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Abstract

Background: Permanent functional deficits following spinal cord injury (SCI) arise both from mechanical injury and
from secondary tissue reactions involving inflammation. Enhanced release of adenosine and glutamate soon after
SCI represents a component in the sequelae that may be responsible for resulting functional deficits. The role of
adenosine A,, receptor in central ischemia/trauma is still to be elucidated. In our previous studies we have
demonstrated that the adenosine A, receptor-selective agonist CGS21680, systemically administered after SCI,
protects from tissue damage, locomotor dysfunction and different inflammatory readouts. In this work we studied
the effect of the adenosine A, receptor antagonist SCH58261, systemically administered after SCI, on the same
parameters. We investigated the hypothesis that the main action mechanism of agonists and antagonists is at
peripheral or central sites.

Methods: Spinal trauma was induced by extradural compression of SC exposed via a four-level T5-T8 laminectomy
in mouse. Three drug-dosing protocols were utilized: a short-term systemic administration by intraperitoneal
injection, a chronic administration via osmotic minipump, and direct injection into the spinal cord.

Results: SCH58261, systemically administered (0.01 mg/kg intraperitoneal. 1, 6 and 10 hours after SCl), reduced
demyelination and levels of TNF-a, Fas-L, PAR, Bax expression and activation of JNK mitogen-activated protein
kinase (MAPK) 24 hours after SCI. Chronic SCH58261 administration, by mini-osmotic pump delivery for 10 days,
improved the neurological deficit up to 10 days after SCI. Adenosine A, receptors are physiologically expressed in
the spinal cord by astrocytes, microglia and oligodendrocytes. Soon after SCI (24 hours), these receptors showed
enhanced expression in neurons. Both the A,4 agonist and antagonist, administered intraperitoneally, reduced
expression of the A, receptor, ruling out the possibility that the neuroprotective effects of the A, agonist are due
to A,a receptor desensitization. When the A, antagonist and agonist were centrally injected into injured SC, only
SCH58261 appeared neuroprotective, while CGS21680 was ineffective.

Conclusions: Our results indicate that the A4 antagonist protects against SCl by acting on centrally located A,
receptors. It is likely that blockade of A, receptors reduces excitotoxicity. In contrast, neuroprotection afforded by
the A, agonist may be primarily due to peripheral effects.

Background Ultimately, neuronal deficits/dysfunction result. Although
Spinal cord injury (SCI) is a devastating and complex innovative medical care has improved patient outcome,
clinical condition that produces a predictable pattern of advances in pharmacotherapy to limit neuronal deficits
progressive injury entailing neuronal loss, axonal des- and promote regeneration and function have been lim-
truction and demyelination at the site of impact [1].  ited. Primary traumatic mechanical injury to spinal cord
(SC) causes death of neurons that cannot be recovered
and regenerated. Studies have indicated that neurons
continue to die for hours following traumatic SCI [2] and
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that demyelination occurs [3]. Normally acute injury
leads to chronic injury in the SC. The events that charac-
terize this successive phase of mechanical injury are
called “secondary damage.” It is now accepted that a local
inflammatory response amplifies the secondary damage.
Evidence indicates that resident microglia and macro-
phages originating from blood are two key cell types
related to the occurrence of neuronal degeneration in
CNS after traumatic injury. In particular, when SCI
occurs, microglia in parenchyma are activated and
macrophages from the circulation are able to cross the
blood-brain barrier to act as intrinsic spinal phagocytes
[4,5].

Currently, drugs used to treat acute spinal cord injury
attempt to prevent secondary inflammatory neuronal
damage [6]. Accordingly, several studies have shown
that therapies targeting various factors involved in the
secondary degeneration cascade lead to tissue sparing
and improved behavioral outcomes in spinal cord-
injured animals [7-10]. Among different therapies, sev-
eral studies have demonstrated that adenosine A,x
receptor agonists protect against locomotor dysfunction
following SC ischemia-reperfusion and traumatic injury
[11-15]. We have previously demonstrated that, 24
hours after SC trauma, A, receptor agonists reduce
influx of MPO-positive leukocytes, NF-kB activation and
iNOS expression in traumatized tissue [14], as well as
expression of death signals such as tumor necrosis fac-
tor-a. (TNF-a), caspase-3, Fas-L, annexin-V, and BAX,
while Bcl-2 expression is increased [15]. In addition to
reduction of inflammatory and apoptotic pathways, A,
agonists reduce activation of JNK mitogen-activated pro-
tein kinase (MAPK) in oligodendrocytes 24 hours after
SCI [14]. Since JNK MAPK activation contributes to
activation of caspase-3 and of the proapoptotic regulator
DP5 in oligodendrocytes and neurons of injured SC fol-
lowing traumatic spinal cord injury [16], reduction of
JNK MAPK activation might account for A,, agonist-
induced protection from demyelination and neuron
recovery after SCI.

Despite the definite protection afforded by A,A ago-
nists in SCI, currently available information regarding
the role of adenosine A,4 receptors in central ischemia/
trauma is conflicting [17]. While most studies demon-
strate a protective effect of Ay, agonists after trauma/
ischemia in SC, robust evidence from studies of brain
indicates that A, receptor genetic inactivation [18] and
adenosine A,, antagonists protect against ischemia
[19-22].

Li and coworkers [13] have demonstrated that, when
peripherally administered, both A,, agonist and antago-
nist are protective against locomotor dysfunction and
demyelination after SCI. After lumbar laminectomy,
adenosine increases extracellularly soon after trauma up
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to uM values [23] that are able to stimulate the four G
protein-coupled receptors: Aj, Ay, Asp, and Az [24].

