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Signal-dependent targeting of proteins into and out of the nucleus is mediated by members of the importin
(IMP) family of transport receptors, which recognise targeting signals within a cargo protein and mediate
passage through the nuclear envelope-embedded nuclear pore complexes. Regulation of this process is
paramount to processes such as cell division and differentiation, but is also critically important for viral
replication and pathogenesis; phosphorylation appears to play a major role in regulating viral protein
nucleocytoplasmic trafficking, along with other posttranslational modifications. This review focuses on viral
proteins that utilise the host cell IMP machinery in order to traffic into/out of the nucleus, and in particular
those where trafficking is critical to viral replication and/or pathogenesis, such as simian virus SV40 large
tumour antigen (T-ag), human papilloma virus E1 protein, human cytomegalovirus processivity factor
ppUL44, and various gene products from RNA viruses such as Rabies. Understanding of the mechanisms
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1. Introduction

The mammalian cell is a highly organised, dynamic structure that
compartmentalises its many functions into organelles such as the
nucleus, Golgi, and endoplasmic reticulum. The nucleus retains the
genetic material for cell maintenance and replication, whereby efficient
signal dependent targeting of cellular proteins into or out of the nucleus,
mediated by the importin (IMP) superfamily of transporters (see Fig. 2;
Section 2) is required for the cell to function. During infection by various
viruses, specific viral-encoded gene products exploit the host cell
nucleocytoplasmic trafficking machinery to enter and exit the nucleus
as part of the strategy of the virus to evade the host immune response
and replicate productively. Many of these viral proteins appear not only
to possess targeting signals mediating high affinity interaction with the
cellular nuclear transport factors, but also show precise regulation
thereof by phosphorylation of these interactions by cellular/virally
encoded kinases or other enzymes (see Section 3).

This review will focus in detail on viral proteins for which there is
evidence of regulated nucleocytoplasmic trafficking in infected cells,
including gene products from DNA viruses such as simian virus 40
(SV40) large tumour antigen (T-ag), human cytomegalovirus (HCMV)
processivity factor ppUL44, and the human papilloma virus (HPV) E1
protein, as well as the phospho “P” protein from the negative stranded
RNA Rabies virus (RV). The regulatory mechanisms and evidence for a
physiologically important role in the viral infectious cycle will be
discussed (Section 4), with the implication being that the regulation
of viral protein nuclear import is crucial for many diverse viruses,
thereby representing a potential target for the future development of
anti-viral agents.

http://dx.doi.org/10.1016/j.bbamcr.2011.03.019
mailto:David.Jans@monash.edu
http://dx.doi.org/10.1016/j.bbamcr.2011.03.019
http://www.sciencedirect.com/science/journal/01674889
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2. Nucleocytoplasmic transport

All transport into and out of the nucleus occurs through the nuclear
pore complexes (NPCs), macromolecular structures (N60 MDa) that
span the double lipid bilayer of the nuclear envelope (NE) [1–4]. There
are approximately 2000 NPCs per “typical” vertebrate cell, depending
on the stage of the cell cycle and the cell type. NPC structure is typified
by 8-fold symmetry, being made up of multiple proteins called
nucleoporins (Nups) [5–8] which occur in multiples of eight [9]. With
the exception of certain peripheral, asymmetric Nups, most Nups
localise on both sides of a symmetry axis in the plane of the NE [2,9],
and can be grouped into several classes based on homology and
functional similarity [10], including (i) transmembrane Nups (i.e.
POM121 and Gp210 in vertebrates), which anchor the NPC within the
NE and are bound by (ii) structural Nups (c. 50% of all Nups), which
contribute to the overall architecture of the NPC and represent the
scaffold linking the transmembrane Nups and (iii) FG-Nups (c. 33% of
all Nups/50% of theNPCmass),which are distinguished by the fact that
they contain multiple FxFG (single letter amino acid code, where x is
any amino acid) or GLFG motifs separated by varying numbers of
charged or polar amino acids [2,11]. Fig. 1 shows the distribution of
specific FG-Nups within the NPC, highlighting their position through-
out the NPC. A number of studies indicate that FG-Nups are integral to
bidirectional active transport through the NPC because of their ability
to interact transiently with IMPs [9,12–16].

Translocation through the NPC of proteins N45 kDa is generally
mediated by members of the IMP superfamily of nuclear transporters,
which includes 6 α and c. 20 β forms in humans. IMPαs are adaptors
that function as heterodimers with IMPβ1 [1,17–19] in nuclear
import, whilst IMPβs can mediate transport in either direction
through the NPC, with those mediating nuclear export called
exportins (EXPs). IMPs/EXPs recognise specific sequences, nuclear
localisation sequences (NLSs) or nuclear export signals (NESs)
respectively within the cargo protein with which they interact, with
the monomeric guanine nucleotide binding protein/GTPase Ran a key
additional factor (see below) modulating cargo binding [17,20].

Monopartite basic NLSs, such as that from SV40 T-ag (PKKKRKV132)
[21,22] andHCMVppUL44 (PNTKKQK431) [23] aswell as bipartite NLSs,
which comprise two clusters of basic residues such as the HPV E1 NLS
(KRK85-/-KKVKRR125) [24], are generally recognised by the IMPα/
IMPβ1 heterodimer. All IMPβs including IMPβ1, in contrast, are able to
mediate import or export of their cargoes without the need for IMPα or
other adaptors, although the NLS/NES sequences have not been defined
inmany cases. NESs recognised by EXP-1 (Crm1) [25–27] comprise 3–4
hydrophobic residues interspersed with 1 to 3 non-hydrophobic
Fig. 1. Schematic representation of the NPC highlighting vertebrate FG-Nup
subcomplexes (modified from [9]). Each box denotes a biochemically or functionally
defined subcomplex, where “FG-Nups” containing predominantly FG, GLFG, and FXFG
repeats are highlighted in blue, red and orange texts respectively, with selected
structural, non-FG-Nups in black.
residues (L-x2-3-(L,I,M,F,M)-x2-3-L-x-(L,I,V) [17,20]), the classic ex-
ample being the NES from HIV-1 Rev (LPPLERLTL83) [28].

As indicated above, IMP-dependent passage through the NPC is
effected by transient interactions of the IMPβs with FG-Nups; Nup358
is proposed to play a key role in assembly of the IMP–cargo complex
[29,30], with a gradient of increasing affinity postulated to facilitate
the passage of IMP–cargo complexes from cytoplasmic to nucleoplas-
mic side of the NPC (see [31]). In the case of nuclear import, release at
the nuclear face requires Ran in its activated GTP-bound form to bind
to the IMPβ to dissociate the import complex (Fig. 2 left). Nuclear
export is analogous, where the EXP, only when in complex with
RanGTP, recognises a NES within a cargo and forms a trimeric export
complex (EXP/RanGTP/NES-cargo) that is able to translocate through
the NPC through transient interactions with FG-Nups such as Nup98
[32] and the non-FG-Nup Tpr ([33]) on the nuclear side, and Nup214
[34] on the cytoplasmic side (see Fig. 1), where the complex is
dissociated via GTP hydrolysis by Ran of GTP to GDP, facilitated by
RanGTPase-activating protein (RanGAP) (Fig. 2 right) and Ran binding
protein 1 (RanBP1) and/or the RanBP1-like domains of Nup358 [30].

