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Technological advances, lack of medical professionals, high cost of face-to-face

encounters, and disasters such as the COVID-19 pandemic fuel the telemedicine

revolution. Numerous smartphone apps have been developed to measure neurological

functions. However, their psychometric properties are seldom determined. It is unclear

which designs underlie the eventual clinical utility of the smartphone tests. We have

developed the smartphone Neurological Function Tests Suite (NeuFun-TS) and are

systematically evaluating their psychometric properties against the gold standard of

complete neurological examination digitalized into the NeurExTM app. This article

examines the fifth and the most complex NeuFun-TS test, the “Spiral tracing.” We

generated 40 features in the training cohort (22 healthy donors [HD] and 89 patients with

multiple sclerosis [MS]) and compared their intraclass correlation coefficient, fold change

between HD and MS, and correlations with relevant clinical and imaging outcomes.

We assembled the best features into machine-learning models and examined their

performance in the independent validation cohort (45 patients with MS). We show

that by involving multiple neurological functions, complex tests such as spiral tracing

are susceptible to intra-individual variations, decreasing their reproducibility and clinical

utility. Simple tests, reproducibly measuring single function(s) that can be aggregated to

increase sensitivity, are preferable in app design.

Keywords: reproducibility, clinical utility, smartphone tests, neurological functions, disability, upper extremity

function, dominant and non-dominant hand, multiple sclerosis

INTRODUCTION

Expert neurological examination is an art that is slowly but surely disappearing (1). The skilled
neurologist can reliably identify deficits in neurological function(s) and localize them to the specific
part of the central (CNS) or peripheral nervous system (PNS). An expert examiner can also
differentiate deficit that lacks anatomical substrate, by examining identical neurological function
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in different ways, noting inconsistencies, andmotivating a patient
to provide adequate effort. Such neurological examination takes
between 30 and 60min to perform and years to master. Because
of examiner dependency, the quantitative aspect of neurological
examination, especially when performed by different raters,
is less precise. Traditional neurological disability scales non-
algorithmically aggregate semi-quantitative ratings of different
neurological functions, usually selected by an individual [e.g.,
in Expanded Disability Status Scale, EDSS; (2)] or teams of
experts [e.g., in Scripps Neurological Rating Scale, SNRS; (3)],
into a single number. This is suboptimal for two reasons:
(1) the features of the neurological examination aggregated to
the disability scale are not data-driven and therefore may not
be optimal and (2) the lack of a defined algorithm causes
errors during the translation of the examination into a scale.
These drawbacks are eliminated by data-driven scales [such as
Combinatorial Weight-Adjusted Disability Scale, CombiWISE;
(4)] and digital tools that allow convenient documentation
of neurological examination in its entirety with automated,
algorithmically codified computation of relevant disability scales
[such as NeurExTM app; (5)].

However, these solutions are useless when the lack of expert
medical professionals, limited time for patient encounters, or
inability to examine patients in person due to pandemics
deprives patients of the benefit of this historically validated
tool. Therefore, there is a strong movement to supplement
neurological examination or, in some instances, to replace it,
by patient-autonomous tests of neurological functions (both
cognitive and physical) acquired via smartphones, tablets, or web
interphase (6–15).

While some of these apps are already marketed to patients,
they often lack careful assessment of their psychometric
properties against the gold standard of neurological examination
and imaging or electrophysiological measures of CNS (or PNS)
injury. Even a simple assessment of test-retest reproducibility
may be missing. For instance, while the work of Creagh et al.
(9) demonstrated the potential of the smartphone-based test
to predict 9-Hole Peg Test (9HPT) in the training cohort of
subjects with multiple sclerosis (MS), no evaluation of test-
retest reproducibility (or accuracy of 9HPT prediction in the
independent validation cohort) was provided.

Many of these apps use tests adopted from standard
neurological examination and modified to self-administered
digital tests. This is true for the Spiral tracing test examined
in this paper. Spiral tracing has been used in movement
disorders to identify tremors and quantify their severity. Its
digitalization offers automated identification and quantification
of the tremor frequency and amplitude by Fourier transformation
(16). Furthermore, digitalization of the shape(s) tracing allows
other quantitative measurements of speed and precision
of the tracing (by finger or stylus) which may reflect
neurological (dys)functions.

We have reviewed previous studies of digitalized spiral/object
tracing (9–11, 17) to derive a comprehensive set of digital
features (40 total) and determined their psychometric properties
(i.e., reproducibility, ability to differentiate patients with MS
from healthy donors (HD) and correlation with relevant

features of neurological examination, disability scales and
CNS tissue destruction visible on brain MRI) in the training
and independent validation cohorts of patients with MS. We
hypothesized that by virtue of aggregating multiple neurological
functions (i.e., vision, fine finger motoric, proprioceptive and
cerebellar functions) in the test performance, spiral tracing will
outperform simpler smartphone tests that we have evaluated
previously in the Neurological Function Tests Suite (NeuFun-
TS), such as finger or foot tapping, balloon popping, and
level test, which demonstrated comparable or even stronger
sensitivity and specificity to traditional non-clinician-acquired
disability measures, such as 9HPT (7, 18, 19). Specifically,
finger tapping, a simple motoric test consisting of tapping
a finger on the surface of a smartphone for 10 s as rapidly
as possible achieved Pearson correlation coefficients of up
to 0.75 with NeurEx-derived cerebellar functions, 0.73 with
motoric functions, and 0.69 for strength subscore of the motoric
functions. Analogous correlations were observed for the balloon
popping test, where a subject was required to tap a balloon
that randomly appeared at different locations of the smartphone
screen (i.e., balloon popping test). The level test, where a subject
is tilting smartphone screen to guide a “ball” that appears
at random locations at the periphery of the smartphone to
the designated center of the screen and holds the ball in the
center during the test achieves Spearman correlations of up to
0.4 with proprioception, 0.42 with motor functions, 0.49 with
muscle atrophy subscore of motor functions, and 0.63 with
cognitive functions.

