,At − s + 1, . . . ,At − 2,At − 1} and feature matrices {Zt − s,Zt − s + 1, . . . ,Zt − 2,Zt − 1} , 
its outputs are the embedding results {Xt − s,Xt − s + 1, . . . ,Xt − 2,Xt − 1} . The embedding results are trans-
formed into vectors and then input into GRU unit. The GRU unit is used to extract the temporal feature of the 
historical snapshots by using the powerful sequential data extraction ability. The outputs of GRU unit are the 
state vectors of hidden layer {ht − s, ht − s + 1, . . . , ht − 2, ht − 1} . The vector in the last time stage ht − 1 is 
input to Dense Layer. The output of Dense Layer is Ãt , the prediction result for MANETs in time t. To sum up, 
the input and output of G can be simply expressed as:

where At−s
t−1 = {At − s,At − s + 1, . . . ,At − 2,At − 1} is the historical MANETs structure from t − s to t − 1

;Ãt is the predicted MANETs structure at moment t by FastSTLSG.

Discriminator.  The discriminator D is used to discriminate whether the input prediction network is generated 
by G. D consists of a Dense Layer and an activation function. During model training, the output of G Ãt and the 
real network adjacency matrix At are alternately fed into D. {Ãt,At} are used as the inputs of the Dense Layer for 
training, and the output is calculated through the activation function to complete the discrimination. It is worth 
noting that the input of Dense Layer is in the form of vector, but {Ãt,At} are V × V  dimensional matrixes. It 
needs to transform {Ãt,At} into vectors and fed them into Dense Layer. In summary, the input and output of D 
can be simply expressed as:

(9)min
G

max
D

(Ex ∼ pdata(x)[logD(x)])+ Ez ∼ p(z)[log(1− D(G(z)))])

(10)Ãt = G(At−s
t−1,Z)
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where {Ãt,At} , {W1, b1} , {W2, b2} are the weight parameters and bias parameters to be trained in the dense 
layer and the output layer respectively.

The computational complexity of LSGANs unit is introduced below. The computational complexity of 
LSGANs is related to the network size, which is o(nA2) , where nA is the number of all elements in matrix At.

Loss function.  In the process of training the G and D, one unit is fixed, and the other unit’s parameters are 
updated by alternating iterations. The loss function of FastSTLSG training is divided into adversarial loss and 
reconstruction loss, which are described below.

Adversarial loss.  The adversarial loss is the loss function of G and D in the adversarial process. LSGANs use 
least squares loss function to penalize samples which are discriminated to be true and far away from the deci-
sion boundary. It can drag the false samples far away from the decision boundary into the decision boundary, to 
improve the quality of the G. The adversarial loss function is expressed as follows:

where pdata(A) is the distribution of snapshots; At−s
t−1 represents the snapshots from t − s to t − 1 ; At represents 

the snapshots at t; Ãt = G(At−s
t−1,Z) represents the prediction result of the MANETs; the constants a and b are 

the encoding of the real network data and the topology generated by the G, respectively; c is the encoding set 
by the D to treat the network structure generated by the G as the real network. When b− d = 1 and b− a = 2 , 
the objective function is equivalent to Pearson χ2 divergence. In FastSTLSG, a = −1 , b = 1 , d = 0 . Finally, the 
adversarial loss of the FastSTLSG is as follows:

In FastSTLSG, G wants the prediction result to be as close to the real result as possible, and D wants the dis-
criminative power to be stronger, so the adversarial loss function L(G) , L(D) needs to be minimized.

Reconstruction loss.  We need the prediction result Ãt to be as close as possible to the actual network At . To 
improve the accuracy of the prediction, we use Mean Squared Error (MSE) to measure the similarity between Ãt 
and At . The reconstruction loss is as follows.

