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Summary

MicroRNAs (miRNAs) regulate gene expression with emerging

data suggesting miRNAs play a role in skeletal muscle biology.

We sought to examine the association of miRNAs with grip

strength in a community-based sample. Framingham Heart Study

Offspring and Generation 3 participants (n = 5668 54% women,

mean age 55 years, range 24, 90 years) underwent grip strength

measurement and miRNA profiling using whole blood from

fasting morning samples. Linear mixed-effects regression model-

ing of grip strength (kg) versus continuous miRNA ‘Cq’ values and

versus binary miRNA expression was performed. We conducted

an integrative miRNA–mRNA coexpression analysis and examined

the enrichment of biologic pathways for the top miRNAs

associated with grip strength. Grip strength was lower in women

than in men and declined with age with a mean 44.7 (10.0) kg in

men and 26.5 (6.3) kg in women. Among 299 miRNAs interro-

gated for association with grip strength, 93 (31%) had FDR

q value < 0.05, 54 (18%) had an FDR q value < 0.01, and 15 (5%)

had FDR q value < 0.001. For almost all miRNA–grip strength

associations, increasing miRNA concentration is associated with

increasing grip strength. miR-20a-5p (FDR q 1.8 3 10�6) had the

most significant association and several among the top 15

miRNAs had links to skeletal muscle including miR-126-3p, miR-

30a-5p, and miR-30d-5p. The top associated biologic pathways

included metabolism, chemokine signaling, and ubiquitin-

mediated proteolysis. Our comprehensive assessment in a com-

munity-based sample of miRNAs in blood associated with grip

strength provides a framework to further our understanding of

the biology of muscle strength.
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Introduction

Hand grip strength is a simple and inexpensive measure of muscle

strength associated with exceptional survival (Willcox et al., 2006), all-

cause mortality, cardiovascular mortality, and cardiovascular disease

(Leong et al., 2015). Reduced grip strength is also associated with

impaired mobility (Sallinen et al., 2010) and risk for physical disability

(Cummings et al., 2014). Grip strength declines with age in both men

and women (Dodds et al., 2014) and is used as a criterion of frailty as

well as to define sarcopenia (low muscle mass and weakness; Studenski

et al., 2014), which are important causes of disability and death in the

community (Rodriguez-Manas & Fried, 2014). There is interest in this

measure as a phenotype of healthy aging and potentially to identify

older adults for interventions to promote healthy aging (Studenski et al.,

2014).

Biologic mechanisms influencing muscle strength maintenance and

decline are complex with many contributing factors (Gonzalez-Freire

et al., 2014). Physical inactivity, malnutrition, hormonal changes,

inflammatory pathway activation, mitochondrial dysfunction, obesity,

glycemia, and age-related diseases play a role in age-related loss of

muscle (Kalyani et al., 2014). In addition, genetic factors contribute

substantially to the variability in grip strength (Frederiksen et al., 2002),

suggesting that genetic studies may identify biologically relevant

pathways important to muscle strength and aging. However, few

genomewide association studies have been conducted of grip strength

(Chan et al., 2015; Matteini et al., 2016) with one identifying a

promising common variant in a chromosomal region linked to muscle

repair (Matteini et al., 2016).

MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene

expression by altering mRNA transcripts. Differential expression of

miRNAs has been associated with age (Noren et al., 2010, 2013) and

age-related diseases such as cancer and cardiovascular disease (Freed-

man et al., 2012). Emerging data suggest miRNAs may play a role in

skeletal muscle biology including skeletal muscle development, muscle

physiology, and specific muscle diseases (Goljanek-Whysall et al., 2012;

Kirby & McCarthy, 2013; Nie et al., 2015). Skeletal muscle-enriched

miRNAs have been identified in the circulation of both healthy individuals

and those with muscle disease (Alexander & Kunkel, 2015; Denham &

Prestes, 2016). In a small study of endurance athletes compared to

healthy controls, muscle-enriched circulating miRNAs with distinct roles

in muscle biology measured in whole blood predict cardiopulmonary

fitness parameters and change in abundance in response to a single bout

of maximum aerobic exercise (Denham & Prestes, 2016). However, much

of the work has been done in animal models and the molecular

mechanisms of most differentially expressed miRNAs in skeletal muscle

remain unknown. We had the opportunity to examine the association of

circulating miRNAs with hand grip strength in a community-based

sample of adults across a wide age range.