Many viral proteins utilise the host cell nucleocytoplasmic
trafficking machinery (Fig. 2) to achieve efficient nuclear import
and/or export in order to carry out particular roles in viral replication
and pathogenesis, and/or modulate the host cell cycle or innate
immune response (see below and Table 1). The next sections examine
a number of different viral proteins by way of illustrating the diverse
mechanisms regulating viral protein nuclear import/export.

3. Regulation of nuclear transport

General mechanisms by which nucleocytoplasmic trafficking can be
regulated include modulation of the levels and distribution of IMPs/
EXPs [35,36] as well as the number and/or composition of NPCs [2,11].
Fine-tuning of the localisation/transport of a single protein or group of
proteins, however, requires more specific modification, generally of the
protein cargo itself rather than of the transport machinery. The best
understood mechanism of regulating nuclear transport is through
phosphorylation near the NLS/NES modifying recognition by IMP/EXP
[37,38], but modifications such as acetylation, ubiquitinylation and
sumoylation have also been described [39–41] to regulate nucleocyto-
plasmic trafficking of cellular proteins such as the tumour suppressors
p110Rb and p53, Survivin, nuclear factor NF-κB, the phosphatase PTEN
and theNF-κB essentialmodulatorNEMO[42–48]. It is significant in this
context that viral proteins are often highly posttranslationally modified
(see Table 1), including through the action of cyclin-dependent kinases
(Cdks), which can serve to effect cell cycle-dependent modulation of
nucleocytoplasmic trafficking. A specific example is HPV E1, which will
be examined in more detail in Section 4.2.

3.1. The cellular nuclear transport machinery as a viral target

The NPC and the Nups that constitute it are thought to be passive
in nucleocytoplasmic transport in most situations. However, NPC
composition and Nup conformation can have an influence on the
transport of IMPs/EXPs as well as cargoes. Since IMPs/EXPs appear to
have different affinities for the FG-Nups (see Section 2), the presence
or absence of certain FG-Nups may favour one set of transport factors/
cargo over another [13–16].

Certain viral proteins are known to act directly or indirectly on the
NPC and IMPs/EXPs [49] in order to act to alter host cell functions.
An example with respect to the NPC is the 3C protease from the
picornavirus Rhinovirus [50], which is thought to target Nups153, 214
and 358 for specific degradation in order to impair host cell
nucleocytoplasmic transport (see Section 2 and Fig. 1), and thereby
dampen anti-viral responses [50]; altered NPC structures have also
been visualised in cells infected by the closely related poliovirus [51].
2A protease from both Rhinovirus and poliovirus appears to act



Fig. 2. Schematic representation of IMP/EXP dependent nucleocytoplasmic transport. Transport of NLS-containing cargo proteins from the cytoplasm to the nucleus is either
mediated by IMPβs alone (1a), or the IMPα/β1 heterodimer (1b), where the IMPα adaptor links the cargo protein to IMPβ1. The IMP/cargo complexes then dock onto the
cytoplasmic side of the NPC (2a and 2b), followed by passage to the nuclear side of the NPC, through sequential, transient interactions of the IMPβwith the FG-Nups that make up the
NPC (3a and 3b). Once within the nucleus, RanGTP binding to IMPβ disassociates the complex (4a and 4b) to release the NLS-containing cargo into the nucleus to perform its
function. In analogous fashion to nuclear import, transport of NES-containing cargo proteins (1c) from the nucleus to the cytoplasm is mediated by EXPs which recognise the NES,
dependent on RanGTP binding to the EXP. The EXP/RanGTP/cargo complex docks at the nuclear side of the NPC (2c), before passing to the cytoplasmic side of NPC through sequential,
transient interactions of the EXP with the FG-Nups (3c). Once within the cytoplasm, RanGAP1 (RanGTPase-activating protein 1) and RanBP1 facilitate hydrolysis of GTP to GDP by
Ran (4c), thereby dissociating cargo from the EXP.
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similarly to 3C in this respect [52–54], implying that the NPC is a key
target of picornaviruses to disrupt host cell transport processes, and
lead to “host cell shut down” to enable viral replication to proceed
unchecked in the cytoplasm.

IMPs/EXPs can also be targets of viral proteins. Ebola virus VP24,
for example, binds to and sequesters IMPα1 [55–57] in the cytoplasm,
whilst IMPα2 is similarly sequestered by severe acute respiratory
syndrome (SARS) coronavirus ORF6 [58]. In both cases, the IMPα is
prevented from playing its normal role in mediating nuclear import of
the STAT (signal transducer and activator of transcription) proteins in
response to interferon (IFN), as part of the innate immune response
(see [59]). Thus, it seems that various cytoplasmically replicating RNA
viruses disrupt the cellular nuclear transport machinery in order to
subvert the host cell transport processes necessary for the anti-viral
response.

In the case of DNA viruses that replicate in the nucleus, however,
efficient nuclear entry of many viral components is crucial for
replication, so that disrupting the host cell nuclear import apparatus
would not be a viable strategy to ensure efficient replication. The next
section discusses the ways in which IMPs and cellular kinases can be
subverted to enable efficient nuclear transport of gene products from
DNA viruses that are required in the nucleus for replication.

3.2. Specific switches regulating IMP/EXP mediated trafficking

As indicated, the most common posttranslational modification
known to regulate nuclear transport is phosphorylation. A number of
viral proteins are known to require specific phosphorylation in
different ways for efficient nuclear accumulation, including T-ag (see
Section 4.1), HCMV ppUL44, chicken anaemia virus (CAV) VP3 and
many others [23,37,38,49]. Phosphorylation can regulate nuclear
transport (see Fig. 3) by 1) directly modulating the affinity of an NLS/
NES for its IMP/EXP; 2) facilitating masking or unmasking (intramo-
lecular masking) of an NLS/NES within the protein carrying it; or 3)
effecting the binding or release of an NLS/NES binding factor that is
not an IMP/EXP (intermolecular masking) [4,38].

Table 1 summarises the mechanisms of regulation of nuclear
import/export for a number of viral proteins for which nucleocyto-
plasmic trafficking is known to be important for the infectious cycle,
with Fig. 3 illustrating several specific examples. As can be seen from
Table 1, phosphorylation is a key modulator of nuclear transport of
viral proteins, but other modifications, such as acetylation and
ubiquitinylation, can also modulate nuclear transport.