However, due to the sparsity of the network, that is, the zero elements in the adjacency matrix of the network 
are much larger than the non-zero elements, which will lead to G more inclined to generate many zero elements, 
making the loss function unable to converge or even over fit. To solve the problem of sparsity in the network, we 
use penalty matrix P to impose greater penalty on the non-zero elements in At . The improved reconstruction 
loss is as follows:

where ⊙ is Hadamard Product. If the element in At satisfies At(u, v) = 0 , then P(u, v) = 1 , otherwise 
P(u, v) = β > 1 . By setting P to impose more penalties on the non-zero elements in At , and At is guided to 
not generate zero elements in the corresponding positions in Ãt as much as possible. We also further prevent 
overfitting by introducing L2 regularization, which punishes the squared terms of all parameters and imposes 
a greater penalty on large weights.

where WG represents the matrix containing all parameters to be trained in G; � is the coefficient that controls 
the penalty effect of the L2 regular term. In summary, combined with Eqs. (13), (15), and (16), the overall loss 
function of FastSTLSG is shown in Eq. (17).

In the model training, the Adam optimizer is used to alternately update the parameters matrix of G and D, 
that is, WG and WD . The iterations are terminated after G and D reach equilibrium. After the training is com-
pleted, the historical MANETs topology can be input into G to obtain the prediction of the MANETs at future 

(11)D(A) = σ((AW1+ b1)W2+ b2)

(12)

L(G) =
1

2
EAt−s

t−1 ∼ pdata(A),Z ∼ p(Z)[(D(G(At−s
t−1,Z))− d)2]

L(D) =
1

2
EAt ∼ pdata(A)[(D(At)− b)2] +

1

2
EAt−s

t−1 ∼ pdata(A),Z ∼ p(Z)[(D(G(At−s
t−1,Z))− a2]

(13)

L(G) =
1

2
EAt−s

t−1 ∼ pdata(A),Z ∼ p(Z)[(D(G(At−s
t−1,Z)))

2]

L(D) =
1

2
EAt ∼ pdata(A)[(D(At)− 1)2] +

1

2
EAt−s

t−1 ∼ pdata(A),Z ∼ p(Z)[(D(G(At−s
t−1,Z))+ 1)2]

(14)Lrecons =
∥∥(At − Ãt)

∥∥2
F

(15)Lrecons =
∥∥(At − Ãt)⊙ P

∥∥2
F

(16)Lreg =
�

2
�WG�22

(17)Ltotal = min
G

min
D

L(G,D)+ αLrecons+ Lreg
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moments, thus achieving link prediction for MANETs. The pesudocode of the FastSTLSG proposed in this paper 
is shown in Table 2.

In addition, we declare that in this paper, all methods are carried out in accordance with relevant guidelines 
and regulations.

Experiment
The proposed FastSTLSG then is evaluated on four bench-mark datasets, compared with eight baseline methods.

Datasets. 

(1)	 CONTACT (http://​konect.​cc/​files/​downl​oad.​tsv.​conta​ct.​tar.​bz2): This dataset records an undirected human 
contact network. The trace records all contact information and data transfer between a group of users who 
carry wireless devices at various locations. In the dataset, a node represents a user; an edge between two 
users means that there is a contact between two proximate devices.

(2)	 HYCCUPS (https://​crawd​ad.​org/​upb/​hyccu​ps/​20161​017): This dataset is collected from trace of wireless 
contacts and users’ connections at the Politehnica University of Bucharest in the period from March to May 
2012. 72 participants used an Android application named HYCCUPS Tracer to collect mobile interaction 
information in the background. It records sensor data and connectivity information between smart devices 
and other wireless access devices based on AllJoyn framework.

(3)	 ASTURIESER (https://​crawd​ad.​org//​downl​oad/​oviedo/​astur​ies-​er/​astur​ies-​er-​1year-​mobil​ity.​csv.​gz): The 
dataset comprises mobility traces and connectivity information of around 229 vehicles and helicopters in 
the regional Fire Department of Asturias, Spain, collected over one year. The datacenter collects devices 
current positions, status, contacts, etc., every 30 s. The threshold of communication distance between dif-
ferent devices is 10 m, 50 m or 200 m. Proximate nodes can exchange the information when the distance 
between them is below the threshold.

(4)	 ROTAXI (https://​crawd​ad.​org//​downl​oad/​roma/​taxi/​taxi_​febru​ary.​tar.​gz): This dataset is derived from 
the real motion traces from approximately 320 taxis with GPS devices in Roma, Italy, for the duration of 
one month. Each taxi driver uses the location manager software based on GPS to retrieve longitude and 
latitude coordinates of current location periodically. The dataset also records time duration, speed, status, 
and contact information among devices.