Results

Our investigation focused on Framingham Heart Study (FHS) Offspring

participants who attended examination cycle 8 (2005–2008, n = 3021)
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and Gen 3 participants who attended examination cycle 2 (2008–2011,

n = 3411), underwent hand grip strength testing, and had a blood

sample for miRNA expression profiling. The characteristics of the 5668

Offspring and Gen 3 participants (54% women, mean age 55 years,

range 24, 90 years) in the study sample are shown in Table 1 (Table S1,

Supporting information provides characteristics by cohort). Hand grip

strength was lower in women than in men and declined with age with a

mean 44.7 (10.0) kg in men and 26.5 (6.3) kg in women (Fig. 1).

Linear mixed-effects regression modeling of grip strength (kg) versus

continuous miRNA ‘Cq’ values and also versus binary miRNA expression

for miRNAs with measurable expression in at least 5% of the sample was

conducted (see Experimental procedures for details). Among 299

miRNAs interrogated for association with hand grip strength, 112

(37%) had FDR q value < 0.10, 93 (31%) had FDR q value < 0.05, 54

(18%) had an FDR q value < 0.01, and 15 (5%) had FDR q

value < 0.001 in models adjusted for sex, age, height, BMI, and

technical variables (Table 2, Table S2, Supporting information). With

further adjustment for cell counts (Table S3, Supporting information), we

observed largely similar results. Among the top 15 associations in the

primary analysis (Table 2), two-thirds of miRNAs remained among

the top 15 associations after adjusting for cell counts. The majority of the

associations shown in Table 2 are derived from the continuous model

(miRNA Cq values) with the exceptions of miR-26a-1-3p where the

association is observed in the binary model (miRNA expression yes/no)

and miR-668, miR-25-5p, and miR-1304-5p where the association is

observed in both models. For almost all miRNA–hand grip associations,

increasing miRNA concentration is associated with increasing grip

strength. The direction of effect is consistent for the two models

(continuous Cq values, binary expression yes/no) for most miRNAs. We

examined the miRNAs expressed in > 90% of samples separately in men

and women. There were 70 miRNAs in women and 48 miRNAs in men

associated with hand grip at P < 0.05 (Table S4, Supporting informa-

tion). Among the top 15 miRNA associations, a greater number were

seen among the top results in men than in women and the magnitude of

most estimates was larger in men; however, the direction of the effect

estimates were similar in men and women (Table S4, Supporting

information).

Of 67 miRNAs reported to be associated with skeletal muscle

development, muscle fiber physiology, or muscle disease in the published

literature, nine were assayed and three were expressed in the FHS

sample (Table S5, Supporting information). miR-206 was associated with

hand grip (FDR q = 0 = 0.012). Additionally, miR-503 was expressed in

56 participants and associated with hand grip strength (FDR q = 0.002),

however given the small sample results need to be interpreted with

caution.

