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Pancreatic cancer remains a lethal type of cancer with poor prognosis. Molecular classification enables in-depth, precise prognostic
assessment. This study is aimed at identifying a robust and simple mRNA signature to predict the overall survival (OS) of
pancreatic cancer (PC) patients. Differentially expressed genes (DEGs) between 45 paired pancreatic tumor samples and adjacent
healthy tissues were selected. For risk determination, a LASSO Cox regression model with DEGs was used to generate the OS-
associated risk score formula for the training cohort containing 177 PC patients. Another five independent datasets were used as
the testing cohort to determine the predictive efficiency for further validation. In total, 441 DEGs were selected after considering
the enrichment of classical pathways, such as EMT, cell cycle, cell adhesion, and PI3K-AKT. A five-gene signature for risk
discrimination was established with high efficacy using LASSO Cox regression in the training group. External validation showed
that patients identified by the gene expression signature to be in the high-risk group had poorer prognosis compared with the low-
risk patients. Further investigation identified the differential epigenetic modification patterns of the five genes, which indicated
their roles in tumor progression and their effect on therapy. In conclusion, we constructed a robust five-gene expression signature
that could predict the OS of PC patients, offering a new insight for risk discrimination in daily clinical practice.

1. Introduction

Although great improvements have been achieved in detection
and treatment of many types of highlymalignant tumors, such
as lung and breast cancers, the overall survival (OS) and prog-
nosis of pancreatic cancer (PC) remain poor, with a five-year
survival rate of only around 8% [1]. Surgical resection offers
the only chance for long-term survival, since PC is naturally
resistant to chemo- and radiotherapy. Only about 20% of
patients have the opportunity to receive surgical resection,
and themedianOS is only around 24months [2]. In daily clin-
ical practice, TNM staging formulated by AJCC is used to
determine the course of the treatment. However, even two

patients at the same TNM stage may have totally different
prognoses [3]. This means that clinical histopathological clas-
sification has inherent limitations in predicting the prognosis
for PC patients, and thus, identification of new biomarkers
for prognostic assessment is urgently required [4].

With the development of next-generation sequencing,
genetic markers have been pursued for cancer classification,
and these have come to play an important role in the assess-
ment of prognosis and the best course of treatment. The term
“molecular subtypes” refers to tumors with similar morphol-
ogy but with very different clinical features. Although molec-
ular subtyping is a highly complex system, it is the major
diagnostic and prognostic strategy in clinical practice [5].
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For instance, breast cancer is divided into different subtypes
based on the markers ER, PR, and HER2, and each subtype
is associated with different treatment modalities and overall
survival. A similar pattern has been determined for EGFR
and ALK in non-small-cell lung adenocarcinoma [6, 7].
However, the much-needed investigation of PC subgroups
is still in its infancy. Scholars previously attempted to classify
PC according to the expression patterns of single genes based
on studies which showed the relevance of these genes to OS.
However, despite the promising progress in the laboratory,
no significant improvement has been achieved in the clinic.

Transcriptomic sequencing has provided new opportuni-
ties and already helped make some achievements, in PC clas-
sification. On the one hand, Collisson et al. classified PC into
three subtypes based on a 62-mRNA gene expression signa-
ture and named them classical, quasimesenchymal, and
exocrine-like tumors. These three groups differed in the sur-
vival time of the patients and sensitivity to chemotherapeu-
tics [8]. On the other hand, Moffitt et al. divided PC into
two subtypes, basal-like and stromal, of which the former
one had a worse prognostic outcome. Stromal subtypes were
further divided into two groups, “normal” and “activated,”
which immensely differed from each other in terms of their
prognosis [9]. Based on these two studies, Bailey et al. used
RNA-seq of 96 genes and 232 microarray data and identified
ten key signaling pathways in PC. They then accordingly
divided PC into four subtypes—squamous, immunogenic,
pancreatic progenitor, and ADEX [10]. Wartenberg et al.
classified PC into three subtypes according to their immune
status: immune-rich, immune-exhausted, and immune-
escape. These three groups greatly differed from each other
in their prognostic outcomes [11].

Molecular subtype classification based on gene expres-
sion signatures can be used for prognostic and therapeutic
assessment, including surgery and chemotherapy options,
even potentially during early stages of the disease. In this
respect, there has already been some progress in other tumor
types. For instance, Li et al. established a four-miRNA signa-
ture for predicting trastuzumab’s effect on HER2-positive
breast cancer patients [12]. Zhou et al. established a seven-

miRNA detection system for early diagnosis of hepatocarci-
noma, and this system is currently in use for diagnostic
assessment in clinics [13]. However, a similar approach has
not been comprehensively pursued for PC, and there have
been only a few studies. Taking this into consideration, we
used meta-analysis on pooled datasets, totaling 875 PC
patients’ samples. The entire dataset included transcriptomic
sequencing data, survival information, and epigenetic back-
ground. Using this, we determined a multigene expression
signature that predicts the OS and analyzed the mechanism
underlying this pattern for the development of potential ther-
apies in the future.