Because we were unsure of the optimal size/thickness of the
spiral in the spiral-tracing digital adaptation, we tested three
different levels of increasing difficulty. However, contrary to
our expectation, we observed comparatively weak correlations
(Spearman Rho up to 0.33) of spiral-tracing-derived outcomes
with simultaneously measured features from neurological
examination documented in the NeurExTM app. Furthermore,
intra-individual test reproducibility and correlation of the best
spiral-tracing outcome (the sum of Hausdorff distances) with
the clinician-derived disability outcomes decreased with the
increasing test difficulty, leading us to conclude that the poor
clinical utility of the spiral-tracing outcomes is due to their poor
intra-individual reproducibility.

Because other authors (9) aggregated multiple features
from the spiral-tracing test to achieve a stronger correlation
with traditional disability outcomes such as 9HPT using
supervised machine-learning (ML) algorithms, we performed
the same analyses here. We reproduced the ability to
derive models with strong cross-validation performance
in the training cohort (i.e., R2 up to 0.73 for correlation
with 9HPT). In contrast to the performance of the best
spiral tracing outcome (i.e., the sum of the Hausdorff
distances) the cross-validation performance of the ML
models in the training cohort increased with the increasing
test difficulty. However, this apparent increase in the
performance of ML models was entirely due to overfitting;
when applied to the true independent validation cohort, all
ML models performed poorly so that none outperformed the
Hausdorff distances.
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TABLE 1 | Demographics and characteristics for healthy donors (HD) and patients with multiple sclerosis (MS) over the 2 years of the study period.

Demographic HD (No. = 22) MS (No. = 134) P-value for Statistical Significance

Training set (No. = 89) Test set (No. = 45)

Mean age (± SD) 36.7 ± 12.3 56.7 ± 9.48 53.5 ± 8.85 <0.001K−W

Median age 39 58 53 NA

Range of age 20–62 19–73 27–78 NA

Gender (Male/Female) 8/14 34/55 19/26 <0.001χ

Handedness (Left/Right) 2/20 11/78 2/43 <0.001χ

Disease duration (in years) NA 15.9 ± 10.31 17.9 ± 12.19 NA

No. of treated at the first visit NA 67 35 NA

No. of untreated at the first visit NA 22 10 NA

SD indicates standard deviation from the mean. K-W indicates Kruskal–Wallis non-parametric test for the mean comparison of age across HD, MS-Training set, and MS-Test set. χ

denotes the Chi-Square test of independence of the differences between categorical groups (i.e., gender or handedness in HD, MS-Training set, and MS-Test set). NA, No., and MS

denote not applicable, number, and multiple sclerosis patients, respectively.

MATERIALS AND METHODS

Participants
The data were collected from participants enrolled in the
Natural History protocol: Comprehensive Multimodal Analysis
of Neuroimmunological Diseases in the Central Nervous
System (ClinicalTrials.gov identifier NCT00794352). The study
was approved by the National Institute of Allergy and
Infectious Diseases (NIAID) scientific review and by the
National Institutes of Health (NIH) Institutional Review
Board. All methods were performed in accordance with the
relevant guidelines and regulations. All study participants
gave informed consent. HD was recruited in two ways:
(1) full participants in the Natural History protocol that
underwent comprehensive neurological/imaging evaluation and
(2) participants in a substudy of the Natural History protocol
to obtain normative data for smartphone apps (without
neurological/imaging evaluation). Two different groups are
comprised within the MS datasets: a cohort that is tested in a
clinic approximately every 6 months (non-granular testing sub-
cohort) and those that had the smartphone at home and did
the test more than 5 times during a period of 2 years (granular
testing sub-cohort). Prior to all analyses, the MS datasets were
separated into a 2/3 training and 1/3 test set weighted by one of
the clinical features (average 9HPT; see Table 2). A summary of
the demographic information is provided in Table 1.

Test Design and Data Collection
The Spiral test was written in Java and Kotlin using the
Android Studio integrated development environment. The test is
distributed as an Android Package (APK) over email, or directly
installed to the device over USB, and updates are sent out over
the air. The testing devices are Google Pixel XL and Google Pixel
2 XL, running Android (Android Version 11), with the intent
of keeping them up to date. Results are uploaded to Firebase
Firestore, a commercial cloud database, with alphanumeric
identifiers to avoid Personally Identifiable Information. Spirals
are generated using physical dimensions and rendered using the
individual device’s screen characteristics and configuration, to

ensure that spirals with the same parameters look the same across
all devices.

Spiral tracing test consisted of tracing with a finger of each
hand an orange spiral shown on the screen of the smartphone at
three difficulty levels: Level 1 (simplest) consisted of the thickest
spiral of shortest length, while level 3 (most difficult) consisted of
the thinnest spiral of longest length (Figure 1). Each participant
was instructed to trace the spiral as accurately and fast as possible.
A total of four test trials were conducted by the subjects at each
of the test dates for each difficulty level. Two of the drawings
are done clockwise from and to the center of the spiral by the
dominant hand and similarly, two drawings are done by the non-
dominant hand counterclockwise (i.e., from and to the center
of the spiral). Thus, a total of four tests were conducted by
each of the subjects on their testing dates. As previously stated,
the non-granular testing sub-cohort was tested approximately
every 6 months while the granular testing sub-cohort was tested
more frequently during the period of 2 years. Hence, the number
of tests conducted by each subject throughout the 2 years of
study period varies per subject. During the experiment, raw
sensor data was collected from the smartphone touchscreen as
x- and y-screen coordinates with a corresponding timestamp in
milliseconds and an estimated pressure of the tap based on the
surface area of the finger on the touchscreen.

