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Abstract

to the previous version of the COMER method.

present study also suggest directions for future research.

structure prediction

Background: Alignment of sequence families described by profiles provides a sensitive means for establishing
homology between proteins and is important in protein evolutionary, structural, and functional studies. In the context
of a steadily growing amount of sequence data, estimating the statistical significance of alignments, including
profile-profile alignments, plays a key role in alignment-based homology search algorithms. Still, it is an open question
as to what and whether one type of distribution governs profile-profile alignment score, especially when
profile-profile substitution scores involve such terms as secondary structure predictions.

Results: This study presents a methodology for estimating the statistical significance of this type of alignments. The
methodology rests on a new algorithm developed for generating random profiles such that their alignment scores
are distributed similarly to those obtained for real unrelated profiles. We show that improvements in statistical
accuracy and sensitivity and high-quality alignment rate result from statistically characterizing alignments by
establishing the dependence of statistical parameters on various measures associated with both individual and
pairwise profile characteristics. Implemented in the COMER software, the proposed methodology yielded an increase
of up to 34.2% in the number of true positives and up to 61.8% in the number of high-quality alignments with respect

Conclusions: The more accurate estimation of statistical significance is implemented in the COMER method, which is
now more sensitive and provides an increased rate of high-quality profile-profile alignments. The results of the

Keywords: Homology search, Profile-profile alignment, Random profile model, Statistical significance, Protein

Introduction

Establishing homology between proteins is essential in
evolutionary and highly important in structural and func-
tional studies of proteins [1] and their complexes. Align-
ment, in general, represents the most fundamental way to
deduce homology directly or indirectly. Sequence align-
ment has proved indispensable in annotating uncharac-
terized proteins [2] and paved the way for alignment
of sequence families described by profiles, constituting
the basis for inferring protein structure and function by
homology.
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In the presence of a large and steadily growing amount
of sequence data, estimating the statistical significance
of alignments plays a prominent role in alignment-based
homology search algorithms [3]. For an alignment with
a particular similarity score, it provides a probability or
related quantity indicating how likely a chance alignment
with the same or greater score is to be observed.

The limiting distribution of the ungapped local align-
ment score S (nonlattice) for large sequence lengths m and
n has been proved [4-7] to be the type 1 (Gumbel-type)
extreme value distribution (EVD) [8]

P(S < x) ~ exp (—Kmne‘”) , (1)

where A and K (K = e** /[ mn]; i, the location parameter
under the standard parametrization) are parameters cal-
culable from the score matrix used to align sequences and
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satisfying the conditions of the negative expected score
and existence of at least one positive score.

Ample empirical evidence, e.g., [9-13], has suggested
that the statistical theory for ungapped alignments applies
to gapped alignments, provided gap penalties, or costs,
lead to alignment scores in the (local) region of logarith-
mic growth [14].

Importantly, factors, such as the length of sequences
being compared [10, 15, 16] and their compositional
similarity [9, 17], affect the distribution of alignment
scores. While solutions to take them into account exist
for sequence and profile-to-sequence alignments [9, 18]
(Supplementary Section S1, Additional file 1), there is
no established procedure for addressing them in profile-
profile alignment [19-22].

This study aims at characterizing the distribution of
profile-profile alignment scores [23, 24] to improve sta-
tistical accuracy and remote homology detection. Our
focus is local alignment scores. Hence, we assume that
the expected profile-profile alignment score per aligned
pair is negative and the probability for a positive score
is positive. These assumptions are satisfied in part when
the score for a pair of positions of two profiles is (implic-
itly) log-odds [3, 25]. Importantly, the score preserves
the form of log-odds when it linearly combines differ-
ent components (e.g., the similarity of two amino acid
frequency vectors with that of secondary structures) as
long as each component itself represents a log-odds score.
Such a construction of composite scores is typical, and,
given appropriate gap penalties, we can expect that the
assumptions will hold for most profile-profile alignment
methods.

Here, we use the COMER method [26] as a means for
producing profile-profile alignment scores the algorithms
developed in this work employ. The COMER profile at
each position encapsulates the transition probabilities of
moving to and from the states of insertion and dele-
tion, which for a pair of profiles transform to position-
specific gap penalties. Comparing two COMER profiles
also includes scoring predicted secondary structure (SS)
and sequence contexts [27]. These properties make the
characterization of the distribution of alignment scores a
challenging task.