To shed light on the mechanism of protection of ade-
nosine A, receptor agonists/antagonists, in this study we
investigated the effects of the selective adenosine A5
receptor antagonist, SCH58261, systemically and repeat-
edly administered after SCI, on inflammation parameters
and on JNK MAPK activation. Moreover, we studied if
adenosine A,, receptors display plastic changes after
repeated systemic treatment with the A,,-selective recep-
tor agonist CGS21680 or with the A,,-selective antago-
nist SCH58261. Finally, we examined the protective effect
afforded by A, agonist and antagonist after direct injec-
tion into injured SC to discern the site of action.

Methods

Animals

Male adult CD1 mice (25-30 g, Harlan Nossan, Milan,
Italy) were housed in a controlled environment and pro-
vided with standard rodent chow and water. All experi-
ments were carried out according to the ECC guidelines
for animal care (DL 116/92, application of the European
Communities Council Directive 86/609/EEC). All efforts
were made to minimize animal suffering and the num-
ber of animals used.

Spinal cord injury (SCI)

Mice were anesthetized using chloral hydrate (400 mg/
kg i.p.; Sigma-Aldrich, St. Louis, MO, USA). We used
the clip compression model described by Rivlin and
Tator [25] and produced SCI by extradural compression
of a section of the SC exposed via a four-level T5-T8
laminectomy, in which the prominent spinal process of
T-5 was used as a surgical guide. A four-level laminect-
omy was chosen to expedite timely harvest and to
obtain enough SC tissue for biochemical examination.
With the aneurysm clip applicator oriented in the bilat-
eral direction, an aneurysm clip with a closing
force of 24 g was applied extradurally at T5-T8 level
(for approximately 60 sec). The clip was then rapidly
released with the clip applicator, which caused SC com-
pression. In the injured groups, the cord was com-
pressed for 1 min. Following surgery, 1.0 cc of saline
was administered subcutaneously in order to replace the
blood volume lost during the surgery. During recovery
from anesthesia, the mice were placed on a warm heat-
ing pad and covered with a warm towel. The mice were
singly housed in a temperature-controlled room at 27°C
for a survival period of 20 days. Food and water were
provided to the mice ad libitum. During this time per-
iod, the animals’ bladders were manually voided twice a
day until the mice were able to regain normal bladder
function. Sham-injured animals were subjected only to
laminectomy.
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Experimental groups

In the experiments in which SCH58261 or CGS21680
were systemically injected, mice were randomly allocated
into the following groups: (i) SCI+vehicle group. Mice
were subjected to SCI plus administration of saline 10%
DMSO with an i.p. bolus (N = 20); (ii) CGS21680 group.
Same as the SCl+vehicle group but in which CGS21680,
at the dose of 0.1 mg/kg (i.p.), was administered three
times: 1 h, 6 h and 10 h after SCI (N = 20); (iii)
SCH58261 group. Same as the SCl+vehicle group but in
which SCH58261, at the dose of 0.01 mg/kg (i.p.), was
administered three times: 1 h, 6 h and 10 h after SCI (N
= 20); (iv) Sham+vehicle group. Mice were subjected to
the same surgical procedures as the above groups except
that the aneurysm clip was not applied and they were
treated i.p. with vehicle (saline 10% DMSO) (N = 20).

In the experiments in which SCH58261 or CGS21680
were centrally applied on SC tissue at 1 h, 6 h and 10 h
after SCI, the applied doses were, respectively, 0.01
nmoles and 0.5 nmoles. This was determined on the
basis of doses administered in microdialysis studies
[26,27]. The doses of SCH58261 and CGS21680, sys-
temically administered, were chosen on the basis of our
previous in vivo studies [14,15,20-22].

Mini-osmotic pump implantation and SCH58261 delivery
In the mouse group subjected to motor function evalua-
tion, Alzet pumps were used to deliver vehicle (saline
10% DMSO) (N = 10) or SCH58261 (N = 10).
SCH58261 (0.01 mg/kg) was delivered at a constant rate
for 10 days after injury. In particular, we used Alzet
Model 2002 mini-osmotic pumps (Charles River Milan
Italy), placed 3 hours after SCI. The Alzet mini-osmotic
pump was implanted subcutaneously (s.c.) in the mouse,
as previously described by Genovese et al. [14,15]. A
small incision was made in the skin between the scapu-
lae. Using a hemostat, a small pocket was formed by
spreading the subcutaneous connective tissues apart.
The pump was inserted into the pocket with the flow
moderator pointing away from the incision. The skin
incision was closed with suture clips (Aesculap Surgical
Instruments). The pumping rate was 0.5 pl/h (+ 0.15 pl/
h) and the reservoir volume was 200 pl.

Grading of motor disturbance and light microscopy

Locomotor performance of animals was analyzed using
the Basso mouse scale (BMS) open-field score [28] 10
day after injury, since the BMS has been shown to be a
valid locomotor rating scale for mice. The evaluations
were made by two observers blinded to all analyzed
groups. Briefly, the BMS is a nine-point scale that pro-
vides a gross indication of locomotor ability and deter-
mines the phases of locomotor recovery and features of
locomotion. BMS scale ranges from 0 (indicating
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complete paralysis) to 9 (indicating normal hindlimb
function), and are based on rating locomotion on
aspects of hindlimb function such as weight support,
stepping ability, coordination, and toe clearance. The
BMS score was determined for ten mice in each group.