To better understand how the top 15 miRNAs associated with hand

grip strength might contribute to muscle strength and healthy aging, we

analyzed miRNA–mRNA coexpression in the same set of FHS participants

(n = 5340) in whom miRNA and mRNA expression data were both

available (Table S6, Supporting information). At an FDR < 0.05, there

were 2895 miRNA–mRNA coexpressed pairs that ranged from 0 to 1 pair

for a given miRNA (miR-18a-5p-a1, miR-1304-5p, respectively) to 477

pairs (miR-126-3p). These pairs consisted of 1560 unique mRNA genes,

which were considered as potential genes targets of 15 hand grip

strength-associated miRNAs. Among the 2895 pairs, 1394 pairs were

also predicted by TargetScan. We also examined the 2895 miRNA–

mRNA pairs for the presence of the 150 genes derived from muscle that

denote a healthy aging gene signature (Sood et al., 2015). There were

31 miRNA–mRNA pairs among this healthy aging signature representing

17 unique genes. Next, we examined the 1560 unique genes from the

coexpressed miRNA–mRNA pairs in WebGestalt to identify enrichment

of biologic pathways. The top ten biologic pathways are consistent with

pathways important not only with muscle function but with aging itself

including metabolic, chemokine signaling, ubiquitin-mediated proteoly-

sis, and RNA transport among others (Table 3). Table S7 (Supporting

information) lists the genes and associated miRNAs in each pathway. We

also tested the enrichment of these potential gene targets among

known aging-related pathways, and found that both the insulin

signaling pathway and mTOR pathway (gene list in Table S8, Supporting

information) were significantly enriched (P = 3.58E-6 and P = 6.52e-5,

respectively). Interestingly, the potential gene targets were also highly

enriched (P < 1e-16) with aging-related genes identified previously

(Peters et al., 2015). Finally, we conducted a miRNA–mRNA coexpres-

sion analysis for 11 miRNAs with a positive beta estimate (negative

association with grip strength) among the 93 miRNA–grip associations

with FDR < 0.05 in our primary analysis (Table S2, Supporting

Table 1 Characteristics of the study sample

Characteristic

Overall

(N = 5668)

Men

(N = 2616)

Women

(N = 3052)

Age, years 55.7 (13.2) 55.7 (13.1) 55.7 (13.2)

Women % 54 – –

Grip Strength, kg 34.9 (12.3) 44.7 (10.0) 26.5 (6.3)

Height, inches 66.4 (3.75) 69.3 (2.67) 63.9 (2.5)

BMI, kg m�2 28.1 (5.6) 29.0 (4.9) 27.3 (6.1)

Current smoking, % 10 11 10

Hypertension, % 41 46 37

Diabetes, % 8.8 11.3 6.7

Total cholesterol, mg dL�1 186 (36) 181 (36) 191 (35)

HDL cholesterol. mg dL�1 59 (18) 50 (14) 66 (18)

Triglyceride, mg dL�1 115 (76) 127 (92) 105 (57)

Physical activity index 36 (6.1) 37 (7.3) 35 (4.9)

Cardiovascular disease, % 8.2 10.8 6.0

Data are presented as mean (SD) or percentage.

Figure 1 Hand grip strength (kg) by age groups in men and women. Plot

shows mean and standard error bars for 5-year age groups by sex. Men (mean

44.6 kg, SD 10.2); women (mean 26.2 kg, SD 6.5). A fitted regression with a

quadratic age term in hashed lines estimates the rate of decline in grip strength.
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information) and conducted pathway analysis on the 920 unique

associated genes. The top biologic pathways with FDR < 0.05 relate to

immune function, chemokine signaling, and apoptosis among others

(Table S9, Supporting information, pathways, genes, and associated

miRNAs for each pathway). Many of the 11 miRNAs come from the

present/absent model and are not significant in the model with

continuous Cq expression values (model restricted to participants with

detectable levels of the miRNA) and four of the 11 miRNAs are available

in a sample of under 1000 individuals.

Discussion

In the present study, we examined the relation of 299 miRNAs measured

in whole blood and hand grip strength in a community-based sample of

men and women across a wide age range. In our sample, 93 miRNAs

were associated with hand grip strength (FDR q < 0.05). For the top 15

miRNAs, increasing miRNA concentration was associated with increasing

grip strength for nearly all associations. Using an integrative miRNA–

mRNA coexpression analysis, we identified the potential gene targets

(N = 1560 unique genes) for the top 15 hand grip strength-associated

miRNAs. Consistent with our hypothesis that grip strength is a healthy

aging phenotype, the top biologic pathways were important to aging

itself and the potential gene targets were enriched for previously

identified age-related genes.(Peters et al., 2015).

miR-20a-5p, the strongest miRNA associated with hand grip strength

in our study, is a member of the miR-17 family known to have many

biologic functions including a role in hepatic insulin resistance (Fang

et al., 2016). Its function in muscle is not well studied nor completely

understood; however, recent work suggests a potential role as a

biomarker for osteosarcoma (Li et al., 2015). Several miRNAs among the

top 15 hand grip strength-associated miRNAs have links to skeletal

muscle. A small study of healthy young and old men demonstrated that

miR-126 was downregulated after resistance exercise in older men but

not young men (Rivas et al., 2014). Follow-up mechanistic work revealed

that decreased miR-126 in proliferating myoblasts impacts the IGF-1

signaling pathway, an important regulator of skeletal muscle growth.