2. Materials and Methods

2.1. Data Availability. The raw gene expression data and
corresponding clinical information of pancreatic patients
were downloaded from the Gene Expression Omnibus
(GEO, https://www.ncbi.nlm.nih.gov/gds/). The processed
TCGA data was derived from UCSC-Xena (https://
xenabrowser.net/). These samples had been profiled using
whole-genome DNA microarray (Affymetrix or Agilent)
and RNA-seq (Illumina). The datasets contained 875
patient data, including 555 patients with available survival
data. The dataset of TCGA was used as the training cohort
after removing the patients that lacked survival data infor-
mation. The dataset of GSE28735 was processed to obtain
the differentially expressed genes between pancreatic can-
cer and adjacent normal tissues. The datasets of
GSE21501, GSE57495, GSE62165, GSE62452, GSE79668,
and Bailey et al., 2016 served as the independent valida-
tion cohorts. The information about all the datasets is
shown in Table 1 and Supplementary Table 3.

2.2. Normalization and Annotation of GEO Data and TCGA
Data. First, we normalized eachDNAmicroarray-based dataset
using the RobustMultichip Average (RMA)method for the raw
Affymetrix data derived from GEO. Then, we mapped hybrid-
ization probes across the different technological platforms with
the corresponding SOFT-formatted family files in R. When

Table 1: Characterization of the included datasets.

Datasets Study Platform Cases Description

GSE28735 Zhang et al. 2012 Affymetrix HG-1.0 ST 90 45 pairs of tumor with adjacent healthy tissues

GSE21501 Stratford et al. 2010
Agilent-014859 WHG

4X44K
132 102 patients with survival data

GSE57495 Chen et al. 2015 Affymetrix 63 63 patients with survival data

GSE79668 Kirby et al. 2016
RNAseq, Illumina

Hiseq2000
51 51 patients with survival data

Bailey_ICGC_PACA_
AU

Bailey et al. 2016 RNAseq Illumina 96 96 patients with survival data

GSE62165 Janky et al. 2016 Affymetrix HG-U219 131
118 surgically resected PDAC and 13 healthy

tissues

GSE62452 Yang et al. 2014 Affymetrix HG-1.0 ST 130
66 patients with survival data; 69 tumors + 61

nontumors

TCGA
TCGA_PAAD_UCSC_

Xena
RNA Illumina v3 182 177 patients with survival and clinical data
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multiple probes were mapped to the same gene symbol, we cal-
culated the average expression of the genes in the dataset. For
the data from the Agilent; TCGA; Bailey et al., 2016;
GSE62165; and GSE79668 datasets, we used the available nor-
malized data. The datasets above were log2-transformed.

2.3. Selection of the Differentially Expressed Genes and
Construction of LASSO Cox Regression Model. The
GSE28735 dataset consisted of 45 pairs of pancreatic tumor
and adjacent healthy tissues. We used these datasets to identify
the differentially expressed genes. The genes with significant
expression differences were defined based on the following
parameters: FDR < 0:05, ∣log 2fc ∣ >1. Having identified 441
differentially expressed transcripts, we sought to establish an
association with patient outcomes. Then, we merged the differ-
ently expressed gene list derived from the GSE28735 dataset
with the TCGA (n = 177) dataset to generate the training
cohort. Next, the logical regression analysis with Least Absolute
Shrinkage and Selection Operator (LASSO) was applied to
select the gene expression signature [14], which is a selection
method that handles the high-dimensional regression variables
with no prior feature selection step by shrinking all regression
coefficients toward zero and thus forcing many regression var-
iables to be exactly zero. The penalty regularization parameter
lambda was chosen via 10-fold cross-validation cv. glmnet,
which is implemented in the R package glmnet [15]. The
lambda was finalized using the lambda:min = 0:2215, which is
the value of lambda giving the minimum mean cross-
validated error. Finally, we obtained five-gene expression signa-
tures and corresponding coefficients.

2.4. Establishment of the Risk Score Formula. Based on the
expression levels of the five genes, a formula was constructed
to calculate an OS risk score for each patient as follows:

Risk score = 〠
N

i=1
Exp ið Þ ∗ Coefficient ið Þ: ð1Þ

In our risk score formula, N (N = 5) is the number of
genes, Exp is the expression value of each gene, and
Coefficient is their corresponding coefficient from the
LASSO Cox regression. In this case, we would be able to gen-
erate a risk score for each patient, from which patients could
be divided into high- and low-risk score groups with an opti-
mal cutoff score determined by X-tile plots [16] based on the
association with OS.

2.5. Receiver Operating Characteristic (ROC) Curve Analysis.
Based on the LASSO Cox regression, a group of four genes
were selected; ROC was employed to demonstrate the sensi-
tivity and specificity of different variables by risk score. The
prognosis performance was evaluated using a time-
dependent receiver operating characteristic (ROC) curve
analysis [17]. In order to evaluate the predictive accuracy
and robustness of our prognostic model, AUC at 1 year, 2
years, and 3 years was calculated in the training and different
validation cohorts according to the five-gene expression sig-
nature. The spanning parameter of the NNE approach was

span=0:25 × nobs−0:20, which was performed in R package
survivalROC [17].

2.6. Overall and Stratified Survival Analysis. According to the
risk score formula, we divided each patient into high- or low-
risk groups with the optimal cutoff value derived from the
training cohort. The Kaplan-Meier method was used to
assess the difference in the survival rates of high- and low-
risk patients. Then, univariate and multivariate Cox regres-
sion survival analysis was performed to evaluate the various
clinicopathological features, such as age, gender, tumor stage,
and grades. Moreover, to further explore the impact of clini-
cal pathological features on the value of risk score, stratified
survival analysis related to age at the time of diagnosis (>60
or ≤60), gender (male or female), AJCC stage (I/IIA or
IIB/III/IV), T stage (T1/T2 or T3/T4), N stage (N+ or N-),
and histological grade (G1/G2 or G3/G4) was conducted. A
P value < 0.05 according to the log-rank test was considered
significant. The hazard ratio (HR) and 95% confidence inter-
val (CI) were calculated. All of these statistical analyses were
performed in R or corresponding R packages survival and
survminer.