Moreover, the distribution of profile-profile alignment
scores strongly depends on the extent of (dis-)similarity
between unrelated profiles, or the null model of ran-
dom sequence families. Real sequences do not conform to
the canonical (and simplest) model, in which the amino
acids in the sequence are iid, and exhibit a more complex
structure with short- and long-range amino acid correla-
tions [17, 25, 28-30]. It has been proved that in the limit
of infinitely long sequences, ungapped alignment scores
for random Markov-dependent sequences are still dis-
tributed according to the EVD [31]. Gapped alignments
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of correlated random sequences accounted for by a null
model have been shown numerically to correspond to an
EVD too [32]. Notably, the values of the statistical param-
eters differed substantially from those obtained for iid
sequences.

In this work, the null model of protein sequence fam-
ily does not explicitly incorporate correlations between
families and leaves the profile-profile scoring function
unchanged. Instead, we randomly generate profiles with
properties of real unrelated profiles and take into account
the correlations between them by establishing the depen-
dence of statistical parameters on the compositional sim-
ilarity between the profiles. The null model affects the
probability of a score of a pair of profile positions, yet the
change in composition does not alter the type of align-
ment score distribution but values of statistical parame-
ters. The approach proposed here predicts differences in
these values.

Overall, this work purposes a procedure for estimating
the statistical significance of profile-profile alignments,
regarding the effects and factors that influence alignment
score distribution, such as edge effects, compositional
similarity, and profile attributes (length and the effec-
tive number of observations). The procedure builds on
an algorithm proposed for generating profiles that resem-
ble real sequence families. The results of the implemented
procedure give rise to an analysis of its impact on sensi-
tivity and alignment quality, which we also provide in this

paper.

Methods

The concept of estimating the statistical significance of
profile-profile alignments, as proposed here, is illustrated
in Fig. 1.

The significance of the alignment between a profile of
length /; and effective number of observations (ENO)
n; and another profile of length /; and ENO ny fol-
lows from combining the significance of the alignment
score and that of the number of positive substitution
scores in the alignment. The distribution of alignment
scores depends on both the lengths of profiles being com-
pared and their ENOs [22] (Supplementary Section S2.1 in
Additional file 1 defines ENO, which represents the
median number of residues per profile position). The
composition of profiles is another factor that affects the
distribution of alignment scores, and it is a measure inde-
pendent of profile ENO. Therefore, we incorporate a mea-
sure of compositional similarity calculated between profiles
into a statistical model for the distribution of alignment
scores. The significance of the alignment score of pro-
file 1 and 2 is then calculated using statistics obtained
from aligning unrelated profiles of the same length
and ENO and having the same mutual compositional
similarity.
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Fig. 1 Concept of estimating the statistical significance of profile-profile alignments
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The parameters of alignment score distributions are
estimated by simulation. We develop algorithms to gen-
erate randomly profiles that express properties of, and
their alignment scores distribute similarly to alignment
scores of, real unrelated profiles. Dividing random pro-
files according to (1) their length and ENO and (2) length
and mutual compositional similarity provides two cate-
gories of profiles. Two categories of distributions of align-
ment scores, illustrated in Fig. 1, result from aligning the
profiles in each category. We develop conditional mean
estimators to combine the statistics of these distribu-
tions, which captures the dependence of the distribution
of alignment scores on profile length, ENO, and the com-
positional similarity between profiles. Finally, we derive a
statistic based on the number of positive profile-profile
substitution scores and combine its statistical significance
and the significance of the alignment score to obtain the
final estimate. These steps are described in detail below.
More details can be found in Supplementary Section S4,
Additional file 1.

Compositional similarity

The statistical parameter Ay, = X of the limiting distribu-
tion of sequence alignment scores (1) has several related
meanings [5, 33, 34]. A, can also be regarded as a measure
of compositional similarity [18]. The value of 1, found as
the positive solution to

> p(sk) expusi) = 1, )
k

where {s;}; represent different values of scores in the sub-
stitution matrix and p(sg) is the probability of s, will
decrease as the number of positive substitution scores
increases (p(sy) increases for all k : s; > 0). Therefore,
low values of A, may indicate an increased probability
for a high-scoring alignment to occur by chance due to
compositionally biased regions in two sequences.