This noted impairment in exercise-induced miRNA regulation with aging

and the associated inhibition of the IGF-1 signaling may provide a

mechanism for age-related muscle loss such as sarcopenia (Rivas et al.,

2014). The miR-30-5p family is known to play a role in cardiomyocyte

and vascular smooth muscle cell pathophysiology (Balderman et al.,

2012; Yin et al., 2013). In animal models, the miR-30 family (including

miR-30a-5p and miR-30d-5p) regulates differentiation of myoblasts and

may be a biomarker of disturbed muscle homeostasis (Guess et al.,

2015). Recent work in bovine models supports a role for miR-30-5p in

skeletal muscle development and regulation of alternative splicing of key

muscle genes by targeting the MBNL (muscleblind-like) family (Zhang

et al., 2016).

Table 3 Top biologic pathways based on miRNA–mRNA coexpression pairs from

top 15 miRNAs and the unique 1500 associated genes

Pathway name

Genes in

pathway

Ratio of

enrichment P-value FDR Q value

Metabolic pathways 102 2.60 2.0E-18 3.5E-16

Chemokine signaling

pathway

36 5.49 7.5E-17 6.5E-15

Regulation of actin

cytoskeleton

37 5.01 6.4E-16 2.8E-14

Endocytosis 36 5.16 5.8E-16 2.8E-14

Ubiquitin-mediated

proteolysis

28 5.98 2.1E-14 7.3E-13

Huntington’s disease 32 5.04 4.8E-14 1.4E-12

Alzheimer’s disease 30 5.18 1.4E-13 3.5E-12

RNA transport 27 5.15 2.6E-12 5.6E-11

Protein processing in

endoplasmic reticulum

27 4.72 2.2E-11 4.3E-10

Spliceosome 23 5.22 8.1E-11 1.4E-09

Table 2 Top 15 miRNA associations with hand grip strength: Framingham Heart Study

miRNA N

Linear regression, continuous miRNA:

Cq values

Linear regression, binary miRNA expression

(yes/no)

FDR q†Est Beta SE P-value Est Beta SE P-value

miR-20a-5p 5467 �0.20 0.03 6.03E-09 �0.38 0.49 0.44 1.80E-06

miR-183-3p 5492 �0.23 0.04 1.94E-08 �0.65 0.53 0.22 2.90E-06

miR-29b-2-5p 5280 �0.32 0.06 5.78E-08 �0.86 0.37 1.94E-02 4.60E-06

miR-601 5542 �0.18 0.03 6.15E-08 �1.54 0.63 1.46E-02 4.60E-06

miR-766-3p 5557 �0.29 0.05 8.23E-08 �0.27 0.66 0.69 4.92E-06

miR-320b 5608 �0.33 0.06 1.73E-07 0.64 0.89 0.47 7.43E-06

miR-942 5597 �0.30 0.06 1.74E-07 �1.41 0.82 8.32E-02 7.43E-06

miR-26a-1-3p 4820 �0.10 0.06 7.23E-02 �1.33 0.27 8.69E-07 3.85E-05

miR-30d-5p 5604 �0.24 0.05 1.16E-06 0.49 0.86 0.57 3.85E-05

miR-30a-5p 5634 �0.25 0.05 3.62E-06 �0.54 1.17 0.64 1.08E-04

miR-126-3p 5621 �0.17 0.04 8.31E-06 �0.84 0.995 0.40 2.25E-04

miR-668 4985 �0.12 0.04 1.91E-03 �1.05 0.29 2.30E-04 2.25E-04

miR-25-5p 5389 �0.22 0.05 1.25E-05 �1.42 0.43 9.18E-04 2.88E-04

miR-18a-5p-a1 5432 �0.15 0.04 3.09E-05 �0.95 0.46 3.96E-02 6.60E-04

miR-1304-5p 1469 0.14 0.04 3.46E-04 �0.57 0.21 7.29E-03 8.75E-04

Models adjusted for age, sex, height, body mass index, technical covariates (RNA concentration, 260/280, RNA quality).