2.7. Pathway Enrichment Analysis. The enrichment analysis
was performed to predict the biological processes and KEGG
pathways of the DEGs in an online tool—Metascape [18].
The GSEA was shown to predict the hallmarks of the tumor
and healthy pancreas enrichment [19]. Both DEGs and
GSEA input data were derived from GSE28735.

2.8. Epigenetic Modification Analysis.DNAmethylation data is
from TCGA-PAAD Illumina 450Kmethylation microarray. The
histone modification ChIP-seq data (H3K4me3, H3K27ac) were
derived from GEO and ENCODE [20] (data accession:
GSM3376452, GSM2466034, GSM1574235, ENCSR520BIM,
GSM2700597, ENCSR-596PFU, GSM945261, GSM2286771,
GSM1574256, ENCSR876DCP, and ENCSR554RQQ). The Cis-
trome Data Browser [21], which has one pipeline to process all
containing ChIP-seq data, was used to link WashU Browser
online visualization.

3. Results

3.1. Preparation of Clinical Pancreatic Disease Datasets and
Construction of the Workflow. A total of 875 datasets cover-
ing 555 patients with available survival data were included
in this study (Table 1). The dataset of GSE28735 was used
for the selection of differentially expressed genes (DEGs)
and functional enrichment analysis. For this, we used the
TCGA-PAAD dataset, which contained 177 PC patients with
detailed survival data, combined with the selected DEGs to
construct a gene expression signature prognostic risk score
model based on the LASSO Cox regression. The GSE21501
(102 patients), Bailey et al., 2016 (96 patients), GSE57495
(63 patients), GSE62165 (131 patients), GSE62452 (66
patients), and GSE79668 (51 patients) cohorts were used
for further validation. The workflow of the experimental
strategy is shown in Supplementary Figure 1.
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Figure 1: Continued.
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3.2. Selection of DEGs between Pancreatic Cancer and
Adjacent Normal Tissues. In order to select specific genes
associated with pancreatic tumorigenesis, we first used the
GSE28735 dataset, which contained the gene expression
information of 45 pairs of pancreatic cancer and adjacent
normal tissues. The supervised analysis compared the
expression profiles of the 45 pairs of pancreatic cancer and
adjacent normal tissues using the paired t-test in R. A false
discovery rate (FDR) was applied to correct for the multiple
testing hypothesis, and the significant genes were selected
by the following threshold: FDR < 0:05, ∣log2 ðfold changeÞ
∣ >1. The results indicated that 441 genes were differentially
expressed between the two groups (Figure 1(a)). Of these,
238 upregulated genes were involved in cell adhesion and cell
cycle by Gene Ontology (GO) analysis, while 203 genes
related to secretion function were downregulated compared
to the tumor with normal tissues. Further analysis by gene
set enrichment analysis (GSEA) showed that the p53, cell
cycle, cell adhesion junction, PI3K-AKT-mTORC, Notch,
TGFβ, epithelial-mesenchymal transition (EMT), and other
cancer-related signaling pathways were enriched in the
tumors, which was in accordance with previous studies
(Figures 1(c)–1(e) and Supplementary Figure 2A-L).

3.3. Establishment of a Five-Gene Expression Signature in
Pancreatic Cancer. To identify the mRNAs associated with
OS in PC patients, we downloaded the transcriptome data
from TCGA, which contained 177 patients with detailed sur-
vival information, for further investigation. The DEGs were
merged with TCGA transcriptome data to form the training
dataset. We observed collinearity among the DEGs
(Figure 2(a)) in the training cohort, which would prejudice

the results of traditional Cox regression analysis. Therefore,
the LASSO Cox regression model selects the prognostic
mRNAs to predict the survival-associated genes
(Figures 2(b) and 2(c)). Finally, five genes out of 441 DEGs
were selected: CHGA, COL17A1, ITGB6, LAMC2, and
S100P (Table 2). Among these, COL17A1, ITGB6, LAMC2,
and S100P were upregulated in tumor tissues, whereas only
CHGA was downregulated. The five-gene expression levels
were further validated in an independent cohort
(GSE62165), which contains 118 neoplastic and 13 normal
tissues. There was a significant differential expression in pan-
creatic cancer patients compared to normal ones (P < 0:001),
suggesting that they might be a potential biomarker signature
for pancreatic patients (Figures 3(a)–3(e)). Next, in order to
explore the interaction network of the identified gene signa-
ture, we generated a protein-protein interaction network
(PPI) from DEGs using the STRING online tool. Clustered
by MCODE algorithm [22] in Cytoscape [23], two modules
with the five-gene signature were selected (Figure 4); each
module protein might form a large complex to regulate some
biological process. The GO and KEGG analysis showed that
the Cluster 1 genes were significantly enriched in the cell
adhesion and ECM-receptor interaction signal pathways,
while the Cluster 2 genes participated in the pancreatic secre-
tion process (Supplementary Figure 3).