Twenty-four hours following trauma, the animals were
anaesthetized with chloral hydrate (400 mg/kg i.p.) and
sacrificed by decapitation, and spinal cord tissues were
dissected. Tissue segments containing the lesion (1 cm
on each side of the lesion, T5-T8) were paraffin
embedded and cut into longitudinal 5-pum-thick sections
for the posterior area of the spinal cord. Tissue sections
(thickness 5 pm) were deparaffinized with xylene,
stained with hematoxylin/eosin, Luxol fast blue Kluver
Barrera for myelin, Weigert’s iron hematoxylin for
nuclei and Oil red O for lipids, and studied using light
microscopy (Dialux 22 Leitz).

Segments of each SC were evaluated by an experi-
enced histopathologist. Damaged neurons were counted
and the histopathologic changes in gray matter were
scored on a 6-point scale: 0, no lesion observed, 1, gray
matter contained 1 to 5 eosinophilic neurons; 2, gray
matter contained 5 to 10 eosinophilic neurons; 3, gray
matter contained more than 10 eosinophilic neurons; 4,
small infarction (less than one-third of the gray matter
area); 5, moderate infarction; (one-third to one-half of
the gray matter area); and 6, large infarction (more than
half of the gray matter area). Scores from all sections
from each SC were averaged to give a final score for
each individual mouse. All the histological studies were
performed in a blinded fashion.

Immunohistochemical localization of TNF-o, PAR, Bax and
Bcl-2, Fas Ligand

Twenty-four hours after SCI, tissues were fixed in 10%
(w/v) paraformaldehyde. After deparaffinization, endo-
genous peroxidase was quenched with 0.3% (v/v) hydro-
gen peroxide in 60% (v/v) methanol for 30 min. The
sections were permeabilized with 0.1% (w/v) Triton X-
100 (TX) in phosphate buffer solution (PBS) for 20 min.
Non-specific adsorption was minimized by incubating
the sections in 2% (v/v) normal goat serum in PBS for
20 min. Endogenous biotin or avidin binding sites were
blocked by sequential incubation for 15 min with biotin
and avidin (DBA), respectively. Sections were incubated
overnight with anti-TNF-a (Santa Cruz Biotechnology;
1:500 in PBS, v/v), anti-PAR antibody (1:500 in PBS, v/
v), anti-FAS-ligand antibody (Abcam,1:500 in PBS, v/v),
anti-Bax antibody (Santa Cruz Biotechnology, 1:500 in
PBS, v/v) or anti-Bcl-2 polyclonal antibody (Santa Cruz
Biotechnology, 1:500 in PBS, v/v). Sections were washed
with PBS and incubated with secondary antibody. Speci-
fic labeling was detected with a biotin-conjugated goat
anti-rabbit IgG and avidin-biotin peroxidase complex
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(DBA). To verify the binding specificity for TNF-a,
FAS-L, PAR, Bax, and Bcl-2, some sections were also
incubated with only the primary antibody (no second-
ary) or with only the secondary antibody (no primary).
In these situations no positive staining was found in the
sections indicating the specificity of the positive immu-
noreactions in all the experiments carried out.

Fluorescence deconvolution microscopy

Twenty-four hours after SCI, mice were transcardically
perfused, under deep anesthesia, with ice-cold 4% paraf-
ormaldehyde solution (in phosphate buffer, pH 7.4).
Spinal cords were post-fixed overnight and cryopro-
tected in an 18% sucrose solution (in phosphate buffer)
for at least 48 h. Spinal cords were cut with a cryostat
and 30 pm-thick coronal sections were collected. Sec-
tions were placed in antifreeze solution (30% ethylene
glycol, 30% glycerol in phosphate buffer) and stored at
-20°C until assay.

The cellular types that expressed A, receptor were
identified, using fluorescence microscopy, in 30 um-
thick coronal sections cut and stored as described above.
Day 1
Free-floating sections were washed in PBS-TX for 10
min, then incubated at room temperature in blocking
buffer for 40 min. Sections were then incubated, over-
night at room temperature, with a mouse monoclonal
primary antibody against the A, receptor (1:400 anti-
A, receptor, Millipore) and a rabbit polyclonal anti-
body anti-glial fibrillary acid protein (GFAP, 1:500;
Abcam) used to visualize astrocytes, or with rabbit poly-
clonal antibody IBA1 (1:300; Wako) used to visualize
microglia, or stained with NeuroTrace green fluorescent
Nissl stain (Nissl, 1:200; Invitrogen) used to visualize
neurons, or immunoreacted with a rabbit polyclonal
antibody anti-oligodendrocyte specific protein (OSP,
1:100; Abcam) used to visualize oligodendrocytes. OSP
is described in the white matter tracts of rat spinal cord,
predominantly in laminar myelin [29].

Day 2

After washing in PBS-TX (3 times, 10 min each), slices
were incubated for 2 h at room temperature in the dark
with Texas red-conjugated goat anti-mouse IgG (1:400
Vectastain, Vector Laboratories, Burlingame, CA, USA)
and fluorescein-(FITC)-conjugated goat anti-rabbit IgG
(1:400) in blocking buffer. After extensive washings,
slices were mounted using Vectashield (Vectastain, Vec-
tor Laboratories, Burlingame, CA, USA) as a mounting
medium.

Images were collected through a 40 x 0.75 NA objec-
tive on a Leica DM6000B microscope equipped with a
DFC350FX B/W camera. Each sample was acquired as
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a Z-stack (in 0.74 um steps) and deconvolved with
Huygens Professional software (SVI, Netherlands).
Deconvolution was performed using the CLME algo-
rithm and the theoretical PSF. Images are presented as
maximum intensity projection (Image ] software) of the
whole z-stacks acquired. The images were then
assembled into montages using Adobe Photoshop 7.0
(Adobe Systems, Mountain View, CA, USA).

To verify the binding specificity of anti-A,, receptor,
GFAP, IBA1, OSP, Nissl antibodies some sections were
incubated with only the secondary antibody (no primary).
In these situations no positive staining was found.