Phosphorylation-mediated modulation of NLS/NES access, result-
ing in either inhibition (intramolecular masking) or enhancement of
transport (see Fig. 3 and Table 1), is the most common means to
regulate nuclear transport efficiency. The human T-cell leukaemia
virus type 2 (HTLV-2) Rex protein (see Fig. 3) is an example; in its pre-
mature (p24) form, the N-terminal IMPβ-recognised NLS is masked
[107–109], but upon phosphorylation of T164 by protein kinase CK1
(CK1)/glycogen synthase kinase 3 (GSK3) [107], S151/153 is subse-
quently phosphorylated by CK1 to produce the active p26 form of the
protein with an accessible NLS [107–109]. In the case of Kaposi's
sarcoma-associated herpes virus LANA2 (latency-associated nuclear
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antigen 2), phosphorylation at T564 by Akt is believed to promote a
conformational change that inhibits Crm1 binding to the NES [118]. A
similar mechanism appears to apply to CAV VP3 (see Fig. 3) through
Table 1
Selected examples of viral proteins where regulation of nucleocytoplasmic trafficking is im

Viral protein NLS/NES
a

IMP/EXP Regulation of nucleo

a) Nuclear import
(1) DNA viruses

Adenovirus
12S E1A

KRPRP243 [60] IMPα(1,3,
5,7)/β1

[61]

Acetylation by CBP [
the affinity of recogn

IMP α3/β1 up to 10-

Adenovirus
13S E1A

KRPRP289 [60] IMPα(1,3,
5,7)/β1
[61]

Acetylation by CBP [
the affinity of recogn
IMPα3/β1 up to 10-f

Bovine 

papillomavirus

E1

KRK86/-

/T102PVKRRKS109--

KRR114 [65, 66]

IMPα(3,4,

and 5) 

/β1 [67]

Asp substitution at t

68]and PKC[69] pho

respectively reduces

of the NLS by IMPα5

Epstein−Barr virus

Nuclear Antigen 1 

(NA1)

GEKRPRSPSS386

[70]

IMPα(1,5)

/β1 [71]

Asp substitution at S

IMPα5/β1, with 50% 

transport [72]

Asp substitution at S

to IMPα5/β1, with a 

accumulation in mic

Herpes simplex 

virus

ICP27

RRPS114/-

/KVARL127

110−137 [75]

ND Phosphorylation of S

efficiency of nuclear

Human 

cytomegalovirus

ppUL44

S413/-/PNTKKQK431

[23]

IMPα/β
[23]

Asp substitution at t

IMPα/β1 bindingand

transport by 30% [23

Asp substitution at t

facilitates binding to

accumulation by up 

Human 

cytomegalovirus

pp71 (ppUL82)

Mid-region (a.a.

215−284) [82]

ND Phosphorylation at T

prevents binding of 

for nuclear transpor

Human 

papillomavirus-11

E1

KRK85/-/S89/-/S93/-

/KKVKRR125 [84]

IMPα/β1 [67] Phosphorylation by 

enhances nuclear im

enhancing IMPα/β1 
A89/A93 double muta

accumulation [24, 84

Simian virus 40

T-ag

S106/-/S111/112/-/S120/-

/T124PPKKKRKV132

IMPα/β1 Phosphorylation of S

IMPα/β1 binding by 

Phosphorylation of S

enhances IMPα/β1 b

100-fold in synergy 

Phosphorylation of S

inhibits nuclear imp

cytoplasmic retentio

p110Rb [92]

Phosphorylation of T

nuclear import throu

by BRAP2 reducing n

up to 60% [78]

Varicella zoster 

virus IE62

RLRTPRKRKS686Q

PV689 [94]

IMPα/β1?

[94]

Phosphorylation by 

S686 or Asp substitut

nuclear import > 30%

mutant [97]

(2) RNA viruses

Avian retrovirus 

ASV17

vJun

S248RKRKL253 [99] IMPα/β1

[99]

Phosphorylation by 

substitution (D248) r

10-fold of IMPα/β1to
the T108 phosphorylation site [114,115], although phosphorylation in
this case appears to only occur in transformed and not normal cells,
making the nuclear targeting module of VP3 an exciting possibility for
plicated in viral pathogenesis.

cytoplasmic transport Role in viral pathogenesis/replication

62]at K239 [63] reduces 
ition of the NLS by 

fold [62]

The K239L mutation prevents adenovirus 
from immortalising BRK cells, with a 95−
98% reduction in foci production 
compared to WT [64]

62]at K289 [63] reduces 
ition of the NLS by 

old [62]

As above (?) [64]

he T102 and S109 Cdk1 [65, 

sphorylation sites 

 the affinity of recognition 

/β1up to 5-fold [67]

E1−E109 mutant viruses replicate 30% less 

effectively than WT [69]

85 increases recognition to 

accelerated nuclear 

83 and S86 reduces binding 

25% decrease in nuclear 

roinjected cells [72]

Nuclear NA1 is largely sequestered from the

immune system, preventing NA1 from going

to the nucleus which leads to increased

epitope presentation to CD4+T cells [73,74]

114 by PKA reduces the 

 import [76]

ICP27-A/E114 substitution of S114 within 

HSV-1 virus results in a 2-log reduction in

viral replication along with severely 

reduced gene expression/DNA replication 

[76,77]

he CK2 site S413 enhances 

 increases nuclear 

]

he PKA/PKC site T427

 BRAP2, reducing nuclear 

to 60% [23,78]

ppUL44 nuclear localisation is essential 

for viral replication [79,80]; transfection of 

HCMV-infected U373 cells to express a C-

terminallytruncated form of ppUL44 

knocks out virus production up to 97% [80,81]

223 masks the NLS and/or 

a cellular protein required 

t of pp71 [82]

Cytoplasmic ppUL82 causes the HCMV 

virus to stay in the latent stage [83]

ERK/JNK, at S89 and S93

port, possibly through 

binding to the NLS.  The 

nt abolishes nuclear

]

Replication of HPV E1-S89A and E1-

S93A mutant viruses is reduced 50 and 

75% respectively in a transient replication 

assay[84]

111/112 by CK2 enhances 

c. 50-fold [85−89]

120 by dsDNA-PK 

inding by 40%, and c. 

with theCK2 site [90]

106 by CK1/GSK3 [91]

ort by c. 50% through 

n related to binding by 

124 by Cdk1 inhibits 

gh cytoplasmic retention 

uclear accumulation by 

SV40 virus containing T-ag AC112 mutant 

has > 50% reduced virus viability, with 

delayed plaque formation seen [93]

SV40 containing T-ag-A120 mutant is non-

viable [93]

SV40 containing T-ag A106 mutant has 

slightly increased transformation activity 

[93]

SV40 containing T-ag A124mutant is non-

viable [93]

the viral ORF66 kinase at 

ion [95, 96]reduces 

Prevention of phosphorylation at S686

reduces pathogenesis, where VZV with the 

 compared to WT or A686 IE62-A686 mutant shows reduced 

incorporation of IE62 into virions, whilst 

disruption of ORF66 expression results in 

lower virus production/poor capsid 

assembly [95−98]

PKC [100]at S248 or Asp 

educes the binding affinity 

 v-Jun[100,101]

S248 in v-Jun results in tumorigenic activity 

compared to c-Jun, immortalising the host 

cell to enhance virus survival [100,102,103]

(continued on next page)



Nipah virus matrix 

(M) protein

RRAGKYYSVDYC

RRK258 [110]

ND Ubiquitinylation at K258 inhibits nuclear 

import, simultaneously enhancing nuclear 

export dependent on two NESs in either side of 

the NLS [110]

Mutant virus with R or A substituted K258

is deficient in virus budding; ubiqitin 

depletion from infected cells prevents viral 

budding [110]

b) Nuclear export
(1) DNA viruses

Adenovirus

type 5 E1A

VMLAVQEGIDL80

--------S89 [111]

Crm1 

[111]