Table 2.   Algorithm FastSTLSG process.

http://konect.cc/files/download.tsv.contact.tar.bz2
https://crawdad.org/upb/hyccups/20161017
https://crawdad.org//download/oviedo/asturies-er/asturies-er-1year-mobility.csv.gz
https://crawdad.org//download/roma/taxi/taxi_february.tar.gz
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The experiment is carried out with the above networks. The basic details of four datasets are shown in Table 3.

Baseline methods.  To evaluate the performance of the proposed FastSTLSG, we carry out extensive exper-
iments and compare it with several widely used baseline methods. In particular, the baselines are shown as 
follows.

(1)	 Common Neighbors (CN)37: CN is one of the most widely used metrics to evaluate the performance of 
link prediction. The probability of two nodes to generate links in the future is positively correlated with 
the number of common neighbors they had in the past.

(2)	 Deep Dynamic Network Embedding (DDNE)17: Like autoencoder, DDNE uses an RNN and interaction 
proximity. It can capture the nonlinear transformation characteristics of networks and analyze the interac-
tion information of nodes in an evolution period.

(3)	 Node2Vec38: As an embedding method, Node2Vec uses random walk sampling to get the combination of 
nodes, and then mines the connection relationship of nodes to obtain the low dimensional vector repre-
sentation. The existence probability of links is related to the similarity of vectors.

(4)	 Temporal Matrix Factorization (TMF)39: TMF can explicitly transform the network into a function with 
time parameters based on matrix factorization. It has great advantages in dealing with dynamic network 
timing tasks, such as predicting the evolution of networks with time series.

(5)	 E-LSTM-D6: E-LSTM-D is a novel deep learning model for dynamic network, which is composed of an 
encoder, LSTMs, and a decoder. It can learn both structure and time characteristics of networks with dif-
ferent scales in an end-to-end framework.

(6)	 GTRBM40: As a supervised method, GTRBM combines the idea of gradient enhanced decision tree (GBDT) 
and Time Restricted Boltzmann machine (TRBM) and captures the topological characteristics of networks. 
It has enough hidden layers which can model the dynamic nonlinear transformation.

(7)	 DGFT20: DGFT is an advanced deep generative framework for temporal link prediction in dynamic net-
works.

(8)	 GGAN21: GGAN is a link prediction model which can extract features from weighted dynamic network. 
Its advantage is that it can mine nonlinear temporal data.

The basic parameters of the eight baseline methods are shown in Table 4.

Quantitative evaluation metrics. 

(1)	 Area Under the Curve (AUC)41: AUC is the area under the Receiver Operating Characteristic (ROC) curve, 
which is used to measure the accuracy of link prediction method generally. After model training, AUC 
can get the score of the existence probability of each link in the network by calculating and comparing the 
score of the link in the test set and the score of the non-existent link.

Table 3.   Basic details of four datasets.

Dataset Device Size Duration (days) Mode Sampling frequency

CONTACT​ iMote 274 4.0 Bluetooth /10 s

HYCCUPS Android phone 72 63.0 Wi-Fi /80 s

ASTURIESER Vehicle, Helicopter 229 365.0 GPS /30 s

ROTAXI Vehicle 320 30.0 GPS /7 s

Table 4.   Parameters of the eight baseline methods.

Baseline methods Basic parameters

CN –

DDNE Learning rate: 1e − 2 , Weight decay: 5e − 4

Node2Vec Optimal transfer probability p and q are obtained by grid search in (0.25, 0.5, 1, 1.5, 2)

TMF Order of time-dependent matrix:2, Decay function parameter: 0.3, latent dimensional parameter: 10

E-LSTM-D Learning rate: 1e − 3 , Weight decay: 1e − 4

GTRBM Learning rate: 1e − 2 , Weight decay: 5e − 4

DGFT Dropout rate: 0.2, Order of time-dependent matrix: 2

GGAN Hidden space size: 32, Learning rate: 1e − 2
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	   In n independent comparison, the number of times that the score of higher weight link is greater than 
that of lower weight link is n′ , and the number of same scores is n′′.