†Based on adaptive P-values see statistical methods. Higher Cq values indicate lower miRNA expression levels. Therefore, negative beta values indicate positive associations

between miRNA expression and grip strength.
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miRNA analysis conducted on skeletal muscle biopsies from young

and older adults identified the Let-7 family, significantly Let-7b and Let-

7e, as having higher expression in older adults (Drummond et al., 2011).

All mean let-7 levels for the 10 family members assayed in that study

were higher in older subjects raising the possibility that the Let-7 family

members work together to alter gene expression or that with further

aging additional Let-7 family members would become significant (the

sample size was small). In our study, several Let-7 family members

assayed in blood were associated with hand grip strength (Let-7c FDR

q = 0.005, Let-7g-5p FDR q = 0.004, Let-7e-5 FDR q = 0.013, Let-7a-5p

FDR q = 0.03). The Let-7 family is important in tumor suppression and

cell cycle control. It is possible that increased expression of Let-7 with

aging impairs cellular proliferation and muscle regeneration capacity

(Drummond et al., 2011).

We looked up the miRNAs reported to be associated with skeletal

muscle development, muscle fiber physiology, or muscle disease in the

published literature in our study results and found that miR-206 was

significantly associated with hand grip strength (FDR q = 0.012). miR-

206 is a muscle-enriched miRNA known as myomiRs and has been

associated with a number of age-associated changes in muscle patho-

physiology including changes in type II muscle fibers, reduction in

neuromuscular junction signaling, and decreases in muscle satellite cell

numbers (Brown & Goljanek-Whysall, 2015; Nie et al., 2015). In studies

of young and old mice, expression of miR-206 has been associated with

age-related muscle atrophy which may provide insights into the human

age-related condition of sarcopenia (Kim et al., 2014; Nie et al., 2015).

Participants in our sample had both miRNA and mRNA data

permitting a coexpression analysis of the top 15 miRNAs associated

with grip strength and a further examination of the potential unique

gene targets of the miRNAs. The genes were enriched for age-related

genes (Peters et al., 2015) and biologic pathways important in muscle

physiology including among the top ten pathways metabolism,

chemokine signaling, RNA transport, and ubiquitin-mediated proteolysis

(Lopez-Otin et al., 2013). The ubiquitin/proteasome pathway (UPP) plays

a crucial role in muscle health including muscle cell differentiation,

muscle growth and integrity, and muscle mass maintenance (Bell et al.,

2016). There were many ubiquitin genes (Table S6, Supporting

information) in our pathway analysis associated with the top 15 hand

grip-associated miRNAs. It is of interest that the genes associated with

the downregulated miRNAs from the miRNA–mRNA coexpression

function in biologic pathways linked to immune function and inflam-

mation given the key role this pathway plays in muscle strength decline

(Gonzalez-Freire et al., 2014) and aging.

Our study had several strengths including the number of miRNAs

profiled, the large sample size and broad age range of participants, and

the community-based setting unselected for any specific disease. The

study also has limitations including the lack of race/ethnic diversity

limiting generalizability of findings beyond participants of white,

European ancestry background. The miRNAs were assayed in blood as

our study is an epidemiologic cohort study without accessibility to

muscle tissue; however, several of our findings are consistent with small

studies (n < 50) of miRNAs profiled in skeletal muscle biopsies. Finally,

our findings need to be replicated in an independent sample and further

functional studies to determine the underlying biologic mechanisms of

the miRNA–grip strength associations are needed.

In conclusion, in our community-based sample of men and women

across a wide age range, we identified 93 miRNAs associated with hand

grip strength. The potential gene targets for the top associations are

linked to biologic pathways important to muscle and aging including

metabolism, chemokine signaling, and ubiquitin-mediated proteolysis.

These results need to be replicated in an independent human sample but

provide a framework to further our understanding of the biology of

muscle strength and healthy aging phenotypes.