The parameter X, calculated for a pair of profiles
[19, 21] has the same dependence on composition. We
take into account compositional similarity between pro-
files by specifying the dependence of the distribution of
profile-profile alignment scores on it.

Alignment scores of real unrelated profiles
We analyze the distribution of alignment scores of real
unrelated profiles (constructed from multiple sequence
alignments, MSAs, of real sequences) for two reasons.
One is to determine the type of distribution that describes
them. The other reason is that these data provide a ref-
erence point for generating random profiles whose align-
ment scores would follow the same type of distribution
and be similarly distributed.

We found that alignment scores of real unrelated pro-
files follow an EVD and 85% of goodness-of-fit tests do not
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reject the null hypothesis. Supplementary Sections S2.3
and S3.1 in Additional file 1, respectively, describe how
real unrelated profiles were obtained and detail the com-
parison of profiles of different length, ENO, and composi-
tional similarity (see also Additional files 2, 3, 8 and 9).

Profile simulation

It is impractical to use real unrelated profiles to pro-
duce sufficient data for any values of profile length, ENO,
and compositional similarity. Instead, random profiles are
generated.

It has been shown that using a null model to generate
realistic random profiles improves remote homology
detection [22]. However, using the earlier procedure for
generating random profiles may lead to highly correlated
profiles when the comparison of generated profiles
includes the scoring of predicted SSs (Supplementary
Section S3.2, Additional file 1). Alignment scores of
random profiles may not then represent a distribution
obtained by aligning unrelated profiles. Therefore, the
aim is to develop an algorithm for generating random
profiles that exhibit properties of real profiles, and the
degree of correlation between the random profiles can be
controlled.

We achieve that by using a modest number of “seed”
profiles constructed for a diverse set of real sequences.
Random profiles then result from adding noise to pro-
files/MSAs generated using these seed profiles as a model.
Seeds provide properties of real profiles, whereas noise
and randomization represent a means of controlling cor-
relation between random profiles.

An important feature of the algorithm that we pro-
pose (Algorithm 1) is that random profiles result from
concatenating fixed-length fragments sampled randomly
from a set of generated MSAs regardless of SS predic-
tions the fragments entail. Supplementary Section S4.1
in Additional file 1 provides additional details, and Sup-
plementary Algorithm S2 defines how MSAs with added
noise are produced using a profile model in step 2 of
Algorithm 1.

Algorithm 1 shows that the fragment length s and the
level r of noise added to SxM generated MSAs are the
parameters that determine the degree of similarity among
resulting random profiles. Too large s and/or too small r
lead to highly correlated random profiles, while too small
s or too large r result in divergent profiles and useless
alignment statistics.

Optimizing s and r

Based on the results obtained for real unrelated profiles,
we find the optimal s and r using two criteria: (1) the
goodness of fit of the EVD to the empirical distribution
of alignment scores and (2) the distance between the dis-
tribution function obtained for real unrelated profiles and

Page 4 0of 13

Algorithm 1 Generating random profiles of length / and
ENO # given noise level r and fragment length s

Input: S sequences.
Output: R random profiles.

1. Make profiles (seeds) for S diverse sequences chosen at
random for which profiles are obtained to be of a
sufficiently large ENO (e.g., 12).

2. Using each of the S seed profiles as a model, generate
M MSAs of ENO n with noise r.

3. Using each set of SxM generated MSAs of ENO n as
source MSAs, generate a set of R random MSAs of
length I in the following way:

(a) choose a number j at random uniformly
between 1 and SxM;

(b) randomly select a fragment of length s of
source MSA j;

(c) copy and add the selected fragment to a
random MSA being generated;

(d) repeat steps (3a)—(3c) until the length of the
random MSA becomes 1

4. Construct profiles from the R generated random MSAs.

the distribution function obtained from simulations. In
this way, profiles generated using the optimal s and r pos-
sess features characteristic to real profiles and correlations
between them do not dominate.

We calculate the supremum class upper tail Anderson-
Darling statistic ADyp [35] (Supplementary Section S5.1,
Additional file 1) for testing the goodness of fit of the
EVD to the data (the first criterion). We normalize it,
ADy, = ADup/\/]T], by the square root of the num-

ber of alignment scores, v/N, to make it independent of
sample size. The distance between two empirical distribu-
tion functions (the second criterion) is measured by the
two-sample Kolmogorov-Smirnov statistic D.