3.4. Construction of Prognostic Risk Score Model for Long-
Term Survival Prediction. Based on the expression levels of
these five genes, the following risk score formula was gener-
ated for further evaluation from the TCGA training cohort:
Risk score = −0:0481 ∗ CHGA + 0:0402 ∗ COL17A1 +
0:0697 ∗ ITGB6 + 0:0021 ∗ LAMC2 + 0:0063 ∗ S100P.

NES = 1.58
P = 0.015
FDR = 0.249

0.5

0.4

0.3

0.2
En

ric
hm

en
t s

co
re

 (E
S)

0.1

0.0

1.0

0.5

0.0

Ra
nk

ed
 li

st 
m

et
ric

 (S
ig

na
l2

N
oi

se
)

–0.5

0 2,500 7,500 12,500 17,5005,000 10,000

Rank in ordered dataset

15,000 20,000

‘Tumor’ (positively correlated)

‘Normal’ (negatively correlated)

Zero cross at 9208

Enrichment plot: KEGG_adherens_junction

Enrichment profile
Hits
Ranking metric scores

(d)

NES = 1.59
0.6

0.5

0.4

0.3

0.2

En
ric

hm
en

t s
co

re
 (E

S)

0.1

0.0

1.0

0.5

0.0

Ra
nk

ed
 li

st 
m

et
ric

 (S
ig

na
l2

N
oi

se
)

–0.5

0 2,500 7,500 12,500 17,5005,000 10,000

Rank in ordered dataset

15,000 20,000

‘Tumor’ (positively correlated)

‘Normal’ (negatively correlated)

Zero cross at 9208

Enrichment plot: KEGG_cell_cycle

P = 0.037
FDR = 0.244

Enrichment profile
Hits
Ranking metric scores

(e)

Figure 1: Identification of the genes differentially expressed between tumor and normal tissues. (a) Hierarchical clustering of DEGs in 45
paired PC (in green) and adjacent normal tissue samples (in red). Each row represents an individual differentially expressed gene, and
each column represents an individual sample. Pseudocolors indicate relative expression levels from low to high on a log2 scale from -8 to
8; (b) GO biological process analysis for the upregulated and downregulated DEGs in Metascape online tool; (c–e) GSEA of the expression
profile of the tumor samples in comparison to that of normal tissues from the GSE28735 dataset.
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Figure 2: Establishment of a gene expression signature for overall survival prediction in the training cohort. (a) Hierarchical clustering shows
the collinear expression of the DEGs. A correlation matrix heatmap of DEGs in the training cohort, in which each cell represents the Pearson
correlation between the row and column of DEGs, the heatmap bar color along with the change of correlation coefficient from -1 to 1; (b, c)
selection of the OS-associated genes by the LASSO Cox regression model. LASSO coefficient profiles of 441 differentially expressed associated
genes. Each curve corresponds to a gene; the vertical line is drawn at the value lambda = 0:2215 chosen by 10-fold cross-validation.

Table 2: Characterization of the five candidate genes in hg 19 genome.

Gene symbol Description Expression status Coordinate P valuea χ2b Coefficientc

CHGA Chromogranin A Down tumor/normal Chr14:93389445-93401638 <0.0001 18.35 -0.0481

COL17A1 Collagen type XVII alpha 1 chain Up tumor/normal Chr10:105791046-105845638 <0.0001 21.05 0.0402

ITGB6 Integrin subunit beta 6 Up tumor/normal Chr2:160956182-161110349 <0.0001 16.13 0.0697

LAMC2 Laminin subunit gamma 2 Up tumor/normal Chr1:183147952-183214262 0.00015 14.44 0.0021

S100P S100 calcium binding protein P Up tumor/normal Chr4:6695566-6698897 0.0023 9.256 0.0063
aDerived from the univariate Cox proportional hazards regression analysis in the training cohort (log-rank test). bDerived from the univariate Cox proportional
hazards regression analysis in the training cohort (Chi2 test). cDerived from the LASSO Cox regression analysis coefficients in the training cohort.
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Using this formula, PC patients in the training cohort were
divided into high- and low-risk score subgroups according
to the optimal selected cutoff score (0.46) calculated by X-
tile plots [16] based on their association with the OS (Supple-
mentary Figure 4). Figure 5(a) indicates the division of PC
patients into high- and low-risk groups by this formula,
and Figure 5(b) shows the expression patterns of the five
genes from low- to high-risk score groups. The results
indicated that the distribution of mortality in the high-risk
group was significantly higher than that in the low-risk
group (67.2% vs. 42.7%, P < 0:0001, Figures 5(c) and 5(d)).
In addition, Kaplan-Meier analysis indicated that patients
with high- and low-risk scores had a median OS time of
15.6 months and 24.6 months, respectively (HR = 2:46, 95%
CI = 1:62‐3:73, P < 0:0001, Figure 5(e)), and the median
disease-free survival time was 18.5 vs. 40.3 months
(HR = 1:73, 95%CI = 1‐2:98, P = 0:045, Figure 5(f)). To
know about the prognostic efficiency of our model with the
survival time, we performed the time-dependent ROC
curve analysis. The ROC 1-, 2-, and 3-year survival
predicted by the risk score is depicted, with AUCs of 0.654
(1-year), 0.615 (2-year), and 0.651 (3-year), respectively

(Supplementary Figure 5A). These results imply that the
five-gene expression signature has relatively high sensitivity
and specificity in predicting the OS of PC patients.