Clinical Assessments of Motor Symptoms
The complete neurological examination, lasting 30–60min and
performed by an MS-trained clinician was transcribed into the
NeurExTM app (5). NeurExTM computes traditional disability
scales such as EDSS (2), SNRS (3), and others. We also extracted
relevant subsystem scores of those neurological functions that,
based on domain expertise, contribute to the spiral tracing
(i.e., pyramidal and motor functions of hands, cerebellar
functions, proprioception functions). Finally, we extracted semi-
quantitative MRI data of CNS tissue destruction, focusing on
the brainstem, cerebellum, and medulla/upper cervical spinal
cord. These are features previously validated as important in
determining physical disability (20, 21). The details of MRI
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TABLE 2 | List of clinical disability scales used in the study.

Label Feature Description Mean Standard Deviation Statistically Significant

C1 9HPT average 52.930 106.382 ***

C2 Non-dominant hand 9HPT 58.528 142.561 ***

C3 Dominant hand 9HPT 47.332 112.122 ***

C4 Expanded disability status scale (EDSS; 0-10; ordinal) 4.961 1.692 ***

C5 CombiWISE (0-100; continuous) 41.147 15.989 ***

C6 NeurEx (0-1349; continuous) 137.041 86.927 ***

C7 EDSS visual function score 1.629 1.185 ***

C8 NeurEx vision score 3.810 3.485 0.001**

C9 EDSS pyramidal functions score 2.707 1.206 ***

C10 NeurEx pyramidal/motor functions non-dominant hand 4.858 4.811 ***

C11 NeurEx pyramidal/motor functions dominant hand 4.698 4.875 ***

C12 EDSS cerebellar functions score 2.478 1.509 ***

C13 NeurEx cerebellar functions non-dominant hand 2.996 2.835 ***

C14 NeurEx cerebellar functions dominant hand 2.358 2.461 ***

C15 NeurEx vibration and proprioception non-dominant hand 35.315 8.755 ***

C16 NeurEx vibration and proprioception dominant hand 34.642 8.656 ***

MRI1 Brainstem atrophy 0.703 0.791 0.004**

MRI2 Medulla/Upper C-spine atrophy 0.772 0.829 0.002**

MRI3 Cerebellum atrophy 0.616 0.747 0.007**

MRI4 Lesion load brainstem 1.737 0.919 ***

MRI5 Lesion load medulla 1.754 1.009 ***

MRI6 Lesion load cerebellum 1.246 0.983 ***

** and *** indicate clinical disability scales (i.e., clinical features) that have statistically significant differences between HD and MS at the Benjamini–Hochberg (BH) adjusted p-value of

0.01 and 0.001, respectively, using the unpaired Two-Samples Wilcoxon test. P-values of the Wilcoxon test are provided when statistical significance is found at 0.01 and marked ***

when p-value < 0.001. 18 out of the 22 clinical features were statistically significant between HD and MS at a p-value < 0.001. HD and MS indicate healthy donors and multiple sclerosis

patients, respectively.

sequences and computation of selected MRI features have been
previously published (20, 21).

Thus, together we tested 22 disability features in the MS
training set (Table 2). Though spiral data were obtained from
22 HD, we note that clinical features were generated for only 9
HD (see Section Participants for details). We highlight that the
clinical features extracted from the NeurExTM app are later used
to validate features obtained from the spiral tracing test.

Data Processing and Analysis
Feature Extractions
The raw sensor data was processed with signal and time
series analysis methodologies to compute temporal, spatial,
and spatiotemporal features. When appropriate, features were
calculated following the work of Creagh et al. (9) in addition
to some new features computed in this work and this generated
a total of 40 spiral-derived features (i.e., digital features). To
measure temporal irregularities in the upper extremity function
in neurological patients, previous research used speed and
velocity as signals in the objective quantification of motor
symptoms (9, 22–24). Thus, we initially computed the velocity
(v), radial velocity, and angular velocity (av) of the drawing
spirals as follows:

v =

√

(xi+1 − xi)
2 +

(

yi+1 − yi
)2

ti+1 − ti
(1)

Where xi, yi, i = 1 . . .N are the horizontal and vertical
coordinates of pixels on the screen respectively with N
representing the total number of touch data points.ti, i = 1 . . .N
is the timestamp converted to second. The radial velocity is
computed as follows:

rv =
ri+1 − ri

ti+1 − ti
(2)

Where r =
√

(

x2 + y2
)

. If we denote θ the four-quadrant inverse

tangent
(

i.e., θ = tan−1
( y
x

))

, then the angular velocity takes the
following form:

av =
θi+1 − θi

ti+1 − ti
(3)

The sum, coefficient of variation, skewness, and kurtosis
were computed for the velocity, radial velocity, and angular
velocity, respectively.

To calculate the degree of resemblance between the reference
spiral and cohort’s drawing, we introduced features related to
the Hausdorff distance, which quantify the extent to which each
point in the reference spiral lies near the points in the cohort’s
drawing following procedures illustrated (9, 25–27). Similar
to Figure 3 in Jeong and Srinivasan (27), a detailed example
procedure to calculate the Hausdorff distance of the reference
and cohort’s drawing is presented in Supplementary Figure S1.
We point out that the Hausdorff distance was calculated using
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FIGURE 1 | Representation of the spiral tests performed on the smartphone by healthy donors (A) and patients with MS (B). The orange and black spirals represent

respectively the reference shape and the patient’s drawn shape (MS indicates multiple sclerosis patients, HD indicates healthy donors).

the “metric.hausdorff” function in the fda.usc R software package
(28). Prior to calculating the Hausdorff distance, the x and y
screen coordinate points of the reference spiral were interpolated
to the length of the cohort’s drawing’s coordinates using cubic
spline interpolation (29–31). Several Hausdorff distance-related
features were then calculated (e.g., maximum of Hausdorff
distance, interquartile range of Hausdorff distances, etc.). All
Hausdorff distance related features are provided in Table 3.