The whole procedure for finding the optimal s and r can
be described as follows.

1. Choose values for s and r.

2. Using Algorithm 1, generate random profiles of all

ENOs and lengths considered.

Align simulated profiles.

4. Fit the EVD in the right tail of alignment score
distributions.

5. Calculate the AD}, statistic for each alignment score
distribution.

6. Train models for predicting the statistical parameters
for profiles with given attributes (ENO and length)
and compositional similarity.

I
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7. Predict the statistical parameters and calculate the
p-value of each alignment of real unrelated profiles.

8. For each combination of pair values of profile ENO
and length, calculate the distance D between the
empirical distribution function obtained for real
unrelated profiles and the distribution function
obtained in step 7.

9. Repeat steps 1-8 until the optimal s and r with
respect to ADj, and D have been found.

We discuss prediction of statistical parameters (step 7)
below. Here we note that predictions are used to incorpo-
rate compositional similarity into the statistical model of
profile-profile alignments.

The results (Fig. 2a) obtained using S = 1012 seed pro-
files (M = 1) suggest that considering a small number of
different values suffices to find the optimal s and r: Large
s increases correlation between profiles, whereas large r
makes them unalignable. Figure 2a shows that the best bal-
ance between the two criteria is achieved for s = 9 and
r = 0.03.

Sections S6.1 and S6.2 (Additional file 1 and Additional
files 4, 5, 6, 10 and 11) present additional results from sim-
ulation experiments. They also show that seeding from
three different profiles representing different SCOPe [36]
classes leads to similar results (Fig. 2b). Using one seed
facilitates profile simulation.

Conditional mean estimators

Let us consider two profiles, one of length /; and ENO
n; and another one of length /; and ENO ny. The profiles
share compositional similarly A,. Then, the significance
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of their alignment score is determined from combining
statistics obtained (1) from aligning simulated profiles of
length /1 and ENO #; against profiles of length /; and
ENO n3 and (2) from aligning profiles of length /; against
profiles of length I, with mutual compositional similarly
Aw as shown in Fig. 1. Here we define this statistical
combination.

Let A and B index two distributions. The first is
obtained for profiles described by the set of attributes
{n1,11;n9, b} (i.e., profiles of length /; and ENO n; have
been aligned against profiles of length /5 and ENO ny)
and the other for profiles characterized by the set of
attributes {Ay;l1;/l2}. Assume that distributions A and B
belong to the family of EVDs. Let 4 and 6 respectively
denote the estimates of the location and scale parameters
of the EVD corresponding to distribution A. Similarly, let
2B and 6B be the estimates of the statistical parameters
of distribution B. Then, the conditional mean estimator
of the location parameter given two sets of parameters
specifying its distribution in settings A and B is

f=ap*+1-a)p® O0<a<), 3)

and the corresponding conditional mean estimator of the
scale parameter is

6=b"+1-b56% O<b<1), (4)

where a and b are parameters that depend on the param-
eters specifying the distributions of the location and scale
parameters, respectively, in settings A and B (see Supple-
mentary Appendix A in Additional file 1 for details and a
proof).
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Fig. 2 Distance between distributions against goodness of fit for different values of s and r. Each point represents the average over all distributions
obtained for different pair values of profile attributes. Vertical bars represent one standard deviation. Gray and black colors show the results
obtained with and without considering the compositional similarity between profiles, respectively. (a): Results obtained using S = 1012 seed
profiles. (b): Results for three different seed profiles (S = 1) used to generate M = 1000 source MSAs with s = 9 and r = 0.03. In this case, the results
obtained with and without considering compositional similarity coincide
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Prediction of statistical parameters

In simulations (Optimizing s and r), random profiles are
generated of predefined lengths / € L and ENOs n € N
and discretized values of mutual compositional similar-
ity Ay rounded to the nearest multiple of 0.1. The sets
L = {50, 100, 200, 400, 600,800} and N = {2,4,6, ..., 14}
represent these predefined values.