3.5. External Validation of the Five-Gene Prognostic Signature
with Different PC Datasets. To further validate the efficiency
of this five-gene expression signature, we applied the formula
and cutoff to five external independent validation datasets.
Patients of each cohort were then divided into high- or
low-risk subgroups. In the GSE21501 cohort, the five-gene
signature expression pattern and OS analysis were similar
to those in the training cohort (P < 0:001, HR = 2:61, 95%
CI = 1:47‐4:62, Figures 6(a) and 6(b)). In the Bailey et al.,
2016 cohort, the OS of patients discriminated by the gene
expression signature was not statistically significant between
the high- and low-risk groups (P = 0:064, HR = 2:62, 95%CI
= 0:94‐7:25, Figures 6(c) and 6(d)). These hazard ratio
values indicate that the gene expression signature could still
be a potential risk factor in this cohort. Three other GEO
datasets were also independently validated; the overall
median survival time of high- and low-risk groups in the
GSE57495 cohort was 16.2 months and 31.6 months,
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Figure 3: The expression of five genes in PC and normal tissues. (a) CHGA; (b) COL17A1; (c) ITGB6; (d) LAMC2; (e) S100P. P values were
calculated by a t-test on the log2 RMA normalization of the expression data.
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respectively (HR = 1:86, 95%CI = 1:0‐3:43, P = 0:047,
Figures 6(e) and 6(f)). In the GSE62452 cohort, he median
survival time of high- and low-risk groups was 13.8 months
and 45.9 months (HR = 3:24, 95%CI = 1:46‐7:18, P = 0:003,
Figures 6(g) and 6(h)), and in the GSE79668 cohort, they
were 16.5 months and 96.9 months, respectively (HR = 4:44
, 95%CI = 1:83‐10:73, P = 0:0009, Figures 6(i) and 6(j)).
Time-dependent ROC was conducted in validation dataset
analysis, showing a robust model constructed from our
five-gene signature (Supplementary Figure 5B-E). The
above results indicate the high predictive efficiency of this
five-gene expression signature in PC patients.

3.6. Univariate and Multivariate Analysis Combined with
Stratified Survival Analysis.Univariate and multivariate sur-
vival analysis was performed on the five-gene signature
and clinicopathological features for OS. We found that
the five-gene signature was an independent prognostic fac-
tor of PC patients between the training and external inde-
pendent cohorts (Table 3, Supplementary Table 1). The
univariate analysis showed that the AJCC, T, and N
stages and histological grade had relatively significant
impacts on prognosis. Therefore, we performed stratified
survival analysis by the individual clinicopathological
features to evaluate the prognostic values of our risk
score model in the training cohort and external
independent datasets. According to the results of
stratified analysis (Supplementary Table 2), we concluded
that this signature pattern could be further used to
discriminate those patients in the relatively late-stage
AJCC IIB-IV stages (Figure 7), T3/T4 tumors
(Figures 8(a) and 8(b)), lymph node metastasis

(Figures 8(c) and 8(d)), and lower-grade tumor G1 and
G2 tumors (Figures 8(e) and 8(f)). This observation
indicates that the five-gene expression signature also
could be applied in clinicopathological subgroups, which,
to some extent, indicated the reliability and general
applicability of our risk score model.

3.7. Epigenetic Regulation of the “Five Genes” in PC. In order
to clarify the mechanism underlying the expression pattern
of these five genes, and given that epigenetic modifications
are highly related to tumorigenesis, we examined their epige-
netic regulation by comparing promoter DNA methylation
and histone modification markers of the five genes in pancre-
atic tumor and healthy cells. DNA methylation analysis
showed that COL17A1, LAMC2, and S100P gene promoter
methylation was downregulated (Figures 9(b), 9(d), and
9(e)), while CHGA gene promoter methylation was signifi-
cantly upregulated (Figure 9(a)), which was in accordance
with the gene expression pattern (Figure 3). Although meth-
ylation of the ITGB6 promoter was not obviously different
(Figure 9(c)), the activated histone markers, H3K27ac and
H3K4me3, were significantly upregulated in the ITGB6 pro-
moter in the tumor cells (Figure 10(c)). Likewise, the pro-
moter regions of the other upregulated genes, S100P,
COL17A1, and LAMC2, were also associated with the acti-
vated chromatin state (Figures 10(b), 10(d), and 10(e)), while
the downregulated gene CHGA lacked activated histone
modification (Figure 10(a)). These observations presumably
elucidate that the differential expression of these genes
between healthy and PC cells was coregulated by multiple
epigenetic factors.
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Figure 4: Five genes of protein-protein interaction (PPI) networks clustered by MCODE algorithm. (a) Cluster 1 module contains COL17A1,
ITGB6, LAMC2, and S100P protein; (b) Cluster 2 module contains CHGA protein. The color of a node in the PPI network reflects the log2
(fold change) value of the gene expression.
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Figure 5: The five-gene signature-based risk score in the prognosis of survival in the training cohort. (a) Risk score distribution of the final
five-gene expression signature in high- and low-risk groups; (b) the expression profiles of the five-gene signatures from low- to high-risk
score; (c) the vital survival status of patients in the high- and low-risk cohorts; (d) distribution of mortality rate in high- and low-risk
score groups. (e) Kaplan-Meier analysis with log-rank test for overall survival of the PC patients in the high- and low-risk score groups; (f
) Kaplan-Meier analysis with log-rank test for disease-free survival of the PC patients in the high- and low-risk score groups.
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Figure 6: Continued.
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4. Discussion