Two approaches were utilized to compute the error-related
features between the reference spiral and the cohort’s drawings.

The first error was computed using the trapezoid to integrate
the two spiral regions. This error was calculated by finding the
intersection of the two-spiral region (i.e., the difference between
the two areas in magnitude). For instance, we note the following
trapezoidal formula from Aghanavesi et al. (22):

∫ xn+1

xn

f (x) dx =
b− a

2N

N
∑

n=1

[

f (xn) − f (xn+1)
]

(4)
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TABLE 3 | List of digital features relating to upper extremity function calculated from the spiral drawing test.

Label Feature Description Difficulty Levels (Dominant) Difficulty Levels (Non-dominant)

1 2 3 1 2 3

F1 Sum of velocity *** *** 0.012* 0.009** 0.622 0.285

F2 Coefficient of variation of velocity *** 0.034* 0.157 0.309 0.954 0.549

F3 Skewness of velocity 0.092 0.944 0.459 0.282 0.207 0.012*

F4 Kurtosis of velocity *** *** *** *** *** ***

F5 Sum of radial velocity 0.254 0.132 0.265 0.341 0.622 0.380

F6 Coefficient of variation of radial velocity *** *** *** *** *** ***

F7 Skewness of radial velocity *** *** *** *** *** ***

F8 Kurtosis of radial velocity *** *** *** *** *** ***

F9 Sum of angular velocity *** *** *** 0.004** 0.001** 0.258

F10 Coefficient of variation of angular

velocity

*** *** *** *** *** ***

F11 Skewness of angular velocity *** *** *** *** *** ***

F12 Kurtosis of angular velocity *** *** *** *** *** ***

F13 Sum of estimated pressure *** *** *** *** *** ***

F14 Maximum power spectral density (PSD) of

velocity

0.134 0.954 0.934 0.059 0.221 0.580

F15 Dominant frequency of velocity *** *** *** *** *** ***

F16 Maximum PSD of radial velocity *** *** 0.003** *** 0.020* 0.922

F17 Dominant frequency of radial velocity 0.134 0.388 0.006** 0.259 0.024* 0.158

F18 Maximum PSD of angular velocity 0.805 *** *** 0.002** *** ***

F19 Dominant frequency of angular velocity 0.104 0.426 0.361 0.020* 0.177 0.273

F20 Approximate entropy of velocity *** *** *** *** *** ***

F21 Approximate entropy of radial velocity *** *** *** *** 0.007** 0.166

F22 Approximate entropy of angular velocity 0.099 *** *** *** *** ***

F23 Maximum Hausdorff Distance (HDis) 0.003** *** *** *** 0.004** ***

F24 Sum of HDis *** *** *** *** *** ***

F25 Sum of HDis divided by the time taken

to complete drawing

*** *** *** *** *** ***

F26 Interquartile range of sum of HDis *** *** *** *** *** ***

F27 Sum of HDis normalized by touchpoints at

the beginning

0.044* 0.037* 0.336 *** 0.003** 0.012*

F28 Sum of HDis normalized by touchpoints at

the end

*** *** *** 0.019* *** ***

F29 Sum of HDis in the middle 15–85% *** *** *** *** *** ***

F30 Sum of HDis in the middle 15–85%

normalized by the time taken to

complete drawing

*** *** *** *** *** ***

F31 Error calculated using area under the curve *** 0.239 *** 0.003** 0.261 0.003**

F32 Mean square error 0.001** 0.944 *** *** 0.115 0.006**

F33 Root mean square error 0.001** 0.944 *** *** 0.115 0.006**

F34 Center of shoot *** *** *** *** *** ***

F35 Time taken to complete drawing *** *** *** *** *** ***

F36 Total asymmetry of patient drawing *** 0.016* 0.605 *** *** 0.002**

F37 True asymmetry in comparison with a

reference shape

*** 0.406 0.698 *** 0.177 0.052

F38 2D image correlation between two images *** 0.239 0.946 *** 0.650 0.358

F39 Image entropy of shape drawn *** *** *** *** *** ***

F40 Image entropy of shape drawn with respect

to reference shape

0.149 0.176 0.035* 0.058 0.127 0.625

*, **, and *** indicate features that are statistically significant differences between HD and MS at the Benjamini–Hochberg (BH) adjusted p-value of 0.05, 0.01, and 0.001, respectively,

using the unpaired Two-Samples Wilcoxon test. The number in the tables are the p-values of the Wilcoxon test when statistical significance is found at 0.05 or 0.01 and marked ***

when p-value < 0.001. The label and feature description of features that are statistically significant at p-value < 0.001 between HD and MS at both the dominant and non-dominant

hands and all difficulty levels are bolded. HD and MS indicate healthy donors and multiple sclerosis patients, respectively.
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FIGURE 2 | Average fold change (FC) of HD and MS of the spiral-derived features with respect to their Intraclass Correlation Coefficient (ICC) where ICC was

calculated from the granular data of HD. The numbers indicate the feature’s labels as illustrated by the label in Table 2. Gray colors are features from the training set

while green colors are from the test set. Here we only include FC > 2 and ICC > 0.5. A diagram of all features that are statistically significant between HD and MS in

the training and test set for HD ICC is provided as Supplementary Figures S5, S6, respectively in the Supplementary Material (HD and MS indicate healthy

donors and multiple sclerosis patients, respectively).