Experimental procedures

Study sample

The Framingham Heart Study (FHS) is an ongoing prospective commu-

nity-based family study that includes the Offspring cohort enrolled in

1971 and the children of the Offspring participants who were enrolled in

the Third Generation cohort (Gen 3) in 2002 (Splansky et al., 2007). For

the present investigation, we focused on Offspring participants who

attended examination cycle 8 (2005–2008, n = 3021) and Gen 3

participants who attended examination cycle 2 (2008–2011, n = 3411),

underwent hand grip strength testing, and had a blood sample for

miRNA expression profiling. We excluded 108 participants with missing

grip strength data, 638 participants without miRNA expression data, and

18 participants with missing covariate data providing a study sample of

5668 participants. All participants provided informed consent and the

examination protocols were approved by the Boston University Medical

Center Institutional Review Board.

Hand grip measurement

Hand grip strength was obtained by trained technicians with a JAMAR

dynamometer (Model #5030J1, Sammons Preston/JLW Instruments,

Chicago, IL, USA) using the same protocol for both Offspring and Gen 3

participants. The participant was seated with forearm resting on the arm

of a chair and instructed to hold the dynamometer upright and squeeze

as hard as able. Three trials in the right hand and then the left hand were

recorded. The maximum of the six trials was used for analysis.

miRNA expression profiling

Whole blood from fasting morning samples were used for miRNA

profiling. The high-throughput Gene Expression Core Laboratory at the

University of Massachusetts Medical School profiled all TaqMan miRNA

commercially available assays (n = 774) available at the start of the

Systems Approach to Biomarker Research in Cardiovascular Disease

(SABRe CVD) Project (McManus et al., 2017). If the miRNA was not

detected in a sample of 550 participants, it was removed from further

study and not measured in the full cohort. The remaining miRNA

profiling in FHS was carried out on 346 miRNAs using quantitative real-

time polymerase chain reaction (RT-qPCR) using TaqMan chemistry-

based miRNA assays. The qPCRs were conducted using a high-

throughput instrument (BioMark, Fluidigm, San Francisco, CA, USA). In

reproducibility analysis, for replicates > 95% of data points had

coefficients of variation < 10%. miRNA expression is quantified using

cycle threshold (Cq) where lower Cq values represent higher miRNA

expression levels. Low expression using the nano-volume Fluidigm

system is considered as a Cq value of 27 or higher. We evaluated 299

miRNAs with measurable Cq values in at least 5% (250) of participants.

Gene expression (mRNA)

Gene expression profiling was performed from blood samples taken on

Offspring examination 8 (n = 2442) and Gen 3 examination 2

(n = 3180) as previously described (Joehanes et al., 2013). In brief, the

Affymetrix Human Exon 1.0 ST Array (Affymetrix, Inc, Santa Clara, CA)

miRNA expression and hand grip strength, J. M. Murabito et al. 891
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was used and gene annotations were obtained from Affymetrix NetAffx

Analysis Center (version 31) resulting in 17,324 distinct genes for

downstream analysis.

Covariates

At each FHS examination, height and weight were obtained according to

standardized protocols and body mass index was calculated as weight in

kilograms divided by the square of the height in meters (kg m�2). Resting

blood pressure was obtained twice by the physician and hypertensionwas

considered present if the average blood pressure measurement was

≥ 140/90 or the participant reported antihypertensive medications.

Fasting laboratory measurements include glucose and lipids. Diabetes

was defined as a fasting plasmaglucose> 125 mg dL�1 or treatmentwith

medications. Current smokers were defined as smoking 1 or more

cigarettes per day during the year prior to the examination. Participants

reported the number of hours per day spent in sleep, sedentary, slight,

moderate, and heavy activities to calculate the physical activity index.

Prevalent cardiovascular disease was defined as coronary heart disease,

stroke, or intermittent claudication using previously established criteria.

Statistical analysis

Many participants did not express some miRNAs at detectable levels.

Therefore, for each miRNA in each participant, we defined a binary

variable to code whether the miRNA was not detectable: X = 1 if

Cq > 27, 0 otherwise. Thus, X = 1 corresponds with low (undetectable)

concentration, whereas X = 0 corresponds with detectable miRNA

concentration. We fitted two linear mixed-effects regression models for

eachmiRNA: (model 1) in everyone, grip ~ X and covariates, and (model 2)

in the subset having X = 0, grip ~Cq and covariates. We combined results

from these two analyses as follows. If an miRNA was expressed in < 10%

of samples, we used only model 1; if it was expressed in at least 90% of

samples, we used only model 2; if it was expressed in 10% to < 90% of

samples, we added chi-squared statistics from bothmodels and calculated

a P-value from a chi-squared distribution with two degrees of freedom.