Clinical histopathological parameters, such as TNM stage
and the level of tumor differentiation, are currently used
for prognostic prediction of PC patients. However, this
system has obvious limitations due to the lack of under-
standing of tumor heterogeneity. Genetic molecular sub-
typing of PC is only in its infancy, but current progress
has already shown its potential value to discriminate
patients into different subtypes, related to very different
OS and therapeutic response. Along the same line, based
on the development of cancer genomics, use of gene
expression signatures for clinical prediction has also made
great progress. Haider et al. established a 36-gene expres-
sion signature for prognosis with satisfactory results [24].
Klett et al. reported a 17-gene subset that could be applied
for prognostic evaluation and early diagnosis and could
discriminate pancreatic cancer from nontumor tissues,
pancreatic precursor lesions, and pancreatitis [25]. Cur-
rently, blood-based CA 19-9 is widely used for diagnosis
and prognosis in PC patients; however, due to its low sen-
sitivity and specificity, clinical prediction is not satisfac-
tory. Furthermore, there are CA 19-9-negative patients
due to limited Lewis antigen [26].

Genetic sequencing offers a new approach to precision
medicine. Moreover, current targeted cancer therapy has essen-
tially been established on the results of studies about gene detec-
tion [27–29]. We therefore attempted to construct a gene
expression signature for prognostic assessment. This study

was built on a clinical problem: some early-stage PC patients
do not show a favorable survival rate even in comparison to
the OS of late-stage PC patients who underwent resection. This
observation indicates that histopathological classification is not
sufficient for the prognostic and therapeutic assessment. We
hypothesized that molecular differences between the samples
categorized into the same groups by traditional approaches
might be the underlying reason. Thus, prognostic assessment
using a gene expression signature could allow patients to avoid
unnecessary or even detrimental treatment modalities, such as
operations, or chemotherapy. The ideal prognostic model
should have high prediction efficiency with as few genes as pos-
sible, to increase clinical practicality. Therefore, we first selected
PC-associated genes by screening the differentially expressed
genes between 45 pairs of PC and adjacent healthy tissues. Next,
177 PC patients with recorded survival information were used
as the training cohort to construct the prognostic model by
LASSOCox regression. Finally, a five-gene expression signature
with a risk score equation was constructed. In order to test the
efficiency of this signature, several other datasets were used as
the validation cohorts. The results were also highly positive
given that this signature correlated with DFS and discriminated
patients in several different cohorts into high- and low-risk
groups, who also had different prognoses. These results indi-
cated that the prognosis of some patients in the high-risk groups
was poor, and these patients even belonged to an early-stage
category, such as IIA. In lymph node-positive, T3, and T4 PC
patients, the low-risk groups still had a relatively better progno-
sis compared to that of the high-risk groups. These results were
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Figure 6: Performance assessment of the five-gene expression signature model in another five external independent validation datasets. (a, c,
e, g, i) The heatmap and distribution of the five-gene expression profiles from low- to high-risk scores for the five external independent
validation cohorts. (b, d, f, h, j) Kaplan-Meier overall survival analysis with log-rank test for the PC patients in high- and low-risk groups
in five external independent validation cohorts.

12 BioMed Research International



T
a
bl
e
3:
U
ni
va
ri
at
e
an
d
m
ul
ti
va
ri
at
e
C
ox

re
gr
es
si
on

an
al
ys
is
of

fi
ve
-g
en
e
si
gn
at
ur
e
an
d
cl
in
ic
op

at
ho

lo
gi
ca
lc
ha
ra
ct
er
is
ti
cs

w
it
h
ov
er
al
l
su
rv
iv
al
in

th
e
tr
ai
ni
ng

an
d
an
ot
he
r
tw
o
ex
te
rn
al

va
lid

at
io
n
da
ta
se
ts
.

V
ar
ia
bl
e

T
ra
in
in
g
(T
C
G
A
)
co
ho

rt
G
SE

21
50
1
co
ho

rt
G
SE

79
66
8
co
ho

rt

N
U
ni
va
ri
at
e

M
ul
ti
va
ri
at
e

N
U
ni
va
ri
at
e

M
ul
ti
va
ri
at
e

N
U
ni
va
ri
at
e

M
ul
ti
va
ri
at
e

P
H
R
(9
5%

C
I)

P
H
R
(9
5%

C
I)

P
H
R
(9
5%

C
I)

P
H
R
(9
5%

C
I)

P
H
R
(9
5%

C
I)

P
H
R
(9
5%

C
I)

A
JC
C
st
ag
e

I-
II
A
vs
.I
IB
-I
V

48
/1
25

0.
01
2

1.
93

(1
.1
5-

3.
24
)

0.
68

1.
37

(0
.3
0-

6.
27
)

26
/7
1

0.
04
4

1.
83

(1
.0
-

3.
29
)

0.
05
9

1.
83

(0
.9
7-

3.
42
)

13
/3
8

0.
25

1.
52

(0
.7
4-
3.
1)

0.
98

0.
97

(0
.1
1-

8.
86
)

T
st
ag
e

T
1/
T
2
vs
.T

3/
T
4

31
/1
44

0.
03

2.
02

(1
.0
7-

3.
81
)

0.
87

1.
06

(0
.5
1-

2.
23
)