Where N is the total number of x or y screen coordinate

points and b−a
N is the spacing between points. Let us suppose

that the reference spiral and the cohort’s spiral are denoted by
fref

(

x, y
)

and fcoh
(

x, y
)

, respectively. Then the error based on the
trapezoidal rule becomes

AUC(x, y) =

∣

∣

∣

∣

∫ xn+1

xn

fref (x) dx−

∫ xn+1

xn

fcoh (x) dx

∣

∣

∣

∣

(5)

Where |.| is the absolute value of the difference between the two
Area Under the Curve (AUC). We now proceed with the second
error calculated using the following two-dimensional (2D) Mean
Square Error [MSE; (32)]:

nMSE =
1

M × N

M
∑

n=1

N
∑

m=1

[

fref
(

x, y
)

− fcoh
(

x, y
)]2

(6)

Where M and N=2 are the numbers of data points
and coordinates points, respectively. Again, a spline
interpolation was used on the cohort’s data point to
the M length of the reference data point prior to error
calculation. Furthermore, to obtain the similarity between
the reference spiral and cohort’s drawing, the following 2D

correlation coefficient from Aljanabi, Hussain, and Lu (33)
was utilized:

corr(IMref , IMcoh)

=

∑M
m=1

∑N
n=1

(

AMN − A
) (

BMN − B
)

√

(

∑M
m=1

∑N
n=1

(

AMN − A
)2

) (

∑M
m=1

∑N
n=1

(

BMN − B
)2

)

(7)

Where AMN and BMN are the reference and cohort’s spiral
coordinate points with dimension M x 2, respectively. A =
∑

i xi+
∑

i yi
2M and B =

∑

i xi+
∑

i yi
2M are the reference and cohort’s

spiral mean. Note that the the reference and cohort’s spiral mean
(i.e., Ā and B̄) are not necessarily equal as the x and y coordinate
points differ. A full list of features calculated is provided in
Table 3. When applicable, references of the calculated spiral-
derived features are provided in Supplementary Table S1 in the
supplemental material.

Statistical Analysis
Statistical analyses were used to evaluate the validity and strength
of features (i.e., clinical disability scales and spiral-derived
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FIGURE 3 | Average fold change (FC) of HD and MS of the spiral-derived features with respect to their Intraclass Correlation Coefficient (ICC) where ICC was

calculated from the granular data of the patients with MS. The numbers indicate the feature’s labels as illustrated by the label in Table 2. Gray colors are features from

the training set while green colors are the test set. Here we only include FC > 2 and ICC > 0.5. A diagram of all features that are statistically significant between HD

and MS in the training and test set for patients with MS ICC is provided as Supplementary Figures S7, S8, respectively, in the Supplementary Material (HD and

MS indicate healthy donors and multiple sclerosis patients, respectively).

features) on assessing the upper extremity function in patients
with MS. The analyses were conducted using the R software [R
Version 4.0.4; (34)]. Recall that the MS datasets were separated
into a 2/3 training and 1/3 test set weighted by the average
9HPT disability scale. A cutoff Benjamini–Hochberg [BH; (35)]
adjusted p-value < 0.001 was used to establish statistically
significant differences for comparing the HD andMS cohorts. All
features that were not statistically significant using the unpaired
Two-SamplesWilcoxon test (36) in the training set were removed
from subsequent analysis. Moreover, average fold change (FC)
between the HD and MS was computed at all difficulty levels and
at both dominant and non-dominant hand. An FC > 2 was used
as cutoff of significant difference between HD and MS.

Test-retest reliability of the spiral-derived features was
measured using the intraclass correlation coefficient [ICC; (15)]
of features obtained from the granular testing HD and MS sub-
cohorts. The ICC was calculated using the ICC function from
the irr R package (37). As stated by (38, 39), there are several
versions of the ICC that can give different results when used
on the same dataset. However, the authors pointed that the
two-way mixed-effects model and the absolute agreement are
more appropriate for test-retest reliability studies. Thus, an ICC

with two-way mixed-effects model and the absolute agreement
was used in this study. Following the recommendation of Koo
and Li (38) that stated that an ICC between 0.5 and 0.75 are
considered moderate, a Spearman correlation matrix between
clinical disability scales (see Table 2) and spiral-derived features
(see Table 3) with ICC > 0.5 and FC > 2 were constructed. A
BH-adjusted p-value > 0.05 was used to access the statistical
significance of the correlation test.

To determine the existing relationship between the significant
spiral-derived features (i.e., BH-adjusted p-value < 0.001, FC >

2, and ICC > 0.5 between HD and MS) and the statistically
significant clinical disability scales, four different regression
models (Elastic Net or ElasticNet, Support Vector Regression
with Radial Basis Function Kernel or SVR Radial, Random Forest
or RF, and Stochastic Gradient Boosting or GBM) were used
where the clinical disability scale were the dependent variables
while spiral-derived features were the independent variables.
For all regression models, the “caret” library (40) in the R
software was used along with other libraries such as “glmnet” (41)
for ElasticNet model, “randomForest” (42) for RF model, and
“xgboost” (43) for GBMmodel. Prior to the regression modeling,
outliers in the spiral-derived features were identified as feature
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FIGURE 4 | Violin and boxplot of selected clinical disability scales with respect to healthy donors and patients with MS. The blue color indicates the healthy donors

while red shows patients with MS. There were multiple tests per subject in the MS group. Values are shown using a bi-symmetric log transformation (The p indicates

the p-value of the unpaired Two-Samples Wilcoxon test for the mean comparison of HD and MS groups).

values that lie outside of ± 2(q0.9 –q0.1) where qp is the p-
quantile (44). To reduce variability in the features, all variables
were bi-symmetric log-transformed using the transformation
formula y = sgn (x) log10 (1+ |x/C|) where y is the transformed
function of the x variable, C has a default value of 1/ln (10),
and sgn(x) is the mathematical Signum function [as presented in
(45)].