Phosphorylation by Cdk1/Cdk2 at S89

enhances Crm1 nuclear export.  The A89

mutant is 75% more nuclear than the D89

mutant or WT [111]

Viruses with mutated E1A NES (A74) have 

10−100 fold lower viral replication [111]

BPV

E1

Exact sequence 

unknown S283 [112, 

113]

Crm1 

[112,113]

Phosphorylation by cyclinA-Cdk2 at S283 or 

E283 substitution promotes nuclear export 5

fold compared to WT and thereby 

nucleocytoplasmic shuttling [68,112]

E283 substitution of S283 of E1 in BPV 

causes 10−20% reduced transient DNA 

replication compared to WT BPV [112]

CAV VP3 VSKLKESLI105TTT
108 [114]

Crm1 

[114]

Phosphorylation (by HIPK2 ?) or Asp 

substitution at T108 [114]inhibits nuclear 

export resulting in up to 2-fold higher nuclear 

accumulation [114,115]; phosphorylation at 

Production of infectious CAV containing 

VP3-T108I is 95−98% reduced compared 

to WT [116]

T108 only appears to occur in transformed and 

not non-transformed cells

HPV-11

E1

NVANAVESEIS107

PRLDAIKL115[84]

Crm1[84] Phosphorylation by Cyclin/Cdk [84,117] at 

S107 prevents Crm1 binding to the NES, where 

Ala substitution at S107 enhances nuclear 

export/nuclear exclusion [24,84]

Cytoplasmic localisation of E1 is essential 

for regulation of HPV replication [24,84]

Kaposi’s sarcoma-

associated herpes 

virus

LANA2

MVPLVIKLRL560--

-T564 [118]

Crm1 

[118]

Phosphorylation by Akt or Asp substitution at 

T564 prevents Crm1 mediated export [118]

LANA2 appears to be absolutely required 

in the nucleus for viability/proliferation of 

KSHV in primary effusion lymphoma cells 

by repressing anti-viral functions within 

the PML nuclear bodies [119]

(2) RNA viruses

Rabies virus

P protein

NES2 

NFEQLKM232 [120, 

121]

Crm1 

[120,121]

Phosphorylation by PKC at S210 causes 

conformational change to enhance nuclear 

export 2-fold, and may simultaneously mask 

the NLS (S210KKYK214---/---R260) [120−122]

The attenuated non-lethal chicken embryo 

cell-adapted strain Ni-CE of the highly 

pathogenic Nishigahara strain of RV has 

defects in P protein nuclear export that 

correlate with loss of pathogenicity due to 

impaired IFN signalling [123,124]

RSV matrix (M) 

protein

IIPYSGLLLLVITV
206 [125]

Crm1 

[125]

Phosphorylation during viral infection effects 

nuclear export of M, presumably through 

conformational changes to enable CRM1 to 

recognise the NES

Inhibition of CRM1-mediated export by 

LMB treatment results in a 20-fold 

significant decrease in virus, whilst 

mutation of the NES results in non-viable 

virus [125]

Viral protein NLS/NES
a

IMP/EXP Regulation of nucleocytoplasmic transport Role in viral pathogenesis/replication

Human T-cell 

leukaemia virus 

type 2

Rex

MPKTRRQRTRRA

RRNRPPT19 [104]

IMP�? 

[105,106]

Phosphorylation by CK1/GSK3 at T164 enables 

the S151 and/or S153 sites to be phosphorylated 

by CK1, to produce the functional form of the 

protein and enhances nuclear import by 

making the NLS accessible to IMPβ(?)

[107-109]

A151 and/or A153 with A164 substitution 

reduces p24 production 50−75% compared 

to WT in a HIV p24 Gag reporter assay; 

the DD151/153 double mutant has 2-fold 

enhanced biological activity compared to 

WT [107−109]

(2) RNA viruses

ND, not determined.
Abbreviations: CBP, CREB-binding protein; Cdk, cyclin dependent kinase; CK2, protein kinase CK2; dsDNA-PK, double stranded DNA-dependent protein kinase; GSK3, glycogen synthase
kinase 3; HIPK2, homeodomain-interacting protein kinase 2; LANA2, latency associated nuclear antigen 2; LMB, leptomycin B; PKA, protein kinase A; PKC, protein kinase C; PML,
promyelocytic leukaemia protein; WT, wild type.
aSingle letter code used for sequences; known/potential kinase sites (in bold blue), acetylation sites (in bold purple and underlined) or ubiquitination sites (in bold orange and
underlined) are highlighted, with amino acid position in the protein of interest shown in the superscript.
Source: Refs. [60–67,69–77,80–83,94–96,98–106,110,116,119,125].
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tumour-cell specific nuclear targeting. In the case of the SV40 T-ag
protein, protein kinase CK2 (CK2) phosphorylation at S111/112 in-
creases the affinity of recognition of the NLS by IMPα/β1, thereby
accelerating the nuclear import rate c. 50-fold; this can be further
enhanced by phosphorylation of the double-stranded DNA-depen-
dent protein kinase (dsDNA-PK) site S120, which facilitates phosphor-
ylation at the CK2 site, as well as IMPα/β1 recognition/nuclear import
[85–90]. In analogous fashion, HCMV ppUL44 is phosphorylated at
S413 by CK2 to enable higher affinity recognition of the NLS by IMPα/
β1 and increased nuclear import (see Fig. 3; [23]), and a similar
mechanism appears to apply to the Adenovirus E1a protein (see
Fig. 3), where phosphorylation by Cdk1 at S89 enhances Crm1-
mediated nuclear export [111].
Intermolecular masking occurs when a heterologous protein
prevents IMP/EXP recognition of normally accessible NLS/NES
sequences in a cargo protein. Inhibitor protein I-κB is an example of
a very specific cytoplasmic retention factor which binds to the NLS of
the transcription factor NF-κB p65 to prevent IMPα/β1 interaction
and thereby inhibit nuclear import. Upon activation of signal
transduction, e.g. cytokine production during an immune response,
I-κB is phosphorylated and degraded to unmask the p65 NLS and
enable nuclear import [126,127]. An example of a more general
cytoplasmic retention factor that affects nuclear import of a number of
different NLS-containing proteins, including SV40 T-ag and HCMV
ppUL44 [78] is BRCA1 associated protein 2 (BRAP2). Intermolecular
masking of the T-ag NLS by BRAP2 is dependent on phosphorylation