(2)	 Geometric Mean AUC (GMAUC)42: As a unified evaluation metric, GMAUC is composed of the average 
value of AUC and Precision Recall AUC (PRAUC). AUC focuses on analyzing previous links, GMAUC is 
used to solve class imbalance problem caused by new links. The formula of GMAUC is as follows.

where P and N represent the number of correct and incorrect predictions for the newly generated links.
(3)	 Root Mean Squared Error (RMSE): RMSE is the arithmetic square root of the mean square of the difference 

between the estimated value and the real value, which can evaluate the change of the data. The smaller value 
of RMSE signifies the more accurate prediction model.

where M represents the number of elements in the matrix At , T represents the number of predictions.
(4)	 Non-existent Rate (NER): RMSE is not sensitive to the existence of links. For example, the difference 

between 0 and 1 should be more significant than the difference between 1 and 2, although the RMSE is 
same in both cases. NER is more intolerable to mistakenly estimate the nonexistent link as existing.

where at and ãt are elements of At and Ãt  respectively. In practice, the threshold is 0.01.

Experimental details.  Experimental environment.  We use Pytorch to build the model based on Python. 
In addition, we use CUDA platform to implement GPU parallel computing and cuDNN to improve the training 
speed of deep neural network.

Time slice unit.  In Section “Time slice unit”, we have introduced how to slice the MANETs into a series of inter-
val snapshots as the inputs of generator in LSGANs, and the link weights of the snapshots represent the time of 
device contact. The time interval between two snapshots is determined by the corresponding t when the R(t) in 
Eq. (2) first drops to 1/e.

Before feeding data to the generator, every ten consecutive snapshots constitute a time window, that is s = 10 . 
To be more precise, {Gt − 10,Gt − 9, · · · ,Gt − 2,Gt − 1} is the input and Gt is the output to be predicted. Then, 
we smoothly slide the time window for rest snapshots and divide all the samples according to a certain propor-
tion, 80% as the training set, and the rest as the testing set.

FastGCN unit.  In each dataset, the nodes are divided into several batches. FastGCN contains three layers, the 
first layer samples 30% nodes, the second layer samples 30% nodes, and the third layer does not sample. The 
initialization parameters comply with Glorot uniform distribution, the number of units in hidden layer is set 
to 16 for the CONTACT and 32 for the other datasets, maximum Chebyshev polynomial degree is set to 3, the 
Dropout is set to 0, the number of output features is set to 64. Significantly, the input and output of FastGCN are 
matrices, which need to be converted into vectors before being input into GRU.

GRU unit.  The initialization parameters of GRU comply with orthogonal distribution, the Dropout is set to 
0.2, the bias state of the hidden layer is true, the sequence length is set to 10, the hidden size is set to 16 for the 
CONTACT and 32 for the other datasets.

LSGANs unit.  � as the coefficient of L2 regularization is set to 1e − 4 , α as the coefficient of reconstruction 
loss is set to 0.3. The parameters of generator and discriminator are updated alternately by Adam optimizer and 
the learning rate for training of generator and discriminator is set to 1e − 3 . In the process of training, epoch 
is set to 200. The training will be terminated in advance if the value of loss function does not decrease after 10 
consecutive epochs.

Result analysis.  The performance of the FastSTLSG proposed in this paper with eight benchmark methods 
are shown in Tables 5, 6, 7 and 8. The AUC, GMAUC, RMSE and NER are used to reveal the ability of each model 
to capture the spatial–temporal evolution characteristics and predict the future links for MANETs.

From the Tables 5, 6, 7 and 8, FastSTLSG achieves the optimal prediction performance in each network 
compared with the baseline models, which proves the effectiveness of the model proposed in this paper. If the 
baseline metrics are AUC and GMAUC, CN and Node2Vec perform poorly compared to other models, and the 

(18)AUC =
n′ + 0.5n′′

n

(19)GMAUC =

√√√√PRAUCnew− P
P+N

1− P
P+N

· 2(AUCprev− 0.5)

(20)RMSE =
1

T

T∑

t=1

√
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∥∥∥At − Ãt

∥∥∥F
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Table 5.   Performances on AUC for different methods. Significant values are in bold.