Moreover, a linear regression model was used to assess
the relationship between selected clinical disability scales and
the sum of the Hausdorff distances (Feature F24 in Table 3).
During the analysis, adherence to the normality assumptions
of the residuals was tested using histograms and quantile
plots. All models were evaluated using the Root Mean Square

Error (RMSE; measured in seconds) and the coefficient of
determination (R2) of the prediction. Apart from the linear
regression model, all model parameters (i.e., the penalty strength
parameter λ and the penalties from both L1 and L2 regularization
parameter α in ElasticNet; the cost value C and γ of the SVR
Radial; the number of variables randomly sampled at each split
in the RF model; the number of trees, the interaction depth,
the minimum number of samples in tree terminal nodes, and
the learning rate in GBM model) were tuned via grid search.
Five-fold cross-validation (CV) with 10 repetitions was used to
assess the model suitability in the training cohort. The out-of-
sample test performance was evaluated using the final model
from the 5-fold CV based on the RMSE to predict clinical
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FIGURE 5 | Violin and boxplot of the selected spiral-derived features with FC > 2 and ICC > 0.5 with respect to healthy donors and patients with MS at the difficulty

level 1. The blue color indicates the healthy donors while red shows the patients with MS. There were multiple tests per subject in the HD and MS group. Values are

shown using a bi-symmetric log transformation for both the dominant and non-dominant hand (The p indicates the p-value of the unpaired Two-Samples Wilcoxon

test for the mean comparison of HD and MS groups).

FIGURE 6 | Violin and boxplot of the selected spiral-derived features with FC > 2 and ICC > 0.5 with respect to healthy donors and patients with MS at the difficulty

level 2. The blue color indicates the healthy donors while red shows the patients with MS. There were multiple tests per subject in the HD and MS group. Values are

shown using a bi-symmetric log transformation for both the dominant and non-dominant hand (The p indicates the p-value of the unpaired Two-Samples Wilcoxon

test for the mean comparison of HD and MS groups).
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FIGURE 7 | Violin and boxplot of the selected spiral-derived features with FC > 2 and ICC > 0.5 with respect to healthy donors and patients with MS at the difficulty

level 3. The blue color indicates the healthy donors while red shows the patients with MS. There were multiple tests per subject in the HD and MS group. Values are

shown using a bi-symmetric log transformation for both the dominant and non-dominant hand (The p indicates the p-value of the unpaired Two-Samples Wilcoxon

test for the mean comparison of HD and MS groups).

FIGURE 8 | Comparison of the intraclass correlation coefficient (ICC) calculated from the granular data of the healthy vs. MS cohorts. The x-axis represents

spiral-derived features with FC > 2 and ICC > 0.5 while the y-axis is the ICC (MS indicates multiple sclerosis patients).
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disability scales given the test datasets (i.e., the independent
validation cohort).

RESULTS

Feature Evaluation
To determine clinical disability scales and spiral-derived features
that are relevant for further analysis, statistical significance
between HD and MS was calculated using the unpaired Two-
Samples Wilcoxon test. With the exception of four features
(NeurExTM vision score, brainstem atrophy, medulla/upper c-
spine atrophy, and cerebellum atrophy), all clinical disability
scales and MRI features were found to be statistically significant
at p < 0.001 after adjusting the p-value using the BH approach
(Table 2). There were differences in spiral-derived features that
were statistically significant between the dominant and non-
dominant hands. In the dominant hand category, for instance,
spiral-derived features 21 and 28 were statistically significant
(BH adjusted p-value < 0.001) at the difficulty level 1, 2, and
3. However, in the non-dominant hand category, these features
(i.e., 21 and 28) were not statistically significant at any difficulty
levels. We also found spiral-derived feature 22 to be statistically
significant at all difficulty levels in the non-dominant hands
(BH adjusted p-value < 0.001) but not in the dominant hands.
While spiral-derived features that were statistically significant
between HD and MS vary between dominant, non-dominant
hands and difficulty levels, 19 of these features were consistently
statistically significant at all levels and both hands (see bold
feature description in Table 3).

Furthermore, a look at the FC of HD and MS with respect
to the ICC indicated that only three spiral-derived features
(kurtosis of velocity, kurtosis of angular velocity, and the sum
of the Hausdorff distances) have FC > 2 and ICC > 0.5 when
ICC was calculated using the granular data of HD (Figure 2).
When ICC was computed for patients with MS, kurtosis of radial
velocity, kurtosis of angular velocity, and the sum of Hausdorff
distances have FC > 2 and ICC > 0.5 (Figure 3). In general, four
spiral-derived features (i.e., kurtosis of velocity, kurtosis of radial
velocity, kurtosis of angular velocity, and the sum of Hausdorff
distances) were found to be statistically significant between HD
and MS, have FC > 2, and have HD or MS patients ICC > 0.5.
These features have a moderate strength of test-retest reliability
and are significantly different in HD andMS as indicated by their
FC and ICC (Figures 2, 3). There were statistically significant
differences between HD and patients with MS in selected clinical
features and the four most impactful spiral-derived features as
depicted by violin and boxplots (see Figure 4 for boxplot of
selected clinical features and Figures 5–7 for boxplots of themost
impactful spiral-derived features at the difficulty level 1, 2, and
3, respectively). Most spiral-tracing features have a median value
higher in the MS as compared to the HD (Figures 4–7). Also, the
ICC of many patients with MS is also higher than that of HD
(Figure 8). This is expected based on a higher inter-individual
variance of spiral-tracing outcomes in MS vs. HD.