Our primary analysis adjusted for sex, age, height, BMI, and technical

variables (RNA concentration, RNA quality, and RNA 260/280 ratio). For

miRNAs expressed in at least 90% of samples, we examined associations

with grip strength separately in women and men to assess whether the

relations were similar in both sexes.

In secondary analyses, we also adjusted for cell counts: red blood cell

count, white blood cell count, platelets, percent neutrophil, percent

lymphocytes, percent monocytes, and percent eosinophils. [Blood cell

counts were measured in Gen 3 participants and partial least-squares

regression was used to impute cell counts with 10-fold cross-validation

(Pilling et al., 2015)]. Imputed cell counts were used in these analyses.

To evaluate our approach, we conducted permutation testing by

separating miRNA data from clinical data (hand grip and covariates: age,

sex, BMI, RNA quality, concentration, 260/280 ratio, and cell count

variables). We randomly ordered the clinical data, merged that with

miRNA data, and fitted the two covariate-adjusted models for grip versus

(i) binary and ((ii) continuous miRNA. From each pair of models, we

calculated P-values using the adaptive test. We ran 100 replicates to

examine distributions of adaptive P-values and we established that type I

error was not inflated.

Following regression analyses, we examined miRNAs reported in the

literature to be associated with skeletal muscle development, muscle fiber

physiology, or muscle disease such as sarcopenia in humans or animal

models (Goljanek-Whysall et al., 2012; Smith-Vikos& Slack, 2012; Kirby &

McCarthy, 2013; McGregor et al., 2014; Rivas et al., 2014; Nie et al.,

2015) to determinewhether thesemiRNAswere assayed and expressed in

our community sample of adults. Finally, we checked whether those

expressed miRNAs were associated with hand grip strength.

miRNA–mRNA coexpression and pathway analysis

We also performed a miRNA–mRNA coexpression analysis among

Offspring and Gen 3 participants with both miRNA and mRNA data.

Linear mixed-effects models (R package lmekin() function) were used to

conduct pairwise coexpression analyses for all profiled mRNAs

(N = 17,318) and the top 15 miRNAs. Significant miRNA–mRNA coex-

pression pairs were selected using FDR < 0.05. TargetScan v7.0 (Lewis

et al., 2005; Agarwal et al., 2015) was used to predict whether the

mRNAs were the corresponding targets for the miRNAs for the

coexpressed miRNA–mRNA pairs identified. Pathway analyses were

conducted in DAVID Bioinformatics resources 6.7 (https://david.ncifc

rf.gov/) (Huang et al., 2009), and WebGestalt (Wang et al., 2013) to

identify significant biologic mechanisms associated with the unique genes

that were associated with the top 15 miRNAs. In addition, we examined

the enrichment of grip strength-related genes in key aging pathways

(insulin signaling/IGF1/FOXO and mTOR pathways) and among the genes

associatedwith aging in a large humanmeta-analysis (Peters et al., 2015).

The key aging pathways have also been important in muscle physiology

with insulin-like growth factors important to muscle cell differentiation

and muscle regeneration (Zanou & Gailly, 2013). Finally, we investigated

whether the 150 genes comprising the RNA signature of healthy human

aging derived from muscle tissue (Sood et al., 2015) were targets of the

top 15 miRNAs associated with hand grip in this study.

We conducted a second miRNA–mRNA coexpression analysis for

miRNAs that were negatively associated with grip strength. Among 93

miRNA–hand grip associations with FDR < 0.05 in our primary analysis

(Table S2, Supporting information), we identified 11 miRNAs with a

positive beta estimate (miR-149-5p, miR-126-5p, miR-1249, miR-193b-

3p, miR-219-1-3p, miR-1274A, miR-1276, miR-1179, miR-99b-3p, miR-

491-5p, miR-543). Four of the 11 miRNAs come from the present/absent

model and are not significant in the model with continuous Cq expression

values. Of note, four of the 11 miRNAs are available in a sample of under

1000 individuals. We ran miRNA–mRNA coexpression and conducted

pathway analyses using the same methods described above.
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