Western blot for A, receptor and phospho JNK MAPK
Briefly, SC tissues from each mouse were suspended in
extraction buffer A containing 0.2 mM PMSF, 0.15 uM
pepstatin A, 20 uM leupeptin, 1 mM sodium orthovana-
date; homogenized at the highest setting for 2 min, and
centrifuged at 1,000 x g for 10 min at 4°C. Supernatants
represented the cytosolic fraction. The pellets, contain-
ing enriched nuclei, were re-suspended in Buffer B
containing 1% Triton X-100, 150 mM NaCl, 10 mM
TRIS-HCI pH 7.4, 1 mM EGTA, 1 mM EDTA, 0.2 mM
PMSEF, 20 um leupeptin, 0.2 mM sodium orthovanadate.
After centrifugation for 30 min at 15,000 x g at 4°C, the
supernatants containing the nuclear protein were stored
at -80°C for further analysis. The level of A,, receptors
and phospho-JNKs MAPK were quantified in cytosolic
fraction from spinal cord tissue collected 24 hours after
SCI. The filters were blocked with 1x PBS, 5% (w/v)
non fat dried milk (PM) for 40 min at room tempera-
ture and subsequently probed with a specific Abs Aja
receptor (Enzo Life Science, 1:200), or anti-phospho-
JNK MAPK (Thr183/Tyr185) (1:1000; Cell Signaling) in
1x PBS, 5% w/v non fat dried milk, 0.1% Tween-20
(PMT) at 4°C, overnight. Membranes were incubated
with peroxidase-conjugated bovine anti-mouse IgG sec-
ondary antibody or peroxidase-conjugated goat anti-rab-
bit IgG (1:2000, Jackson ImmunoResearch, West Grove,
PA) for 1 h at room temperature.

To ascertain that blots were loaded with equal
amounts of proteic lysates, they were also incubated in
the presence of the antibody against GAPDH protein
(1:5000 Sigma-Aldrich) or antibody against B-actin pro-
tein (1:10,000 Sigma-Aldrich). Semi-quantitative densito-
metric analysis of the relative expressions of the protein
bands of A,a receptor and phospho-JNK MAPK (54 and
46 kDa) was quantified by scanning of the X-ray films
with a GS-700 Imaging Densitometer (GS-700, Bio-Rad
Laboratories, Milan, Italy) and a computer program
(Molecular Analyst, IBM), and standardized for GAPDH
or B-actin levels.
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Statistical analysis

The results were analyzed by one-way ANOVA followed
by a Bonferroni post-hoc test. A p < 0.05 was consid-
ered significant.

Results

Systemic treatment with SCH58261 ameliorates motor
function and tissue damage after SCI

The severity of trauma in the perilesional area was
assessed by hematoxylin-eosin staining (Figure la-c) as
well as assessment of alterations of white matter by Luxol
fast blue staining (Figure 1d-f) and by Weigert’s and Oil
red O staining (Figure 1g-i), in SCI+vehicle-treated, SCI
+SCH58261-treated and sham-operated mice group 24 h
after injury. Significant damage was observed in SC tissue
from SCI mice (Figure 1b) when compared with sham-
operated mice (Figure la). The histological scores of
damage were significantly reduced in SCH58261-treated
mice (Figure 1c) in comparison to vehicle-treated mice
(Figure 11). In sham animals, myelin structure was clearly
stained by Luxol fast blue in both lateral and dorsal funi-
culi of the SC (Figure 1d). At 24 h after the injury, in
SCI-operated mice, a significant loss of myelin in lateral
and dorsal funiculi was observed by Luxol fast blue
(Figure le) and by Weigert’s and Oil red O coloration
(Figure 1h). In contrast, myelin damage was attenuated in
the central part of lateral (Figure 1f) and dorsal funiculi
in SCH58261-treated mice (Figure 1i).

To evaluate whether histological damage to the SC
was associated with a loss of motor function, the BMS
open-field score was used [28]. Motor function was not
impaired in sham mice (data not shown). Mice sub-
jected to SCI showed significant deficits in hind limb
movement (Figure 1m) starting with the first evaluation
performed 24 h after trauma. In chronic SCH58261-
treated mice group, the neurological deficit improved in
a statistically significant way beginning at four days after
chronic administration, compared to the SCI+vehicle
mice group, and persisting up to 10 days after SCIL.

Systemic treatment with SCH58261 protects from
inflammatory parameters
Immuno-histological analysis of TNF-a, Fas-L, PAR, BAX
and Bcl2 was performed to ascertain whether SCH58261
treatments modulate levels of these molecular signals
that may be implicated in inflammatory response.
Substantial increases in TNF-a, (Figure 2b), Fas-L
(Figure 2e) and PAR (Figure 2h) expression were found
in SC tissue collected from SCI+vehicle-treated mice 24
hours after SCI, in comparison with sham-operated
mice (Figure 2a, d, g, respectively). In contrast, TNF-a
(Figure 2c), Fas-L (Figure 2f) and PAR (Figure 2i) death
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signals were attenuated in the SCI+SCH58261 group in
comparison to SCI+vehicle animals.

Samples of SC tissue were also analyzed 24 h after SCI
to determine immuno-histological staining for Bax and
Bcl-2. Sections of SC from sham vehicle-treated mice
did not stain for Bax (Figure 21) whereas SC sections
obtained from SCI vehicle-treated mice were positive for
Bax (Figure 2m). SCH58261 reduced the degree of posi-
tive staining for Bax in spinal cord of mice subjected to
SCI (Figure 2n). Spinal cord sections from sham vehicle-
treated mice demonstrated positive Bcl-2 staining (Fig-
ure 20), whereas in SCI control mice, this staining was
significantly reduced (Figure 2p). SCH58261 attenuated
the loss of positive staining for Bcl-2 in spinal cord
from SCI-subjected mice (Figure 2q).