To determine the relationship between the clinical disability
scales and most impactful spiral-derived features (kurtosis of

velocity, radial velocity, angular velocity, and the sum of
Hausdorff distances), a Spearman Rho correlation matrix among
the features was constructed (see Figure 9 for difficulty level 1
and 2, and Supplementary Figure S6 for difficulty level 3). In
general, the highest correlations were seen among the 9HPT
average, EDSS, CombiWISE, NeurExTM, Lesion Load Brainstem,
and the spiral-derived features at the dominant hand levels
(Figure 9 and Supplementary Figure S6). Among the spiral-
derived features, the sum of the Hausdorff distances had
the highest correlations in both cohorts, but the strength of
correlations was weak to moderate.

From the neurological examination subdomains, onlymotoric
and cerebellar functions (but not proprioception) are reliably
correlated with best spiral tracing features. We observed a very
high positive correlation between the sum of Hausdorff distances
and the time taken to complete the drawing in both the HD
and MS patients (Supplementary Figures S7–S9; Spearman Rho
> 0.97 for both dominant and non-dominant hand and at all
difficulty levels). This is counterintuitive as we expected that
increasing the speed of spiral drawing will negatively affect
tracing accuracy. Instead, it appears that the disability and/or
patient’s confidence in his/her ability to trace the spiral affected
both the speed and accuracy of the tracing congruently.

ML Models of Best Spiral Tracing Features
and Their Independent Cohort Validation
Four regression models (ElasticNet, SVR Radial, RF, and GBM)
were used to evaluate the relationship between clinical disability
scales and our four most impactful features (kurtosis of velocity,
kurtosis of angular velocity, kurtosis of radial velocity, and
the sum of the Hausdorff distances). The models had the best
performance predicting the clinical disability scales in the (small;
22 subjects as presented in Table 1) HD cohort based on the
mean RMSE and R2 across the 5-fold CV with 10 repetitions
(see Supplementary Tables S2, S5, S8 for difficulty level 1, 2,
and 3, respectively). Among the HD at the difficulty level 1,
the ElasticNet model performed the best by explaining at most
85% in clinical disability scales when the dependent variables
were CombiWISE or EDSS (Supplementary Table S2). When
the dependent variables were 9HPT Average or NeurEx, SVR
Radial had the best performance at the difficulty level 1 with
an R2 value between 0.69 and 0.79 (Supplementary Table S2).
The results of the percent variance explained in model outcomes
at the difficulty levels 2 and 3 in HD were lower compared
to the difficulty level 1 but still range between 30 and 76%
(Supplementary Tables S5, S8).

Model’s performance in the (much larger; 89 subjects as
presented in Table 1) MS training cohort was much lower
at all difficulty levels in comparison to results from the HD.
The SVR Radial performed the best by explaining only 6–23%
of the variance in clinical disability scale depending on the
hand used (dominant or non-dominant), difficulty levels, and
clinical disability scale (see Supplementary Tables S3, S6, S9 for
difficulty level 1, 2, and 3, respectively).

However, the out-of-sample test performance (i.e., the
independent validation cohort) were much lower compared to
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FIGURE 9 | Spearman Rho correlation matrix between the statistically significant clinical disability and the top four most significant spiral-derived features based on

FC at the difficulty level 1 and 2. The number indicates the Spearman correlation coefficient. Red is a negative correlation while blue stands for positive correlation. The

white color indicates correlations that are not statistically significant at BH adjusted p-value of 0.05 (FC indicates Fold-Change, while BH denotes

Benjamini–Hochberg).

the result from the 5-fold CV of the training cohort (see R2 values
between 0.0015 and 0.191 in Supplementary Tables S4, S7, S10

for difficulty level 1, 2, and 3, respectively). Of these, models
with a 9HPT average yield the best performance with an R2

between 0.0304 and 0.1914 but only for the dominant hand
(Supplementary Tables S4, S7, S10 for difficulty level 1, 2, and
3, respectively). However, in the independent test set, the GBM
models generally validated the worst. Thus, we conclude that
cross-validation of the training set is overly optimistic and does
not reliably predict an independent test cohort performance.

Given that the sum of Hausdorff distances had the highest
correlation with the clinical disability scale at all difficulty
levels (Figure 9 and Supplementary Figure S6), linear regression
models were constructed to measure the relationship between
the disability scales and the sum of Hausdorff distances alone. In
general, all clinical disability scales were positively correlated with
the sum of Hausdorff distances (see Figure 10 for correlation
with average 9HPT and Supplementary Figures S10–S12 for
correlations with EDSS, CombiWISE, and NeurEx, respectively).
The validation cohort performance of the sum of Hausdorff
distances alone (Figure 10 for 9HPT) was comparable to the
more complex ML-based models (i.e., R2 between 0.00834 and
0.1593 in Supplementary Table S11).

Overall, we observed better predictive accuracy (based on R2)
in the dominant hand category than the non-dominant hand
category and for difficulty levels 1 and 2 compared to difficulty

level 3 in the dominant hand (Figure 11). These results remained
consistent when controlling for the age and gender variables in
all the models (see Supplementary Tables S12, S13 for cross-
validation and out-of-sample test performance of the ML models
at the difficulty level 1 for MS subjects, respectively). Similar
results were found from the CV of the training cohort in Creagh
et al. (9), where the authors observed that themean absolute error
(MAE) was higher in non-dominant handmodels than dominant
models for HD subjects. However, it was observed that non-
dominant hand models more accurately predicted 9HPT than
dominant hand regression models in the MS subjects (9).

DISCUSSION

Test reproducibility (measured as ICC, signal-to-noise ratio, or
concordance coefficient) is generally given lesser importance in
the test design than test sensitivity. Presented analyses of the
Spiral tracing support the notion that test reproducibility is
an essential determinant of its clinical utility. Achieving high
reproducibility of digital tests should be at forefront of the
medical app developers.