Fig. 3. Schematic representation of the mechanisms of regulation of IMP/EXP-dependent nuclear transport, as illustrated by examples of viral proteins. In intramolecular masking
(1) IMPs/EXPs are prevented from binding the NLS/NES of the cargo by masking of the NLS/NES by sequences within the same protein. This is exemplified by (a) the human T-cell
leukaemia virus type 2 (HTLV-2) Rex protein in its inactive p24 form, where specific phosphorylation by CK1/GSK3 at T164 and subsequent phosphorylation at S151/153 are required for
IMPβ recognition of theNLS, and (b) theVZV IE62,where phosphorylation at S686 by theVZV kinaseORF66 inhibits nuclear import by impairing recognition by IMPα/β1 [97]. Examples
of intramolecular masking in nuclear export are shown for (c) HPV E1, where Cdkmediated phosphorylation of S107 prevents Crm1 binding, resulting in nuclear retention [24,84], and
(d) CAV VP3, where phosphorylation of T108 specifically in cancer cells prevents nuclear export [114,115]. In intermolecular masking (2), NLSs/NESs are masked from IMPs/EXPs
binding by a heterologous protein/molecule. An example in the case of nuclear import is the cytoplasmic protein BRAP2 which, dependent on Cdk phosphorylation of T124, prevents
recognition by IMPα/β1 of the SV40 T-ag NLS, a similar mechanism dependent on protein kinase C phosphorylation of T427 applies to HCMV ppUL44 protein (not shown) [78].
Enhancednuclear import/export canoccur throughposttranslationalmodification enhancingNLS/NES recognitionby IMP/EXP. Anexample (3a) is the increase in the affinity of binding
of IMPα/β1 to the NLSs of HCMV ppUL44 and SV40 T-ag (not shown) by CK2 phosphorylation (of S413 and S111/112 respectively) leading to enhanced nuclear import [23,85,87]. In the
case of nuclear export (3b), Cdk1/Cdk2mediated phosphorylation of S89 enhances recognition of theAdenovirus type 5 E1aNES by Crm1, leading tomore efficient nuclear export [111].
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of T124 by Cdk1 adjacent to the NLS (see Fig. 3 and Table 1), whilst
PKA/PKC mediated phosphorylation of T427 within the ppUL44 NLS
similarly facilitates interaction with BRAP2 and cytoplasmic retention
[78]. Cellular proteins such as p53 and p21cip [78,128–133] which
possess NLSs and adjacent phosphorylation sites resembling those of
SV40 T-ag and HCMV ppUL44 also appear to be able to be recognised
by BRAP2 and inhibited in terms of nuclear import.

The subcellular distribution of viral proteins is able to be precisely
regulated by specific cellular mechanisms; this can be seen as
representing part of the host cell anti-viral response, but is also able
to be exploited by the various viruses to enhance replication. For
example, although the inhibition of nuclear import of SV40 T-ag or
HCMV ppUL44, by BRAP2 leads to slowing/prevention of viral
replication, this may also contribute to viral replication by delaying
it until the optimal stage of the cell cycle or cellular signal
transduction state, which is achieved by the phosphorylation control
of BRAP2 interaction with SV40 T-ag/HCMV ppUL44. The following
section describes several specific examples where a physiological role
of regulated nucleocytoplasmic trafficking is implicated in viral
pathogenesis and/or the viral replication cycle.

4. Selected examples of regulation of subcellular trafficking
of viral proteins

4.1. SV40 T-ag and HCMV ppUL44: multiple mechanisms of regulation of
nuclear import through protein–protein interactions

SV40 virus replication uniquely is dependent on a single protein –

T-ag – whose roles include as an initiation factor for viral DNA
replication, dysregulation of the cell cycle and blocking apoptosis
[134,135]. T-ag's three main functional domains are the J domain (a.a.
1–82) that binds to hsc70, the constitutively expressed homologue of
heat shock protein hsp70 [136,137], the LxCxE motif (residues 103–
107) that confers binding to the retinoblastoma (Rb) family of
proteins p110Rb, p107Rb and p130Rb2 [138,139], and a bipartite
carboxyl-terminal domain (a.a. 351–450 and 533–626) that binds to
the tumour suppressor p53 [137,138], as well as the CREB binding
protein (CBP) and the functional homologues, p300 and p400, all of
which have roles in cell growth and transformation [140,141]. T-ag's
functions in replication are nuclear, as are the functions of the various
host cell target proteins of T-ag; consistent with this, T-ag possesses a
highly efficient NLS [21,22,142]. Early work showed that T-ag was a
phosphoprotein [143,144], with several clusters of phosphorylation
sites [145–147] shown to be phosphorylated in SV40 infected cells
and critical for T-ag function/virus replication (see Table 1) [148].
These include the CK2 site (S111/112) [85,87,88], the Cdk1 (cdc2) site
(T124) [86] and the less well characterised CK1/GSK3 site (S106) [91],
all of which affect virus replication [93,148] as shown in Table 1,
which summarises the effect of mutations at these sites on SV40 T-ag
nuclear transport as well as SV40 pathogenesis/replication.

HCMV DNA replication occurs within the nucleus of the infected
cell, through a “rolling circle”mechanism [149] that requires at least 6
essential virally encoded gene products [150,151] which include the
DNA holoenzyme complex, which is made up of a catalytic subunit
(pUL54), and the phosphoprotein and processivity factor ppUL44 [79].
The ppUL44 N-terminal region possesses the ability to bind dsDNA in
the absence of ATP and clamp loaders, and through its ability to bind
to pUL54, can link pUL54 to DNA and stimulate DNA polymerase
activity [79]. The N-terminal region also possesses dimerisation
activity [152,153]. Early in infection, ppUL44 localises to the nucleus
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through a C-terminally localised NLS (PNTKKQK431) [23], that also
appears to be responsible, for “piggy-back” nuclear import of other
viral replication fork proteins such as pUL54 and the uracil DNA
glycosylase pUL114 [154,155], whereby the proteins may assemble in
the cytoplasm on the ppUL44 dimer before nuclear import ([156,157];
Fig. 4). Importantly, ppUL44 is a target for cellular and viral kinases
during infection [23,158,159], with several phosphorylation sites,
including CK2 (S413) and PKC (T427) sites, N-terminal (a.a. 410–424)
to the NLS [23,78] (see Table 1 and Figs. 3 and 4). This constellation of
phosphorylation sites N-terminally proximal to the NLS is closely
comparable to that of SV40 T-ag (see above) [23].

4.1.1. Positive and negative regulation of nuclear import through specific
phosphorylation

Detailed analysis of the transport kinetics of bacterially expressed
proteins microinjected into hepatoma cells indicated that the T-ag
NLS alone (residues 126–132) conferred a much slower rate of import
than the NLS together with the N-terminal flanking residues (a.a.
111–132) which contains the various phosphorylation sites men-
Fig. 4. The regulation of viral protein nuclear import through phosphorylation near the NLS. T
single letter amino acid code) with the regulatory phosphorylation sites (blue) and the NLS (r
(“P”). The T-ag NLS alone mediates IMPα/β1-mediated nuclear import, relatively inefficien
arrow), IMPα/β1 is able to bind the T-ag NLS c. 50-fold better, to facilitate subsequent efficie
p110Rb to bind T-ag at the RbBS, which leads to cytoplasmic retention and decreased nucle
bind the T-ag NLS to prevent IMPα/β1 binding through intermolecular masking, and seques
nuclear import is inefficient (black dotted arrow) but upon phosphorylation at serine413 b
facilitate efficient nuclear import (2b). Phosphorylation at Thr427 by PK-C (blue arrow), enh
masking, and sequester ppUL44 in the cytoplasm and prevent nuclear import. Since ppUL44
the nucleus early in infection, the various regulating mechanisms may apply to nuclear imp
tioned above [88,89]. Deletion/mutation of the CK2 site S111/112 to
prevent phosphorylation decreased the import rate [88], whilst D112

substitution enhanced nuclear import [87,160]; although S111 can
function in its absence as a CK2 site, S112 is the main site of CK2
phosphorylation [87]. The mechanism of enhanced nuclear import
through the CK2 site is through phosphorylation increasing the
affinity of T-ag NLS recognition by the IMPα/β1 heterodimer [85].
Negative charge at S120, the dsDNA-PK site, apart from facilitating CK2
phosphorylation at S111/112, also enhances IMPα/β1 binding to the
NLS [90]. That phosphorylation of S111/112 to enhance nuclear
accumulation of T-ag is physiologically important in SV40 replication
is indicated by the fact that viruses with mutations in the CK2 site
(S112 and/or both S111/112) have markedly slower kinetics of DNA
replication, and reduced viability (N50%) [93,148].