Statistical significance for profiles of any length /, ENO
n, and A, has to be estimated based on the statistics
obtained from the observed distributions. As the statis-
tics depend non-linearly on /, #, and A, (Supplementary
Section S6, Additional file 1), we use low-complexity
artificial neural network (NN) models to predict statis-
tical parameters. The models are trained on the esti-
mates obtained (1) from aligning simulated profiles of
length /; € L and ENO #n; € N against profiles of
length I € L and ENO ny € N (ny < mp) and (2)
from aligning profiles of length /; € L against profiles
of length /s € L with X, discretized. We denote the
predictions of the location parameter in these two set-
tings by ﬁA(m,ll;ng, l») and ﬁB(Au;ll;lg), respectively.
The notation for the scale parameter is similar. (See also
Supplementary Section S4.4, Additional file 1.)

Adjustment of predictions

Statistical accuracy does not necessarily correlate with
increased sensitivity [18, 22] and high-quality alignment
rate. Therefore, to simultaneously improve all these qual-
ities, we introduce simple adjustments to the predicted
location ﬁ"(~) and scale parameters é"(~) (v = A,B), as
shown in Fig. 3.
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Observing a high correlation between the scale and the
location parameters (Supplementary Section $6.3, Addi-
tional file 1), we adjust the scale parameters as follows:

ot = git + g & =g (expGP)—1). (5)

The first equation eliminates the need to predict 6A.
The second equation, although expressed non-linearly in

6B, employs one coefficient whose optimal value implies

almost the same result as in the case of expressing the
scale parameter linearly in iB.
We adjust the location parameters similarly:

At =i+, 5P =48+ ke 6)

Note that the adjustments " and 6" (v = A, B) retain
the dependence of the statistical parameters on the profile
length and ENO and compositional similarity. They only
scale and shift predictions made by the trained models.

Conditional mean estimators (3) and (4) are used to
combine iV and ¢” (v = A, B). The parameters a and b
and the coefficients W = {g;, g, gc, ks, hi, i} in (5) and
(6), which we refer to as the adjustment parameters, are
optimized with respect to statistical accuracy and align-
ment quality and sensitivity (Supplementary Section S6.5,
Additional file 1). Here we note that the optimal balance is
achieved with the compositional similarity between pro-
files having a large impact (¢ = b = 0.35) on conditional
mean estimates.

Profile 1 (length /;, ENO n,)

e mcanewn =
FOSEOE e D=
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Adjustment
~A
A Conditional
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/7 B
~ B
P-value P, Combined
P-value
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Fig. 3 Complete procedure of estimating the statistical significance of profile-profile alignments
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Number of positive substitution scores

The number of positive profile-profile substitution scores
in the alignment provides additional information to the
alignment score. For example, the same alignment score
can be the result of many weakly positive substitution
scores or a few high scores. Therefore, it can be a useful
indicator for estimating the significance of profile-profile
alignments.

The distribution of the number of positive substitution
scores can be accurately approximated by the negative
binomial distribution (NBD) (Supplementary Section S6.4
in Additional file 1 and Additional files 7 and 12). How-
ever, aiming to reduce the overall complexity of the cal-
culation of statistical significance, we propose a derived
statistic wy. It depends on the lengths of profiles being
compared and its value (consequently, its significance)
decreases as the alignment search space (the product of
the profile lengths) increases:

wn = LCO”S—‘ . (7)
(hh)?

Here | -] denotes rounding to the nearest integer, /; and /,
are the lengths of two profiles compared, w is the number
of positive substitution scores in the alignment, and ¢y =
10° is the constant that is equal to the value of the denom-
inator when /; and /; are slightly less than 50. Hence, the
wy, statistic corresponds to the number of positive substi-
tution scores when the search space approximately equals
that of two profiles of length 50. The number of posi-
tive substitution scores becomes less informative as the
search space increases, and, consequently, the value of the
wy, statistic decreases. The distribution of wy, is approx-
imately negative binomial (Supplementary Section S6.4,
Additional file 1).

The complete procedure for statistical significance esti-
mation is shown in Fig. 3. p-values of alignment score
and wy,, P, and P,, are combined using the empiri-
cal Brown’s method [37] (Supplementary Section S4.5,
Additional file 1).

E-value and its correction

The expected number of local alignments with a score
greater than or equal to x, E = Kljlye™*, increases
as the size of the search space increases [5, 7, 12, 38].
(E-value and p-value P are related by the equation
P =1 — exp(—E).) Let Ey be the E-value of an alignment
with score x obtained from searching a database of size /.
Let also Eyr be the E-value of an alignment with the same
score x (and profile composition) obtained by searching
a database of size /5y with the same query. Then, the
relationship between Ex and Eny is [18]

In

En Eyn. (8)

= lN/
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We use this relationship when compensating for a
limited number of randomly generated profiles used in
simulations. We refer to the results obtained by calculat-
ing the corrected E-value as the alternative model.