Method CONTACT​ HYCCUPS ASTURIESER ROTAXI

CN 0.6574 0.7032 0.5984 0.6926

DDNE 0.8485 0.8295 0.7896 0.8163

Node2Vec 0.7938 0.8512 0.6412 0.6123

TMF 0.8924 0.8637 0.8491 0.8764

E-LSTM-D 0.9136 0.8965 0.8026 0.9034

GTRBM 0.8126 0.8268 0.8772 0.7415

DGFT 0.9234 0.8792 0.8642 0.9421

GGAN 0.9167 0.8942 0.8902 0.9003

FastSTLSG 0.9427 0.9136 0.9231 0.9542

Table 6.   Performances on GMAUC for different methods. Significant values are in bold.

Method CONTACT​ HYCCUPS ASTURIESER ROTAXI

CN 0.6631 0.6412 0.5136 0.6291

DDNE 0.8075 0.8354 0.8498 0.8367

Node2Vec 0.7168 0.7064 0.6584 0.5697

TMF 0.9015 0.8643 0.8231 0.8841

E-LSTM-D 0.9374 0.9016 0.8262 0.9231

GTRBM 0.8378 0.8911 0.8165 0.7566

DGFT 0.9612 0.9014 0.8953 0.9026

GGAN 0.9125 0.8879 0.9127 0.8973

FastSTLSG 0.9671 0.9197 0.9456 0.9534

Table 7.   Performances on RMSE for different methods. Significant values are in bold.

Method CONTACT​ HYCCUPS ASTURIESER ROTAXI

CN 0.3892 10.051 0.6764 4.6421

DDNE 0.2432 6.2980 0.4112 1.4312

Node2Vec 0.2145 7.1359 0.5058 2.699

TMF 0.1745 2.1864 0.3573 1.9845

E-LSTM-D 0.1871 4.3198 0.3196 1.3523

GTRBM 0.2035 8.3554 0.5418 2.6942

DGFT 0.1568 2.0351 0.4563 0.9872

GGAN 0.1892 1.6895 0.3251 1.1263

FastSTLSG 0.1258 1.5642 0.1894 0.4581

Table 8.   Performances on NER for different methods. Significant values are in bold.

Method CONTCT​ HYCCUPS ASTURIESER ROTAXI

CN 0.3231 0.5136 0.2664 0.2755

DDNE 0.0612 0.1264 0.0676 0.0942

Node2Vec 0.2694 0.2468 0.3158 0.2453

TMF 0.1236 0.0979 0.2697 0.0639

E-LSTM-D 0.0972 0.1023 0.0482 0.0435

GTRBM 0.1298 0.1920 0.0841 0.0634

DGFT 0.0786 0.0812 0.0752 0.0545

GGAN 0.0964 0.0546 0.0325 0.0768

FastSTLSG 0.0213 0.0347 0.0124 0.0278
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scores of CN and Node2Vec in the four networks are less than 0.8 in most cases (the scores of other models are 
greater than 0.8 in most cases). We believe that the low prediction accuracy of CN and Node2Vec is due to the 
following two reasons: (1) The central idea of CN and Node2Vec is to capture the spatial structure characteris-
tics of static networks, ignoring the temporal evolution pattern of dynamic networks, and the models proposed 
for static networks are not applicable to dynamic network link prediction such as MANETs; (2) CN focuses on 
mining the neighbor information of nodes at both ends of the links, and Node2Vec uses hyperparameters to gain 
different wandering paths. Both models lack the ability to mine the deep structure features and global features 
of MANETs. Other benchmark models have better performance compared to CN and Node2Vec because they 
consider the evolution characteristics of MANETs, and their AUC and GMAUC scores do not differ much. The 
AUC and GMAUC scores of FastSTLSG are higher than those of benchmark prediction models, which means 
that FastSTLSG outperforms existing benchmark models in terms of overall qualitative prediction performance.

Further, the RMSE quantitatively measures the prediction performance using the mean squared error between 
the predicted results and the true results, and NER is used to measure probability of error link prediction. The 
RMSE and NER metrics focus on revealing the generative ability of the model, i.e., the accuracy of the prediction 
results. We find that the RMSE and NER of CN and Node2Vec are still poor, which means that the error is high. 
We consider that this is because CN lacks the ability to characterize nonlinearities, and nonlinear regression of 
Node2Vec is not applicable to feature extraction of dynamic networks. In this paper, we propose the FastSTLSG, 
which draws on the idea of minimax adversarial training, and uses LSGANs to improve the quality of the genera-
tor to predict the topology at the next moment. Compared with the benchmark models, the FastSTLSG obtains 
the prediction results closer to the real network structure.