Localization of adenosine A, receptors 24 h after SCI
Figure 3 shows that in sham-operated mice, only faint
staining of A,, receptors was detectable in the gray
matter of SC, indicated by the box in the drawing under
the figures. Some A,4 receptor staining was visible on
blood vessels but not on Nissl-positive cells. Twenty-
four hours after SCI, A, receptors were definitely
expressed on neurons. Costaining of A,, receptors with
Nissl staining for neurons shows that A, receptors are
localized on many neurons in the central part of the
gray matter while in the ventral horn of the SC, no A,
receptor staining was found on motoneurons.

Figure 4 shows that staining for adenosine A,A recep-
tors in sham-operated mice was found also in white
matter. A, receptors costained with GFAP-stained
cells. Twenty-four hours after SCI, astrocytes appeared
fragmented with morphological features of damaged
cells. In the same white matter area, 24 hours after
injury, A, receptor staining was slightly increased on
GFAP-stained cells.

Figure 5 shows that A, receptors were expressed in
only a few microglial cells in the white matter of spinal
cord in sham-operated mice. Microglial cells look like a
thin web with thin and long processes. Twenty-four
hours after SCI, microglial cells assumed the morpholo-
gical features of activated cells, with round cell body
and thick and short processes. At this time after SCI, no
localization of A, receptors was found on activated
microglia. The same pattern of microglia and A, recep-
tor colocalization was found in the gray matter.

Figure 6 shows the localization of A, receptors on
oligodendrocytes in the white matter of spinal cord 24
hours after injury. In sham-operated mice, adenosine
Aya receptors were detectable on bundles of myelinated
fibers. Twenty-four hours after SCI, bundles appeared
disorganized and fragmented and there was a less
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Figure 1 Effects of systemic SCH58261 treatment on histological alterations and on hind limb motor disturbance after SCI. Twenty-four
hours after trauma, significant damage to the SC of untreated SCl-operated mice in the perilesional area was assessed by the presence of
alterations of white matter (b). It is noteworthy that significant protection from the SCl was observed in tissue collected from SCH58261-treated
SCl-injured mice (c). No significant alterations were observed in sections obtained in sham groups (a). Myelin structure was observed by Luxol
fast blue staining as well by Weigert's and Oil red O staining. Twenty-four hours after injury in SCl-operated mice (e, h respectively) a significant
loss of myelin was observed. In contrast, myelin degradation was attenuated (f, i respectively) in SCH58261-treated mice. No significant
alterations were observed in sections obtained in sham groups (d, g respectively). This figure is representative of at least 3 experiments
performed on different experimental days. The histological score (I) was evaluated by an independent observer. ND: not detectable. One-way
ANOVA: **P < 0.01 vs sham group and SCl+vehicle, respectively. The degree of motor disturbance was assessed every day until 10 days after SCI
by BMS motor score (m). Systemic administration of SCH58261 reduced the motor disturbance starting from the fourth day after SCI (m). Values
are shown as mean + S.E, with 10 mice in each group. One-way ANOVA: *P < 0.01 vs SCl+vehicle.
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Figure 2 Effects of systemic SCH58261-administration on inflammation parameters. A substantial increase in TNF-a (2b), Fas-L (2e) and
PAR (2h) expression was found in SC tissue collected from SCl+vehicle-treated mice 24 hours after SCI, in comparison with sham-operated mice
(2a, d, g respectively). TNF-a. (2¢), Fas-L (2f) and PAR (2i) levels were attenuated in the SCI+SCH58261 group in comparison to SCl+vehicle
animals. Sections of SC from sham vehicle-treated mice did not stain for Bax (2I) whereas SC sections obtained from SCI mice exhibited positive
staining (2m). SCH58261 reduced the degree of staining for Bax (2n). Spinal cord sections from sham vehicle-treated mice demonstrated Bcl-2
positive staining (20), whereas in SCI control mice the staining was significantly reduced (2p). SCH58261 attenuated the loss of positive staining
for Bcl-2 in the SC from SCl-subjected mice (2q).
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Figure 3 Co-localization of adenosine A, receptors with
neurons (Nissl) in the gray matter of SC 24 h after injury.
Double immunofluorescence was used to characterize the co-
localization of A, receptors (in red with Texas red) with neurons (in
green with NeutroTracer green fluorescent Nissl stain) in sham-
operated and SCI mice groups. The merged images show that Aja
receptors are present on many neurons of the gray matter after SCl,
but not all neurons expressed A, receptors. The drawing under the
figures shows localization of A, receptors as indicated by boxes.
Scale bar = 50 pm.

definite colocalization of A, receptor with oligodendro-
cyte processes.

Systemic treatment with SCH58261 and CGS21680 reduces
the expression of adenosine A, receptors 24 h after SCI

Twenty-four hours after SCI, the expression of A,, recep-
tors in SC homogenates was investigated by western blot.
A significant increase in A, receptor levels (Figure 7)

A2AR

Sham

Figure 4 Co-localization of A,, receptors with astrocytes
(GFAP) in white matter of SC 24 h after injury. Double
immunofluorescence was used to characterize the co-localization of
A, receptors (in red with Texas red) with astrocytes (in green with
fluorescein) in sham-operated and SCI mice groups. The merged
images show that A, receptors are present on astrocytes both
before and after SCI. The co-localization is quite total. The drawing
under figures shows that A, receptors were identified in the white
matter area as indicated by arrow. Scale bar = 10 pym.