Results

This section presents results from the application of the
proposed procedure (Fig. 3) for estimating the statistical
significance of profile-profile alignments. The NN models
predicting statistical parameters were trained on the esti-
mates obtained for profiles generated by Algorithm 1 with
a noise level » = 0.03 and a fragment length s = 9, as
determined in Optimizing s and r.

For comparison, we have implemented and present
results from the application of the method for estimating
statistical significance proposed by [22] (Supplementary
Section S5.3.4, Additional file 1). We refer to the COMER
version implementing this method as S&G’08 in the text.
We also show the results of the application of the COM-
PASS [19] (v3.1) profile-profile alignment method, where
the approach [22] applies to the scoring function for which
it was originally developed.

Statistical accuracy

We used COMER (or another tool) to search and align
the profiles constructed for 5000 simulated Pfam [39]
(v30.0) MSAs against the database of simulated profiles
representing 4931 SCOPe (v2.03) domains. The profiles
were randomized using Algorithm 1 to preserve length,
ENO, and composition inherent in each of the Pfam MSAs
and profiles constructed for the SCOPe domains (see
Supplementary Section S5.2, Additional file 1). Then, we
calculated the fraction of queries with a p-value reported
by COMER (or another tool) for their best match less
than the specified p-value. The expected number of such
queries is the product of the given p-value and the
total number of queries. Therefore, the correspondence
between the fraction of queries and the given p-value
represents the theoretical result.

The results are shown in Fig. 4. The new model for
statistical significance estimation is more accurate than
the model [21] implemented in the previous version [27]
of the COMER method. The results also show that the
statistics obtained from aligning profiles generated by ran-
domly permuting MSA columns (s = 1, r = 0.01) lead to
overestimation of statistical significance. This result can
be accounted for by unrealistic representation of protein
sequence families (profiles).

Finally, although the models with and without the w,
statistic taken into consideration achieve comparable sta-
tistical accuracy, the sensitivity and high-quality align-
ment rate obtained using the latter model (w/o wy) are
lower. The same applies to the model implemented based
on the previous research (S&G’08) (see below).
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Fig. 4 Statistical accuracy of the COMER method using different
models for statistical significance estimation. Shown are the results of
comparing the profiles constructed for 5000 randomized Pfam
families to the profiles constructed for 4931 randomized SCOPe
domains. The figure plots the fraction of queries with a p-value
reported for their best match less than the p-value indicated on the
x-axis. The solid straight line indicates the highest accuracy. These
models are represented in the figure: the new model (new) proposed,
the alternative model with E-value correction (new (alt.)), a statistical
model based on previous research (S&G'08), the statistical model
used in the previous COMER version (previous), a model based on the
statistics obtained for profiles generated with s = 1 and r = 0.01, and
the model excluding the number of positive substitution scores (w/o
wn). The statistical accuracy of HHsearch and COMPASS (v3.1) is also
shown

Sensitivity and alignment quality

We compared the performance of the new COMER ver-
sion with that of its previous version [27], where the new
and previous versions differed only in how they estimated
the statistical significance of the same alignments. For
reference, we also provide results for three other profile-
profile alignment methods, HHsearch [40] (v3.0.0), FFAS
[41], and COMPASS (v3.1) [22].

4900 protein domains of the test dataset from the
SCOPe database (v2.03) filtered to 20% sequence identity
was used to evaluate performance. The test and training
datasets shared no common folds.

Profiles were constructed using two categories of MSAs.
The MSAs for each domain sequence were obtained by
running PSI-BLAST [33] (v2.2.28+) for six iterations and
HHblits [42] for three iterations, respectively, against a
filtered UniProt database [43].

A pair of aligned domains (profiles) that belonged to
the same SCOPe superfamily or shared statistically signif-
icant structural similarity (DALI [44] Z-score > 2) was
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considered a true positive (TP). Aligned pairs that did not
meet the above criteria but belonged to the same SCOPe
fold were considered to have an unknown relationship and
were ignored. Other aligned pairs were considered false
positives (FPs). The sensitivity was also summarized using
the ROC,, score, which is the normalized area under the
ROC curve up to #n FPs.