Spiral tracing is a complex test that includes many
neurological functions: fine finger movements, negatively
affected by motoric dysfunction, proprioceptive loss and
cerebellar dysfunction, eye–hand coordination, affected by
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FIGURE 10 | Relationship between the sum of the Hausdorff distances and the 9HPT average (in seconds) of the MS cohorts in black dots. Regression lines are

shown in solid blue line while the gray shaded area constitutes the 95% confidence interval associated with the mean model’s prediction (The R2 indicates the percent

of the variance in the 9HPT average that can be explained by the sum of Hausdorff distances. P is the model’s p-value).

vision, oculomotor and cerebellar dysfunctions, and cognition or
anxiety associated with anticipated test difficulty. Additionally,
the precision of the test is affected by the time of test execution,
even though we observed, counterintuitively, a strong positive
correlation between measures of test accuracy such as the sum
of Hausdorff distances and the time it took to perform the
tracing, even in HD. This suggests that time was not the
primary driver of the inaccuracy of tracing. Rather, combined
neurological disability and/or lack of confidence in the ability
to perform tests, both fast and accurately, negatively affected
the test performance. This explains why Spiral tracing features
that adjusted the accuracy of tracing for the velocity performed
worse than the most successful accuracy measure, the sum of
Hausdorff distances.

The comparison of cross-validation performance of the
MS training cohort with the performance of the ML-based
models in the true independent validation cohort demonstrated
that training cohort cross-validation performance overestimates
performance of the test in subjects who did not contribute to the
model development: when the performance of the strongest ML-
basedmodels (i.e., modeling 9HPT) are compared between cross-
validation of the training cohort and the independent validation
cohort, all four ML algorithms greatly overestimated the
performance of the models in the independent validation cohort.
The best feature of the Spiral tracing (the sum of Hausdorff

distances) performed comparatively to the ML-based models
in the independent validation (Figure 8). This overestimation
of the model performance from the training cohort data, even
when training cohort results are based on cross-validation, is
the rule we observed uniformly in the past decade of our
experience with independent validation of complex models.
We used to not even show the training cohort results in our
publications, as we consider them irrelevant. However, after
realizing that the vast majority of ML studies in biomedical
literature do not use independent validation cohort and that
most readers and reviewers consider cross-validation of the
training cohort equivalent to the independent validation, we
now routinely publish training cohort data to demonstrate the
level of overfitting in comparison to the truly independent
validation cohort.

We also point out that the cross-validation performance of
the training cohort does not faithfully predict even the ranking
of the models.

In this regard, because the COVID-19 pandemic precluded
us from recruiting an independent validation cohort of HD, we
consider the cross-validation performance of the HD models
unrealistically optimistic (especially because of the small number
of HD) and fully expect that those models represent overfitting.
Therefore, the HD models should not be considered promising
without independent validation.
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FIGURE 11 | The out-of-sample test performance (i.e., independent validation) of the predictive regression models when 9HPT average (in seconds) is the response

variable and the sum of Hausdorff distances is the only explanatory variable in the linear regression model (LM). The explanatory variables in the Elastic Net

(ElasticNet), Support Vector Regression with Radial Basis Function kernel (SVR Radial), Random Forest (RF), and Stochastic Gradient Boosting (GBM) models are

Kurtosis of Velocity, Kurtosis of Radial Velocity, Kurtosis of Angular Velocity, and the sum of Hausdorff distances. The test performance was measured using R2 of

model predictions per dominant and non-dominant hands among the patients with MS at the difficulty level 1, 2, and 3.

The poor performance of these ML-based models was, in our
experience, expected based on poor ICCs and weak univariate
correlations of individual Spiral tracing features with the gold
standard of neurological disability measures and brain MRI
markers of CNS injury in MS cohorts. In comparison, much
simpler tests such as rapidly tapping on the screen of the
smartphone correlated much stronger with analogous disability
measures (i.e., up to Spearman Rho of 0.76) and were also much
more intra-individually stable (7). Interestingly, both 9HPT and
smartphone finger tapping differentiated MS from HD better for
non-dominant hand; the observation was reproduced for 9HPT
in multiple studies (4, 7, 19). We interpreted this observation
by functional repair: even though MS likely affects both hands
equally, the daily use of the dominant hand promotes repair,
both as remyelination and the establishment of new synaptic
circuits by remaining neurons. Therefore, digital tests of the non-
dominant hand, which has less rehabilitation/repair, are more
sensitive to measuring the difference between patients with MS
and HD and to measuring the progression of disability in time.
Surprisingly, the non-dominant hand performed much worse in
the Spiral tracing test, in both MS cohorts. We believe that this
was due to higher intra-individual variance/greater noise, which
has little to dowith disability andmore to dowith test complexity.

As test complexity increased to Level 3, the reproducibility
and clinical relevance of the Spiral tracing features decreased
quite dramatically.

We recognize that poor reproducibility of the Spiral tracing
observed in our study may be mitigated in situations where
spiral tracing is performed on tablets and therefore, the
spiral is much larger (10). We developed NeuFun-TS for
smartphones rather than tablets, due to the larger worldwide
prevalence and greater availability of different sensors in
the former compared to the latter. The test selection must
consider the screen size difference for apps targeting different
mobile devices.

In conclusion, in self-administered digital measurements of
neurological functions, the designers should strive to develop
tests that are easy to perform and therefore highly reproducible,
but still reflect a specific neurological (dys)function. These
simpler tests will likely be (by design) less sensitive than
tests that depend on multiple neurological functions, but
the sensitivity can be restored by aggregating results from
multiple simple tests, as is being done in NeuFun-TS. However,
the total time necessary to complete all tests in NeuFun-
TS will likely determine compliance with longitudinal testing.
Therefore, as Spiral tracing does not add clinical value
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beyond existing tapping (19), balloon popping (7), and level
tests (18), we plan to drop Spiral tracing from NeuFun-TS
standard tests. Spiral tracing Fourier analysis to identify tremor,
frequency, and severity may still be very useful in patients with
movement disorders.
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