18
/8
0

0.
85

0.
94

(0
.5
1-

1.
74
)

0.
24

0.
68

(0
.3
6-

1.
30
)

15
/3
6

0.
05

1.
97

(0
.9
7-

3.
98
)

0.
36

1.
48

(0
.6
3-

3.
49
)

N
st
ag
e

N
0
vs
.N

+
50
/1
18

0.
00
3

2.
16

(1
.2
8-

3.
65
)

0.
58

1.
48

(0
.3
6-

6.
00
)

28
/7
3

0.
03
5

1.
83

(1
.0
4-

3.
22
)

0.
08
7

1.
74

(0
.9
2-

3.
28
)

14
/3
7

0.
29

1.
44

(0
.7
2-

2.
87
)

0.
96

0.
97

(0
.1
2-

7.
69
)

G
ra
de

G
1/
G
2
vs
.

G
3/
G
4

12
5/
50

0.
05

1.
54

(0
.9
9-

2.
37
)

0.
53

1.
17

(0
.7
2-

1.
89
)

G
en
de
r

Fe
m
al
e
vs
.m

al
e

80
/9
7

0.
31

1.
24

(0
.8
2-

1.
86
)

0.
51

0.
86

(0
.5
5-

1.
35
)

19
/3
2

0.
50
1

1.
24

(0
.6
6-

2.
30
)

0.
87

1.
05

(0
.5
5-

2.
01
)

A
ge

(y
ea
rs
)

>6
0
vs
.≤

60
58
/1
19

0.
12

1.
42

(0
.9
0-

2.
24
)

0.
13

1.
49

(0
.8
9-

2.
51
)

18
/3
3

0.
35

1.
34

(0
.7
2-

2.
49
)

0.
61

1.
19

(0
.6
1-

2.
31
)

Si
gn
at
ur
e

H
ig
h
vs
.l
ow

ri
sk

67
/1
10

<0
.0
00
1

2.
46

(1
.6
2-

3.
73
)

0.
00
2

2.
05

(1
.2
9-

3.
24
)

27
/7
5

<0
.0
01

2.
61

(1
.4
7-

4.
62
)

0.
00
5

2.
31

(1
.2
8-

4.
18
)

38
/1
3

0.
00
09

4.
44

(1
.8
3-

10
.7
3)

0.
00
44

3.
84

(1
.5
2-
72
)

13BioMed Research International



+++++++++++
+++++

+++
+
+++++++ ++ ++ ++

+

++++

++++
++

+++
++

+0.00

0.25

0.50

0.75

1.00
O

ve
ra

ll 
su

rv
iv

al
 ra

te
 (%

)

0 20 40 60 80
Time (months)

Training cohort: stages IIB–IV 

HR (95%CI) = 2.124 (1.339−3.369)
Logrank P = 0.001

MST = 20.9 M

MST = 15.3M

Risk score

+
+

Low (n = 71)
High (n = 54)

(a)

+

+
+

+
++++ + +

+

++
+

+
++

+

+

+
0.00

0.25

0.50

0.75

1.00

Time (months)

GSE21501 cohort: stages IIB–IV 

O
ve

ra
ll 

su
rv

iv
al

 ra
te

 (%
)

0 10 20 30 40 50 60

HR (95%CI) = 1.76 (0.92−3.37)
Logrank P = 0.08

MST = 14 M

MST = 18 M

Risk score

+
+

Low (n = 48)
High (n = 23)

(b)

++

+

++ +

++
+ + ++ ++

0.00

0.25

0.50

0.75

1.00

Time (months)

Bailey et al., 2016 cohort: stages IIB–IV 

O
ve

ra
ll 

su
rv

iv
al

 ra
te

 (%
)

0 10 20 30 40 50

HR (95%CI) = 2.8 (0.98−8.29)
Logrank P = 0.05

MST = 15 M

MST = 25.8 M

Risk score

+
+

Low (n = 8)
High (n = 54)

(c)

+++

+ +
0.00

0.25

0.50

0.75

1.00

Time (months)

GSE57495 cohort: stages IIB–IV 

O
ve

ra
ll 

su
rv

iv
al

 ra
te

 (%
)

0 10 20 30 40

HR (95%CI) = 2.06 (0.94−4.49)
Logrank P = 0.047

MST = 13.6 M

MST = 23.2 M

Risk score

+
+

Low (n = 18)
High (n = 15)

(d)

+
+ + +

++

++ +
+
+

+
0.00

0.25

0.50

0.75

1.00

Time (months)

GSE6245 Cohort: Stage IIB–IV 

O
ve

ra
ll 

su
rv

iv
al

 ra
te

 (%
)

0 20 40 60 80

HR (95%CI) = 2.57 (1.011−6.55)
Logrank P = 0.047

MST = 13.8 M

MST = 29 M

Risk score

+
+

Low (n = 11)
High (n = 41)

(e)

+

0.00

0.25

0.50

0.75

1.00

Time (months)

GSE79668 cohort: stages IIB+IV

O
ve

ra
ll 

su
rv

iv
al

 ra
te

 (%
)

0 25 50 75 100

HR (95%CI) = 2.7 (1.03−7.08)
Logrank P = 0.043

MST = 18.9 M

MST = 22.5 M

Risk score

+
+

Low (n = 8)
High (n = 30)

(f)