IBA1 A2aR

Figure 5 Co-localization of A,, receptors with microglial cells
(IBA1) in white matter of SC 24 h after injury. Double
immunofluorescence was used to characterize the co-localization of
A, receptors (in red with Texas red) with microglia (in green with
fluorescein) in sham-operated and SCI mice groups. The merged
images show that A, receptors are not present on activated
microglial cells of the SC. The drawing under figures shows that A,
receptors were identified in the white matter area as indicated by
arrow. Scale bar = 10 um.

Sham

SCI

was observed in SC from mice subjected to SCI. Both
SCH58261 and CGS21680 treatments prevented the
SCI-induced expression of A, receptor (Figure 7), when
administered intraperitoneally three times in 24 hours.

Systemic treatment with SCH58261 reduces JNK MAPK
activation 24 h after SCI

In our previous paper [14] we reported that JINK MAPK
activation is enhanced 24 h after SCI and that systemic

Sham |

SCI

Figure 6 Co-localization of A, receptors with oligodendrocyte
myelinated bundles (OSP) in the white matter of SC 24 h after
injury. Double immunofluorescence was used to characterize the
co-localization of A,a receptors (in red with Texas red) with
myelinated bundles (in green with fluorescein) in sham-operated
and SCI mice groups. The merged images show that A, receptors
are present in myelinated bundles of the white matter after SCI. The
drawing under figures shows that A, receptors were identified in
the white matter area as indicated by arrow. Scale bar = 50 um.
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Figure 7 Effects of systemic SCH58261- and CGS21680-
administration on expression of A,, receptors. Western blot
analysis shows that A, receptors are detected in the SC of sham-
operated animals and that they are substantially increased in SCI
mice. SCH58261 and CGS21680 treatment significantly reduced
SCl-induced A, receptors expression. GAPDH was used as internal
control. A representative blot of lysates obtained from each mice
group is shown. The densitometric analysis is expressed as the
mean + SEM for samples from 10 mice from each group and is
normalized by control protein (GAPDH) levels, and reported in bar
graphs. One-way ANOVA: *P < 0.01 vs sham; #P <005 vs SCl;
##P <001 vs SCl.

Arbitrary densitometric units

treatment with CGS21680 prevents such activation. In
the present paper, we confirm that a significant increase
in phospho-JNK MAPK levels occurs 24 h after SCI (Fig-
ure 8). SCH58261, administered intraperitoneally three
times in 24 hours, prevented SCI-induced JNK MAPK
activation as evaluated by western blot (Figure 8).

Effect of CGS21680 and SCH58261 centrally applied into
spinal cord of SCI mice

Since adenosine A,A receptor agonists and antagonists
are protective against SCI when systemically adminis-
tered, we applied these drugs directly into SC in order
to understand their site of action. Twenty-four hours
after SCI, significant damage to SC was observed in
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Figure 8 Effect of systemic SCH58261-administration on JNK
MAPK activation. Western blot analysis shows a significant increase
in phospho-JNK MAPK (Thr183/Tyr185) 24 h after SCI. SCH58261,
intraperitoneally administered three times within 24 h, reduced SCI-
induced phospho-JNK MAPK levels. A representative blot of lysates
obtained from each mice group is shown. The densitometric
analysis is expressed as the mean + SEM for samples from 10 mice
from each group and is normalized by control protein (B-actin)
levels, and reported in a bar graph. One-way ANOVA: *P < 0.01 vs
sham; "P < 0.05 vs SCI.

perilesional areas as assessed by alteration of the white
matter when compared with sham-operated mice
(Figure 9A, B). Notably, significant protection against
SCI was observed in SCH58261-treated mice, in which
SCH58261 was centrally applied (3.45 ng/mouse dis-
solved in 100 ul 10% DMSO) to the SC injury site 1
hour, 6 hours and 10 hours after SCI (Figure 9D). On
the contrary, CGS21680, centrally applied (268 ng/
mouse dissolved in 100 pl 10% DMSO) to the SC injury
site 1 hour, 6 hours and 10 hours after SCI, did not pro-
tect against SCI (Figure 9C). SCH58261, applied at the
higher dose of 35 ng/mouse, did not protect against SCI.

Discussion

In the present paper we demonstrate that the adenosine
A, receptor antagonist SCH58261, systemically and
continuously administered after SCI, protects from
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Figure 9 Effect of SCH58261 and CGS21680 treatment on histological alterations when centrally applied after SCI. Significant damage
to the SC from SCl-operated mice in the perilesional area was assessed by the presence of edema as well as alteration of the white matter 24 h
after injury (B). Notably, significant protection from SCl was observed in tissue collected from SCH58261-treated mice (D), whereas CGS21680,
when locally applied on spinal cord tissue, did not protect against SCI (C). This figure is representative of at least 3 experiments performed

on different experimental days. The histological score (d) was evaluated by an independent observer. ND: not detectable. *P < 0.01 vs sham; ’
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motor deficits up to 10 days after trauma. The A,
antagonist, systemically administered starting 1 hour
after trauma, protects from tissue damage, demyelina-
tion, expression of death signals such as TNF-a, Fas-L,
PAR, Bax; and from activation of JNK MAPK, while
Bcl-2 expression is increased 24 hours later. Also when
centrally applied, SCH58261 protects from tissue
damage as evaluated 24 h after SCI. On the contrary,
the selective adenosine A,, receptor agonist, CGS21680,
centrally applied, is not protective.