Significantly, HCMV ppUL44 processivity factor has an NLS
comparable to that of SV40 T-ag, together with an adjacent CK2 site
(see Table 1) that acts to increase the affinity of recognition by IMPα/
β1 and nuclear transport efficiency [23]. Since ppUL44 contributes to
nuclear accumulation of other HCMV gene products such as pUL54
he phosphorylation regulated NLSs (prNLSs) of SV40 T-ag and ppUL44 are shown (top—

ed) highlighted, as well as the binding partners recognising themwhen phosphorylated
tly (black dotted arrow — 1a), but upon phosphorylation at serine111/112 by CK2 (blue
nt nuclear import (1b). Phosphorylation at serine106 by GSK3/CK1 (blue arrow) allows
ar import (1c). Phosphorylation at threonine124 by Cdk1 (blue arrow) allows BRAP2 to
ter T-ag in the cytoplasm (1d). (2a) HCMV ppUL44 IMPα/β1-mediated NLS-dependent
y CK2 (blue arrow), IMPα/β1 is able to bind the ppUL44 NLS with greater affinity to
ances binding of ppUL44 to BRAP2 to prevent IMPα/β1 binding through intermolecular
may play a role in piggy-backing the HCMV proteins pUL54 and ppUL114 proteins into
ort of multiple HCMV proteins.
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and pUL114 involved in virus replication, the enhancement of ppUL44
nuclear import by CK2 would appear to be crucial to HCMV, with
inhibition of CK2 potentially a viable future anti-viral approach to
inhibit HCMV replication [23,156,157,161].

That CK2 is exploited by SV40 and HCMV and possibly other
viruses, to enhance nuclear localisation of proteins involved in their
DNA replication can be understood in terms of CK2 being ubiquitously
expressed and constitutively active [162]. Intriguingly, certain viruses
have been shown to directly control CK2 localisation as well as up
regulate its expression. During HSV-1 infection, for example, the
ICP27 protein is known to recruit CK2 from the nucleus to the
cytoplasm, resulting in a 3.5-fold increased CK2 activity by 6 h post
infection that enhances cytoplasmic localisation of phosphorylated
ICP27 and thereby facilitates its role in shuttling HSVmRNAs from the
nucleus [163]. Analogously, CK2 appears to be recruited from
subnuclear structures to regulate intranuclear transport of ribosomal
RNA during Adenovirus infection [164]. The implication is that CK2
activity is integral to infection in the case of a number of viruses, with
more examples of viruses using CK2 to modulate subcellular
localisation likely to be identified in the near future.

In contrast to the effects of phosphorylation at S111/112/120, Cdk-
phosphorylation or Asp substitution of T124 adjacent to the NLS
inhibits T-ag nuclear import [78,86]. The mechanism of inhibition of
nuclear import is not through preventing IMPα/β1 recognition of the
NLS, but rather through negative charge enhancing binding of the
cytoplasmic retention factor BRAP2, first identified as a binding
partner of BRCA1 in a yeast-2-hybrid screen [165]; negative charge at
T124 appears to enhance specific binding of BRAP2 to SV40 T-ag,
thereby inhibiting nuclear import [78].

Analogously, BRAP2 has also been shown to bind the HCMV
processivity factor ppUL44, dependent on negative charge at T427

within the NLS (see Table 1 and Fig. 4) [78], making BRAP2 the first
example of a cellular negative regulator of nuclear import (NRNI) that
inhibits nuclear bound viral cargo in a phosphorylation-dependent
manner. Although this has only been shown thus far for gene products
from dsDNA viruses, it seems likely that this may apply to other
viruses/viral gene products. The fact that BRAP2 may represent a
general cellular defence mechanism to stem viral replication is an
intriguing idea that warrants further investigation to examine its full
potential as an anti-viral agent. It should not be ignored, however,
that, as alluded to above, cytoplasmic retention of viral proteins until
an optimal cell cycle/signal transduction state of the cell is attained is
a strategy utilised by many viruses to facilitate rather than prevent
virus production/infectivity etc. That virus replication is optimal at
particular stages of the cell cycle has been shown for Hepatitis C,
Epstein–Barr Virus (EBV), varicella zoster virus (VZV), Kaposi's
sarcoma-associated herpes virus (KSHV), as well as HPV [166–170].

4.1.2. Inhibition of nuclear import through p110Rb

Unlike HCMV ppUL44, SV40 T-ag, as indicated above, is able to
bind Rb family members through the Rb binding site (RbBS)
[134,135]. The CK1/GSK3 site (S106) within the RbBS has been
shown to be critical for transformation and viral replication (see
Table 1; [93,148]), correlating with the fact that negative charge at
this site inhibits nuclear transport [92] throughmodulation of binding
of p110Rb, but not other Rb family members. Deletion or mutation of
critical residues in the RbBS relieves inhibition of nuclear import for T-
ag proteins carrying the RbBS, whilst cancer cells lacking functional
p110Rb show no reduction in nuclear transport due to the RbBS. Based
on fluorescence recovery after photobleaching (FRAP) experiments,
the mechanism of inhibition appears to be through cytoplasmic
retention of the Rb–T-ag complex [92].

Significantly, other DNA tumour viruses gene products such as
adenovirus E1a [171–173], JC and Bk virus T-ag proteins [174–176],
and pUL97 from HCMV [177] all possess RbBS's analogous to that of
SV40 T-ag. Although the conventional view is that viral proteins target
p110Rb to impair its role in the cell cycle [178,179], it does not seem
unreasonable to speculate that p110Rb in turn may act on a number of
transforming viruses by modulating the nuclear import of diverse
viral proteins.

4.2. HPV E1 protein: cell cycle phosphorylation controls levels of nuclear
protein

HPV has a particular tropism for squamous mucosal or cutaneous
epithelia [180], where infection can trigger hyperproliferation of
epithelial keratinocytes and benign warts in the case of certain “lower
risk”HPV genotypes (e.g. 6 and 11) [181,182], or can lead tomalignant
cancer [183,184] in the case of certain “high risk” HPV genotypes (e.g.
16 and 18) [181,182,184]. Most infections are latent, however, where
the viral DNA persists in the host as low copy number extrachromo-
somal plasmids in the basal germinal stratum as a result of low-level
expression of the viral genes [180].