Figure 7: The association between five-gene signature and overall survival in patients with stages IIB-IV. The Kaplan-Meier survival curve of
the training cohort (a) and the five external independent validation cohorts (b–f).
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Figure 8: The five-gene signature was associated with prognosis in patients with advanced-stage cancer. (a, b) Kaplan-Meier analysis of the
OS of patients with T3/4 stage in the training cohort and GSE21501 cohort; (c, d) Kaplan-Meier analysis of the OS of patients with lymph
node metastasis in the training cohort and GSE21501 cohort; (e, f) Kaplan-Meier analysis of the OS of patients with grade 1/2 stage in the
training cohort and GSE62452 cohort.
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congruent with our hypothesis that traditional histopathologi-
cal and blood-based CA 19-9 approaches were insufficient for
prognostic evaluation compared with the genetic classifiers
when tumor heterogeneity is taken into consideration.

Although this five-gene expression signature was tested suc-
cessful in different cohorts which contained hundreds of PC
patients, the potential mechanism affecting the expression of
these genes was still unclear. CHGA is a member of the chro-
mogranin/secretogranin family of neuroendocrine secretory
proteins found in the secretory vesicles of neurons and endo-
crine cells. It is involved in pancreatic beta cell secretion, nega-
tive regulation of insulin, and hormone secretion (Figure 1(b)).
In recent years, some previous works have revealed CHGA as a
novel biomarker for PC [30–32]. ITGB6 and LAMC2 had been
reported to be associated with activation of the EMT, cell adhe-
sion, TGFβ, PI3K-AKT, and MAPK pathways [33–39], which
are all involved in PC tumorigenesis. Additionally, these path-
ways were also enriched in our study (Figure 1 and Supplemen-
tary Figure 2). COL17A1 is a transmembrane protein, which
mediates cell adhesion and extracellular matrix organization.
It is underexpressed in breast cancer and overexpressed in
cervical and other epithelial cancers. The COL17A1 promoter
methylation status accurately predicts both the direction of

misexpression and the increasingly invasive nature of
epithelial cancers [40]. Our work also implied that COL17A1
was overexpressed and its promoter displayed aberrant DNA
methylation in PC compared to that in adjacent healthy
tissues (Figures 3(b) and 9(b)). S100P had been revealed to be
related to increased cancer cell invasion and metastasis in PC
[41, 42], and Matsunaga et al. had found S100P presence in
the duodenal fluid to be a useful diagnostic marker for
pancreatic ductal adenocarcinoma [43]. Next, we looked into
the involvement of epigenetic modifications. Without altering
the genetic sequence, epigenetic modification can regulate
gene expression at the transcriptional and posttranscriptional
levels, which has become the main target for cancer therapy
[44]. We found that H3K27ac and H3K4me3 modification
was significantly different between pancreatic cell lines and
normal pancreatic tissues (Figures 10(b)–10(e)), and these
epigenetic differences can cause differences in the expression
levels of these genes in tumor and adjacent healthy tissues.
Furthermore, epigenetic inhibition is currently a potential
cancer therapy, and some inhibitors have already been
approved for some types of cancer, such as vorinostat in T-
cell lymphoma and bortezomib in melanoma [45, 46].
Although some of these five prognosis-associated genes had
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Figure 9: Promoter methylation status of five genes between PC and normal tissues in TCGA Illumina 450K methylation dataset: (a) CHGA;
(b) COL17A1; (c) ITGB6; (d) LAMC2; (e) S100P.
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Figure 10: Continued.
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previously been used for therapeutic purposes, their epigenetic
regulations were unknown. Our results could offer new
insight for identifying new therapeutic targets.

There are still some limitations to our study. Firstly, clinical
parameters such as gender, age, medical history, (neo)adjuvant
chemotherapy, or radiotherapy were not always complete; thus,
we could not evaluate the relationship between the gene expres-
sion signature with these parameters in all the datasets. Further-
more, the input for our study was derived from public
databases, and hence, our study is retrospective. Validation with
a prospective study is needed.We are currently in the process of
evaluating this gene expression signature in blood, urine, and
saliva samples in order to clarify whether this signature can be
used for early detection through these routes. Simultaneously,
we are working on the identification of a gene expression signa-
ture to be used in patients undergoing chemotherapy.

5. Conclusion

Taken together, we established a novel model for robust bio-
marker identification for PC. Subsequent analysis and review
of previous works revealed the diagnostic and prognostic influ-
ence of the five-gene signature on PC. In the future, we believe
that therapeutic targeting of specific genes will be an effective
method.
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cohorts. Supplementary Table 3: statistics information of the
datasets included in this study. Supplementary Figure 1: the
workflow of construction and evaluation of our prognostic
model. Supplementary Figure 2: GSEA of the hallmarks and
KEGG pathway between PC and adjacent normal tissues.
A-G: the hallmarks enrichment of PC; H-L: KEGG pathway
enrichment in PDAC. Supplementary Figure 3: GO term
and KEGG pathway analysis for five genes related to protein
network annotation. A: Cluster 1 contains COL17A1, ITGB6,
LAMC2, and S100P; B: Cluster 2 contains CHGA. The bar-
plot is derived from the Metascape online tool. Supplemen-
tary Figure 4: X-tile plots of the five selected gene
expression signatures associated with the overall survival of
the patients in the training cohort and with the LASSO risk
values. Supplementary Figure 5: evaluation of gene expres-
sion signature-based risk score and robustness.
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