In our previous study we showed that the selective
adenosine A,, receptor agonist CGS21680, systemically
administered after SCI, clearly reduces motor deficits for

up to 19 days after SCI, and 24 hours after SCI protects
against tissue damage and different inflammatory read-
outs [14]. On the basis of results that both adenosine
A, A receptor agonists and antagonists, systemically
administered after SCI with the same administration
protocol, are protective against SCI, we considered the
possibility that protective effects of A,, agonists could
be due to A, receptor desensitization at a spinal level.
Here we demonstrate that after SCI, adenosine A,y
receptor expression is definitely increased in damaged
spinal cord as evaluated by western blot. Immunohisto-
chemical analysis of SC in sham animals shows that ade-
nosine A,, receptors are expressed by astrocytes and by
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a few microglial cells, are present on bundles of myeli-
nated fibers, and are poorly expressed on neurons. After
SCI, overexpression is clearly appreciated on neurons in
agreement with results obtained after cross clamping of
the infrarenal aorta [30]. Semiquantitative western blot
analysis of spinal cord sections demonstrated that
expression of A, receptors is definitely reduced not
only in CGS21680-treated mice but also in SCH58261-
treated mice. This last result excludes the possibility
that reduction of A,, receptors is due to the prolonged
A, 4 agonist treatment, but likely indicates that reduc-
tion of A,A receptors occurs subsequent to protection
induced by both A4 receptor agonist and antagonist.

The adenosine A,, receptor antagonist SCH58261,
systemically and chronically administered after SCI, pro-
tects from motor deficits up to 10 days after trauma.
After short-term systemic administration (1, 6 and 10 h
after SCI), the A,, antagonist protected from tissue
damage and inflammation and death signals such as
TNE-a, Fas-L, PAR, Bax; while Bcl-2 expression was
increased as evaluated at one time-point (24 h after
SCI).

There are a number of mechanisms by which adeno-
sine A, receptors can play a role in central trauma and
ischemia.

Adenosine A, receptors are promoters of excitotoxi-
city by directly stimulating glutamate outflow, inhibiting
glutamate uptake from neurons and glial cells and inter-
acting with glutamate NMDA receptors [31]. It is well
known that aspartate and glutamate play a critical role
in the response of the CNS to ischemia/trauma [32,33].
After lumbar laminectomy, extracellular glutamate
rapidly increases several fold after trauma in injured
spinal tissue [34-36]. Much of the damage that occurs in
the SC following traumatic injury is due to the second-
ary effects of glutamate excitotoxicity, Ca®>* overload,
and oxidative stress, three mechanisms that take part in
a spiraling interactive cascade ending in neuronal dys-
function and death [37-39].

After lumbar laminectomy, it has been shown that
adenosine also increases extracellularly soon after
trauma [23]. The A,, receptor agonist, CGS21680,
increases miniature excitatory postsynaptic currents in
SC in the lamina IX neurones of spinal motoneurons,
indicating that A, receptors modulate excitatory synap-
tic transmission [40]. We have demonstrated that A,,
antagonists reduce glutamate outflow in the first hours
after brain ischemia [20].

The A, antagonist SCH58261, when directly injected
into the injured spinal cord at a concentration (3.45 ng/
mouse) that can be reached in the SC after systemic
administration, also protects from tissue damage as
assessed 24 hours after SCI. This demonstrates that the
protective effect of A,, antagonism is accounted for by
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antagonism of A,, receptors present on spinal neural
cells. Our results coincide with those indicating that,
when injected directly into the hippocampus, the A,x
antagonist ZM241385 significantly reduces kainate-
induced neuronal damage but the A;, agonist CGS21680
does not [41]. It is worth remembering that systemic
administration of both CGS21680 and ZM241385
protects against hippocampal neuronal damage induced
by intrahippocampal injection of the excitotoxin kainate
[42].

We also observed that SCH58261 administered in SC
at a higher concentration (35 ng/mouse) is no longer
protective. It is interesting that SCH58261, systemically
administered at dose of 0.01 mg/kg i.p. (the same dose
utilized in the present study), protects against the gluta-
mate increase induced by K™ and kinolinic acid, but at
the higher dose of 1 mg/kg i.p. is no longer protective
[43,44]. These observations support the view that adeno-
sine A,, receptor antagonist exerts its protective effects
by reducing glutamate levels (and by inference, toxicity).
Interestingly it was recently reported that the protective
effects against behavioral deficit and against activation
of different parameters of neuroinflammation, exerted
by both A,, receptor agonists/antagonists systemically
administered after brain traumatic injury, are dictated
by local glutamate concentrations [45]. It is unlikely that
the lack of protection by the higher SCH58261 concen-
tration is due to a lack of selectivity for A,5 receptors
because in binding studies SCH58261 shows A, recep-
tor affinity in the low nM range (K; of 2.3 nM), lower
A; receptor affinity (K; of 121 nM) and no affinity for
A3 receptors up to micromolar concentrations [46]. The
effectiveness of A,5 receptor antagonists seems to
depend on a balance between beneficial effects at presy-
naptic sites, reducing glutamate outflow, and deleterious
effect at postsynaptic sites increasing NMDA-induced
toxicity [47]. A different degree of affinity of A,
antagonists for pre- and postsynaptic sites might help
explain the finding that the neuroprotective effects are
lost by increasing the concentration of SCH58261 [48].

The evidence favours the idea that A,, receptor
antagonist administered at a lower concentration, by
reducing glutamate outflow from neurons and glial cells
of injured SC, reduces excitotoxicity. Since excitotoxicity
drives an ensuing inflammatory cascade [25], reduction
of excitotoxicity by the A,, receptor antagonist might
well account for reduction of downstream effects con-
sisting in production of inflammation and death signals
such as TNF-a, Fas-L, PAR, and Bax; or increase of Bcl-
2 expression after SC damage. Reduction of inflamma-
tion and death signals, in turn, might account for the
persistent (up to 10 days) protection from motor deficit.