Figure 5 shows the impact of different slice durations on the prediction accuracy of FastSTLSG. Based on 
calculating the appropriate slicing duration T using Eq. (2), we respectively calculate the value of 0.25, 0.5, 2, 
and 4 multiples of T, and repeat the experimental steps to calculate the prediction performance of FastSTLSG 
at different slicing durations. The experimental results are shown in Fig. 5. It can be seen from the figure that, in 
most cases, compared to other slicing durations, network snapshots based on T time slices can obtain the optimal 
performance. When the evaluation criteria are AUC and GMAUC, different slice durations have little effect on 

    (a) AUC    (b) GMAUC

    (c) RMSE         (d) NER

Figure 5.   Influence of different slice durations on prediction accuracy.
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accuracy of FastSTLSG, the scores corresponding to 0.25 T, 0.5 T, 2 T, and 4 T are all slightly lower than T, but 
higher than 0.8. When the evaluation criteria are RMSE and NER, the slice durations have a greater effect on the 
prediction accuracy in most networks, and the shorter or longer the time window, the better the prediction is not 
necessarily better. This is consistent with our expectation. If the interval of snapshots is too short, the model is 
insensitive to relatively independent new features, and a shorter interval means less information about the spatial 
and temporal features, which causes difficulties in predicting network evolution; If the interval is too long, too 
many new spatial–temporal features overlap in the same network snapshot, which causes great difficulties for 
the model to extract effective features and leads to lower prediction accuracy. From the results, the FastSTLSG 
uses the autocorrelation method in phase space reconstruction of chaotic systems to determine a reasonable 
slice duration. Compared with other baseline durations, it can obtain the optimal or sub-optimal performance, 
which verifies the reasonableness of the slice duration selected by FastSTLSG.

To analyze the efficiency of the proposed model FastSTLSG and other deep learning frameworks, we record 
the training time of multiple deep learning models running on the experimental networks. The training time in 
one epoch is shown in Table 9. From Table 9, compared with other models, our model FastSTLSG costs the least 
training time in the four networks. This shows that our model is the most efficient in processing dynamic graph 
data and can better adapt to the MANETs with rapid change of topology.

In addition, to further verify the optimizing effect of LSGANs unit on the generator in the FastSTLSG model, 
we remove the discriminator from the FastSTLSG, and delete the adversarial loss in the loss function, and keep 
Lrecons and Lreg . The FastSTLSG with stripped LSGANs is renamed as FastST. To further illustrate the advan-
tages of LSGANs, we replace LSGANs unit with standard GAN, modify the adversarial loss to Eq. (9), and keep 
Lrecons and Lreg in loss function. The new model with standard GAN is renamed as FastSTG. The experimental 
steps are repeated to analyze the prediction performance of FastST and FastSTG for MANETs. The link predic-
tion performance results of FastSTLSG, FastST, FastSTG models are shown in Fig. 6.

From experimental results, the performance of FastSTLSG decreases in all metrics after removing the LSGANs 
unit or replacing LSGANs unit with standard GAN. Compared with FastST, the AUC and GMAUC of our model 
increase 3.8% and 5.2%, respectively, the RMSE and NER of our model decrease 46.8% and 51.3%, respectively. 
Compared with FastSTG, the AUC and GMAUC of our model increase 2.1% and 2.5%, respectively, the RMSE 
and NER of our model decrease 26.4% and 30.3%, respectively. This shows that LSGANs unit overcomes the 
defects of standard GAN, extracts dynamic graph features more effectively than GAN, and obtains better predic-
tion accuracy. LSGANs can facilitate FastSTLSG to generate high-quality network topology results through effec-
tive learning for spatial features. Thus, we further demonstrate the contribution of LSGANs unit to FastSTLSG.

Based on the above experimental results, the proposed model FastSTLSG can effectively extract the spatio-
temporal features in MANETs based on obtaining the reasonable slice time. LSGANs unit is used to improve the 
generation ability of the prediction model. Compared with the existing methods, FastSTLSG has better accuracy, 
which shows the effectiveness and excellent performance.