E1 is a 70 kDa site-specific ATP-dependent DNA helicase essential
for virus replication, which is highly conserved amongst all HPV types,
and is essential for viral replication and amplification [185–187].
Together with HPV E2 protein, which increases its affinity for DNA
[188–194], E1 is able to bind to a specific binding element in the viral
origin to act to facilitate origin DNA unwinding, recruit the host cell
DNA polymerase α-primase complex, and thereby initiate viral DNA
synthesis [195–201]. E1 performs its role in the nuclear compartment,
which it accesses through a bipartite NLS (HPV-11 E1 83KRK/-/S89/-/
S93/-/KKVKRR125 [24]). Between the basic amino acids of the bipartite
NLS is a potent NES (HPV-11 E1 97NVANAVESEIS107PRLDAIKL115 [84])
that confers rapid export out of the nucleus through Crm1 [24,84].
Bovine papillomavirus (BPV) E1 is functionally homologous to HPV
E1, being able to substitute for HPV E1 in replicating the HPV genome,
and vice versa [185]. Although phosphorylation by Cdk2 at S-phase of
the cell cycle promotes BPV E1 nuclear export via Crm1, where
phosphorylation/dephosphorylation at S283 would appear to enable
rapid nucleocytoplasmic shuttling [112,113], Cdk phosphorylation
appears to promote nuclear retention in the case of HPV-11 E1 [24,84].
The presence of a NES in E1 presumably relates to the need for the
virus to slow viral replication to establish a persistent infection in the
basal keratinocytes and maintain low copy number by keeping the
nuclear concentration of E1 low. Only once the basal cells differentiate
and start to rise to the skin surface does E1 accumulate in the nucleus
to enable HPV enter the vegetative stage of its life cycle, when the viral
promoters are significantly up-regulated and late gene products
produced to enable HPV to have the best chance to reinfect another
host [170,201–204].

HPV E1 nuclear localisation is modulated by phosphorylation by
MAPKs present in the cytoplasm, and Cdks in the nucleus, at specific
stages of the cell cycle [24]. E1 has been shown to interact with several
cyclin/Cdk complexes in vitro [68,117], as well as directly with cyclin E
[117,205], an interaction that is essential for viral replication [117].
The N-terminal domain of E1 possesses a cyclin bindingmotif (RxL126)
[117] as well as several Cdk phosphorylation sites, of which S89, S93

and S107 have been shown through mutational analysis to inhibit
transient replication of viral origin-containing plasmids in transfected
cells [117]. Phosphorylation of all three serines (see Fig. 5) appears to
be required for efficient nuclear localisation that is dependent on
active cyclin E/Cdk2 and/or cyclin A/Cdk2 at S107 [24,84,117], and
MAPKs (ERK/JNK) at S89/93 [24]. S106 phosphorylation prevents Crm1
recognition of E1's NES [24,84], whilst phosphorylation probably by
MAPKs of S89 and S93 seems likely to facilitate recognition by IMPα/β1
[24], probably in a manner similar to the effect of the CK2 sites near/
within the NLSs of T-ag and ppUL44 (see Section 4.1.1; Figs. 4 and 5).

Phosphorylation of HPV E1 by Cdk has been shown to be crucial for
viral replication; mutation of all four Cdk sites within the protein
(including S107) impairs HPV replication in vitro and in vivo, without
affecting association with HPV E2 or cyclin E [84,117]. It would thus
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Fig. 5. Cell cycle-dependent regulation of nuclear localisation for HPV E1 by cellular kinases. The prNLS of HPV E1 is shown (top), with the regulatory phosphorylation sites (blue),
NLS (red) and NES (green), highlighted, as well as the binding partners that recognise them according to phosphorylation state (“P” indicates phosphorylation). The E1 NLSmediates
IMPα/β1-mediated nuclear import inefficiently (black dotted arrow) (1a) but upon phosphorylation of S89 and S93 by ERK (and/or JNK for S89), IMPα/β1 is able to bind the NLSmore
strongly to facilitate efficient nuclear import (1b). Once in the nucleus E1 is quickly exported back to the cytoplasm, through Crm1 (2a). Nuclear export is prevented by the nuclear
kinases Cdk1/Cdk2 (2b), present during S and G2 phases of cell cycle, which phosphorylate S107 to prevent Crm1 binding to the NES, leading to strong nuclear accumulation/nuclear
retention.
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appear that precise regulation of nucleocytoplasmic shuttling of HPV
E1 is necessary in order to modulate the levels of E1 nuclear activity
according to the differentiation state of the host cell; premature
nuclear entry of E1 leading to virus production before the cell reaches
the skin surface would be counterproductive, and so cell cycle-
dependent phosphorylation appears to be exploited to HPV's
advantage to fine tune the levels of E1 in the nucleus in order to
optimise its chance of infecting a new host.

4.3. Rabies virus P protein

Although RNA viruses replicate in the cytoplasm, specific gene
products from many of them are known to enter the nucleus (see
Table 1) and/or alter nuclear transport of key cellular factors directly
or indirectly (see Section 3). Nuclear localising proteins from RNA
viruses generally interfere with transcription factors involved in
signalling related to the innate immune system, though direct
binding, or indirect effects [59]. STATs are the key factors involved
in the innate immune response targeted by many RNA viruses,
including Nipah, Sendai, measles and RV [59,206,207].

RV, genus lyssavirus, family Rhabdoviridea is a neurotropical virus,
possessing a small 12 kb, negative stranded RNA genome comprising
only five genes [208,209]. Through a leaky scanning translation
mechanism, the gene encoding the RV phospho (P)-protein (RPP)
produces 5 forms (P1–5, where P1 is the full length protein), which
have been implicated in various important functions in the viral life
cycle [209,210]. These include as a cofactor in viral genome replication
through binding of its N-terminal 19 amino acids (only present in the
P1) to the RV polymerase (L), and as a chaperone for nucleoprotein
(N) either through direct binding (through a.a. 1–177) or indirectly
bound to viral RNA genome (N-RNA) through the C-terminal domain
(CTD, a.a. 174–297, present in all forms of RPP). Importantly, however,
RPP also plays a key role as an antagonist of the host anti-viral
response in part though binding to nuclear factors such as the
transcription factor STAT-1 and promyelocytic leukaemia tumour
suppressor protein (PML) [211–215] also through the CTD. RPP is also
able to interact in two distinct modes with the host cell microtubule
(MT) system, either through a dynein light chain (DLC) associated
sequence (DLC-AS; a.a. 139–151, present in all forms of RPP) which
confers interaction with DLC8 to enable dynein-facilitated nuclear
import of RPP, or through a second distinct MT-association sequence
(MT-AS, absent from P1 and P2), in combination with the RPP self-
association domain (a.a. 54–139), which mediates dimerisation and
causes the retention of associated STAT-1 on MTs, independent of
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DLC8, thereby preventing STAT-1 nuclear import and dampening the
host cell response to IFNs [121,210,216].