Although SCH58261 at a dose of 0.01 mg/kg is not
active peripherally on heart rate or systemic blood
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pressure [49], and much evidence indicates that the pro-
tective effect of A, antagonists is related to central
local glutamate concentrations, it cannot be excluded
that, when peripherally administered, part of the protec-
tive effects of A,, antagonists are mediated by periph-
eral cells. In this regard it is worth mentioning that
inactivation of A,, receptors on BMDC attenuates
ischemic brain injury [50] and brain trauma and also
inhibits inflammatory cytokine production [45].

Not only are A,, antagonists protective, but there is
robust evidence that adenosine A, receptor agonists
also protect against locomotor dysfunction and expres-
sion of death signals following SC ischemia-reperfusion
and traumatic injury [11-15]. In attempting to shed light
on the site of action accounting for the protective effects
of A, receptor agonists, we directly injected CGS21680
into injured SC at a concentration (268 ng/mouse) that
can be reached in the SC after systemic administration.

In contrast to what was observed with the A, recep-
tor antagonist, the A, agonist CGS21680 injected into
injured SC was not protective against cell damage as
assessed 24 hours after SCI. This demonstrates that the
protective effect of the systemically administered drug is
not attributable to activation of A,, receptors on central
SC cells but rather is mediated peripherally. Li et al. [13]
demonstrated that the protective effect from motor defi-
cits of A,, agonists systemically administered after
spinal trauma is lost in mice lacking A,, receptors on
bone marrow-derived cells (BMDCs), but is restored in
A, 4-KO mice reconstituted with A,, receptors on
BMDCs. This result identifies BMDCs as the targets of
A, agonists. Most studies have reported that selective
activation of A,A receptors inhibits proinflammatory
responses directly in BMDCs, including platelets, mono-
cytes, some mast cells, neutrophils and T cells [51-53].
A, and/or A,p receptors may be responsible for lym-
phocyte proliferation [54,55]. Consistent with its antiin-
flammatory and immunosuppressive role, the protective
effects of adenosine A,, receptor stimulation have been
observed in various models of autoimmune disease,
such as rheumatoid arthritis [56], colitis [15,57], and
hepatitis [58]. Therefore we must assume that the defi-
nite protection by A,, agonists systemically adminis-
tered beginning 1 hour after SCI [11-15] is exerted at
peripheral BMDCs resulting ultimately in reduced leu-
cocyte infiltration and a reduced inflammatory cascade
at the central level.

Twenty-four hours after SCI, clear signs of cell suffer-
ing are present, demonstrated by fragmented astrocytes
having morphological features of damaged cells, by
microglial cells that have the morphological features of
activated cells and by bundles of myelinated fibers that
appear disorganized and fragmented. The selective A,
adenosine receptor antagonist SCH58261 attenuated
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myelin damage in white matter as demonstrated
by Luxol fast blue and by Weigert’s and Oil red O
coloration.

In agreement with our previous results [14], a signifi-
cant increase in phospho-JNK MAPK levels was
observed 24 h after SCI. Phospho-JNK MAPK was
found de novo expressed in oligodendrocytes in the ven-
tro-lateral portion of injured white matter but not in
neurons, microglia or astrocytes [14]. The A, receptor
antagonist SCH58261 reduces JNK MAPK activation.
Previous studies have demonstrated that the A,, adeno-
sine agonists, systemically administered after SCI, also
reduce JNK MAPK activation [14] and demyelination
[13]. A reduction of JNK MAPK activation might
account for better survival and/or functionality of
mature myelinating oligodendrocytes as well as reduced
damage to developing oligodendrocyte progenitors. In
fact, previous work has demonstrated that activation of
JNK MAPK is involved in oligodendrocyte death [59,60],
and activation of JNK MAPK has been described in oli-
godendrocytes in multiple sclerosis lesions where oligo-
dendrocytes are major targets of the disease [61].
Oligodendroglia are extremely sensitive to glutamate
receptor overactivation and ensuing oxidative stress
[62-64] as well as to cytokines and adenosine [65]. Glu-
tamate toxicity in brain cortical cultured oligodendro-
cytes is reduced by the pan-JNK inhibitor SP600125
[66]. When considering the possibility that A, recep-
tors directly control JNK MAPK activation in oligoden-
drocytes, the only available evidence from studies of
mouse macrophages shows that adenosine does not
modify phosphorylation of JNK MAPK [67]. It is likely
that activation of JNK MAPK after SCI is an epipheno-
menon consequent to an inflammatory cascade that is
driven by both excitotoxicity and infiltration. Therefore
the A, receptor antagonist, systemically administered,
by reducing excitotoxicity and the ensuing inflammatory
cascade can reduce JNK MAPK activation. The Ayx
receptor agonist, by reducing leucocyte infiltration and
the ensuing inflammatory cascade at a central level, can
also reduce JNK MAPK activation.

Conclusions

Protection by A, antagonist, systemically administered
beginning 1 hour after SCI, is afforded centrally and is
attributable to precocious antagonism of excessive gluta-
mate transmission and of the ensuing inflammatory
cascade.

Protective effects afforded by A,, agonist, systemically
administered beginning 1 hour after SCI, are likely due
to peripheral actions that may mediate inflammatory
responses.

When attempting to use adenosine A,, active drugs
to protect against SCI, attention should be given to the
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dose of antagonists to be used and to administration
time after injury. It is likely that A,, antagonists, at low
doses, provide protection by control of excessive excito-
toxicity, while A, agonists provide protection by con-
trolling a massive infiltration in the hours after SCI.
Results reported in the present work might be useful for
envisaging novel strategies for control of acute SC injury
and later secondary injury.
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