Case study.  Our proposed FastSTLSG model can effectively extract the spatio-temporal features in the tem-
poral networks and can achieve the link prediction task of MANETs efficiently and with high quality. Extensive 
experiments on several datasets demonstrate the superior performance of our model compared to the baseline 
methods. In fact, FastLSG can be applied not only in MANETs, but also in any topology graph with temporal 
structure to accomplish link prediction. In the following, we take the traffic flow prediction task as a case study 
to briefly demonstrate the high-quality prediction results of our model.

Traffic flow prediction aims to predict future traffic based on previous traffic flows. Multiple roads and multi-
ple cameras in a region record rich spatial information, and the traffic flows recorded by intervals have temporal 
features43. Therefore, we can consider the traffic flow as a spatio-temporal topology graph and use the temporal 
and spatial information in the data to predict the future traffic flow of different roads in the region.

MIDAS (http://​tris.​highw​aysen​gland.​co.​uk/​detail/​traff​icflo​wdata) is a Traffic Flow Data, which records the 
traffic flow on the UK highways every fifteen minutes. We extract 64 detectors as nodes to form a traffic network 
to predict the traffic flow information. The prediction result of visualizing one of the roads is shown in Fig. 7.

It can be seen that FastLSG can accurately predict the number of vehicles and their speed in the roads. The 
accurate prediction results can provide a reference for traffic management to establish traffic planning and vehi-
cle owners to plan their trips. FastLSG can effectively capture the spatial topology and temporal dependence of 
the graph. This case shows that our model can handle not only MANETs, but also diverse temporal networks. It 
demonstrates the excellent prediction performance of our model.

Table 9.   Training time in one epoch in four deep learning models. Significant values are in bold.

Method CONTACT​ HYCCUPS ASTURIESER ROTAXI

E-LSTM-D 10 m 13 s 5 m 28 s 20 m 47 s 23 m 12 s

DGFT 4 m 17 s 2 m 10 s 9 m 13 s 7 m 19 s

GGAN 5 m 9 s 1 m 52 s 7 m 46 s 8 m 1 s

FastSTLSG 58 s 23 s 2 m 49 s 2 m 3 s

http://tris.highwaysengland.co.uk/detail/trafficflowdata
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Conclusion
In this paper, we propose a link prediction model named FastSTLSG to solve the problem of graph prediction 
with spatial and temporal features and apply it to MANETs. Specifically, to predict the evolution pattern of the 
MANETs, the FastSTLSG successfully extracts the spatial–temporal properties of the topology by using the his-
torical network information. The model learns not only low-dimensional embedding and nonlinear structure, 

     (a) AUC       (b) GMAUC

        (c) RMSE           (d) NER

Figure 6.   Performances on different MANETs for FastSTLSG, FastST and FastG.

      (a) Carriageway flow      (b) Speed

Figure 7.   Link prediction for carriageway flow and speed.
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but also temporal correlations between continuous network snapshots. The main contributions of this paper 
include: (1) An efficient spatio-temporal feature extraction model framework for MANETs is proposed; (2) 
Using chaotic time theory to calculate the network slice time, and the link duration is taken as the prediction 
target; (3) LSGANs unit is used to improve the ability of the model to recover the network structure from the 
low dimensional dense embedding vectors, and further improve the prediction accuracy of the model.

The FastSTLSG model is applicable not only to MANETs, but also to all graph data with spatio-temporal fea-
tures, especially large-scale networks. In the next step, we will study about the heterogeneous dynamic networks, 
and further expand the application of the model proposed in this paper.

Data availability
The data can be download in CONTACT (http://​konect.​cc/​files/​downl​oad.​tsv.​conta​ct.​tar.​bz2), HYCCUPS 
(https://​crawd​ad.​org/​upb/​hyccu​ps/​20161​017), ASTURIESER (https://​crawd​ad.​org//​downl​oad/​oviedo/​astur​ies-​
er/​astur​ies-​er-​1year-​mobil​ity.​csv.​gz), ROTAXI (https://​crawd​ad.​org//​downl​oad/​roma/​taxi/​taxi_​febru​ary.​tar.​gz).
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