4.3.1. Distinct roles of RPP P1 and P3 forms in the cytoplasm and nucleus
The key forms of RPP appear to be P1 (1–297) and P3 (53–297),

which function predominantly in the cytoplasm and nucleus
respectively, with the strong N-terminal NES (NES1) the main basis
of predominantly cytoplasmic localisation of P1, in contrast to P3 that
lacks it and is predominantly nuclear [120]. P1's key role is in the
cytoplasm, both as a cofactor for replication, and as a binding partner
of STAT-1 to prevent its role in IFN signalling, P3, however, can exist in
either the nucleus, where its predominant role is to inhibit STAT-1
DNA binding activity, or in the cytoplasm, where, in a dimerised form,
it prevents STAT-1 nuclear access by binding it and associating with
MTs (Fig. 6). Multiple PKC sites [217] throughout RPP provide
additional levels of control, the best understood of which is the PKC
site at S210, which appears to function as a switch to inhibit the NLS (a.
a. KKYK214 -/- R260) within the CTD [120,122] and expose a second
NES (NES2: NFEQLKM232) normally buriedwithin the CTD (see Fig. 6).
Whether other PKC sites (e.g. S63, S64 and S162) within RPP modulate
MT interaction and/or regulate dimerisation of the RPP to enable the
MT-dependent retention of associated STAT-1, is unknown at this
stage. What is clear, however, is that RPP dimerisation is critical for
Fig. 6. Regulation of nucleocytoplasmic shuttling of RV P3 protein to inhibit activity of the S
RPP is shown (top), with the regulatory phosphorylation site (blue), NLS (red) and NES
phosphorylation state (“P” indicating phosphorylation). In the absence of phosphorylation
association sequence (DLC-AS), which confers binding to themicrotubule (MT)motor dynein
DNA binding activity by the STAT-1 signalling molecule. P3 remains in the nucleus because N
to render NES2 accessible to Crm1 (and mask the NLS) to permit Crm1 recognition and nu
sequence (MT-AS) distinct from the DLC-AS, P3 remains cytoplasmic, acting to retain STAT-
STAT-1 cytoplasmic retention, since deletion of the self-association
domain abolishes P3MT association, instead facilitatingMT-enhanced
nuclear import via the DLC-AS [210,216]; a heterologous dimerisation
domain functionally can substitute for the RPP self-association
domain to restore STAT-1 cytoplasmic retention [210].

4.3.2. Nucleocytoplasmic trafficking of forms of P protein contributes to
pathogenicity through targeting STAT-1

That nucleocytoplasmic trafficking of RPP is critical to RV infection
is implied by analysis of an attenuated non-lethal chicken embryo
(CE) cell-adapted strain (Ni-CE) of the highly pathogenic Nishigahara
(Ni) strain of RV. A chimeric CE(NiP) virus containing the Ni-P gene in
the Ni-CE genetic background, is highly pathogenic, implying that RPP
is a key virulence factor, and that mutations in the RPP are likely to be
responsible for reduced pathogenicity of Ni-CE compared to Ni [123].
Intriguingly, 4 of a total of 7 amino acid substitutions in the Ni-CE
strain, compared to that of Ni, are located within/near NES1 (see
Section 4.3.1), correlating with the fact that the Ni-CE RPP P1 is more
nuclear in infected cells than the Ni RPP, and thereby less able to
prevent STAT-1 nuclear translocation in response to IFNα treatment.
The implication is that the RPP NES1 plays a critical role in infection by
specifically antagonising STAT-1 nuclear translocation to activate IFN-
stimulated genes [124,210,218].
TAT-1 transcription factor in cytoplasmic and nuclear compartments. The prNLS/NES of
(green), highlighted, as well as the binding partners recognising them according to
, P3 localises efficiently in the nucleus (1) through its NLS and the dynein light chain
that acts to enhance IMP facilitated transport to the nucleus, where its role is to prevent

ES2 is inaccessible (2a) until PKC phosphorylation of S210 induces conformation changes
clear export (2b). Upon oligomerisation and binding to MTs through a MT-associating
1 in the cytoplasm bound to MTs (3) and prevent its action in the anti-viral response.
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Similar mechanisms of regulating viral replication and immune
evasion appear to be employed by Nipah virus which possesses 3
forms of the P protein, P (709 a.a.), V, and W proteins (456 and 450
a.a., respectively); all share the same N-terminal domain but vary in
the C-terminal domain through frame shifting during translation
[219]. The cytoplasmic and nuclear localisation of the gene products
appears to be crucial to inhibit STAT-1 activities by directly interacting
with STAT-1 and preventing its activation [207,220]; W protein is
found in the nucleus and V and P found in the cytoplasm [207,221].
Nipah produces V and W in addition to the full length P protein to
target STAT-1, with the varying forms acting in the cytoplasm and
nucleus combining to effect inhibition of the innate immune response
pathway. RV and Nipah and presumably other viruses thus utilise
multiple forms of the same gene product to target STAT-1 in either the
cytoplasm or nucleus to prevent the up-regulation of IFN-stimulated
genes and thereby dampen the innate immune response. That STAT-1
is a target for many different viruses is known e.g. the V protein of
measles [222–224] and rinderpest [225] viruses also binds STAT-1 to
inhibit anti-viral responses. Clearly, perturbing the nucleocytoplasmic
shuttling ability of the key viral proteins that sequester STAT-1 in
nucleus/cytoplasm would represent an important step towards pre-
venting viral evasion of the innate immune system, aswould preventing
interaction of STAT-1 with the viral proteins themselves.

5. Conclusions and future research

Precise regulation of the function of specific viral proteins is
central to viral replication and pathogenesis, and as discussed here,
nucleocytoplasmic trafficking plays a critical role in the case of many
DNA and even RNA viruses (see Table 1). Phosphorylation appears to
be the main mechanism by which viral protein nucleocytoplasmic
trafficking is regulated during the virus life cycle, involving various
cellular kinases as well as virally encoded kinases. The ubiquitously
expressed CK2 enhances nuclear localisation of specific proteins
involved in replication in the case of DNA tumour viruses such as SV40
and HCMV, whilst Cdks have been shown to play a crucial role in
maintaining a persistent HPV infection in the skin through modulat-
ing E1 localisation; viruses that encode their own kinases such as VZV
(ORF66, see Table 1) are less reliant on cellular kinases for control over
subcellular localisation. Clearly, targeting the activity of kinases, such
as CK2 and Cdk in order to perturb viral protein subcellular trafficking
using specific inhibitors, represents a potential anti-viral strategy,
although hampered by the obvious problem of effects on normal
cellular functions of conventional kinase inhibitors. Screening for
and/or developing compounds that block the nuclear transport
of specific viral proteins though disrupting their interaction with
IMP/EXPs seems an intriguing alternative, whereby a counter
screening approach could be used to discard inhibitors of general
host protein–IMP interaction, in order to identify inhibitors specific
to IMP–viral protein interaction without affecting cellular proteins
(Wagstaff et al., manuscript in preparation). Along similar lines, a
unique approach would be to screen for compounds that stabilise or
enhance the interaction with negative regulators of nuclear import
such as BRAP2 with the SV40 T-ag or HCMV ppUL44 proteins or
p110Rb with SV40 T-ag etc., as a means to inhibit viral protein
nuclear import and thereby virus production.

In conclusion, based on the results summarised here (e.g. Table 1)
and elsewhere, viral protein nucleocytoplasmic trafficking is central
to viral infection/pathogenesis in many cases. Developing reagents
directed specifically towards nuclear import/export of viral proteins
rather than inhibitors of general transport looms as a fruitful avenue
of research. In the face of the growing need for therapeutics to combat
the consistently emerging lethal zoonotic viral threats to human
health, such as SARS, Ebola and Nipah, as well as more familiar lethal
pathogens, such as HIV and influenza, this avenue should probably be
exploited in the near future with some urgency.
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