Alignment quality was evaluated by generating, using
MODELLER [45] (v9.4), protein structural models for
each produced alignment. Statistically significant similar-
ity between a model and the real structure, TM-score >
0.4 [46], was considered to correspond to a high-quality
alignment (HQA). An alignment with a TM-score < 0.2,a
characteristic value for a random pair, was assumed to be
of low-quality (LQA).

Two evaluation modes were used to evaluate alignment
quality. The local mode penalizes alignment overexten-
sion, whereas the global mode penalizes too short align-
ments (e.g., a few amino acids in length). These evaluation
modes were also used to evaluate the quality of max-
imally extended alignments produced by COMER and
HHsearch (option -mact set to 0). The evaluation of maxi-
mally extended alignments reveals how the quality of local
alignments changes with their extension. It provides an
indication of the quality of the match between the query
and a database protein, which is also important in protein
homology modeling.

(Details about the evaluation setting can be found in
Supplementary Section S5.3, Additional file 1).

Figure 5 and Table 1 reveal that the new statistical
model leads to consistent improvement in both sensitiv-
ity and HQA rate and that most of the improvements are
statistically significant.

Using the developed statistical model yielded an
increase of up to 34.2% and 27.4% in the number of
TPs and up to 43.9% and 61.8% in the number of
HQAs. Table 2 shows that these percentage increases were
achieved at a low false discovery rate (FDR). Hence, the
largest relative improvements are expected for relation-
ships detected at a high confidence level.

Table 2 also shows that the relative increases were
greater when the profiles were constructed from the PSI-
BLAST MSAs. A similar trend was also observed for the
number of HQAs examined as a function of the number
of alignments of inferior quality (IQAs) (Supplementary
Section S7.1, Additional file 1). In this evaluation setting,
the developed statistical model showed an increase of up
to 102.8% and 193.3% in the number of HQAs.

MSAs obtained from a PSI-BLAST search contain more
alignment errors than those built using HHblits. Larger
relative improvements in performance achieved when
using PSI-BLAST MSAs for profile construction, there-
fore, show a certain degree of robustness that the new
model exhibit. We attribute this characteristic to the
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combination of statistical parameters dependent upon
both profile length and ENO and compositional similarity.
If a high alignment score of two unrelated profiles arises
due to false positives in the corresponding MSAs, a high
compositional similarity between the profiles counterbal-
ances the statistical significance estimated solely based on
profile length and ENO.

By contrast, the version based on the previous approach
for estimating statistical significance (S&G’08) displays a
large decrease in sensitivity and HQA rate with respect
to the previous COMER version (v1.4) for PSI-BLAST
MSAs. Among other differences from the new model, that
model does not depend explicitly on the compositional
similarity between profiles, which in part accounts for
this decrease. Although version S&G’08 achieved similar

statistical accuracy (Fig. 4), the sensitivity and the rate of
HQAs were consistently lower than those obtained using
the new statistical model. (We also provide statistical anal-
ysis with respect to FPs found among the top-ranked
alignments of the queries from the test dataset, but these
results should be interpreted with caution [see Supple-
mentary Section S7.2, Additional file 1]).

Application to pairwise profile HMM alignments

We applied the methodology for estimating statistical sig-
nificance (Fig. 3) to pairwise profile HMM alignments
produced by HHsearch. An improvement in both statisti-
cal accuracy and sensitivity and HQA rate (Supplementary
Section S7.3, Additional file 1) confirms the effectiveness
of the developed methodology.
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Table 1 Area under the ROC curve and improvement of the COMER method

. COMER new COMER new (alt)) COMER V14

Input Evaluation X
ROC, Z (p-value) ROC, Z (p-value) ROC,
HHblits MSAs Sensitivity 6000 0.837 0.9 (0.350) 0.836 06 (0.571) 0.835
PSI-BLAST MSAs Sensitivity 6000 0.705 56 (1.7x1078) 0.698 2.6 (0.009) 0.690
HHblits MSAs Local 150 0.782 0.9 (0.350) 0.753 —0.9(0.352) 0.768
Global 10000 0456 86 (<3x10710) 0456 73 (38x10713) 0438
Local (max ext) 1000 0628 9.0 (<3x1071%) 0624 7.1 (1.7x10712) 0.591
Global (max ext) 1700 0.603 76 (39x10714) 0.598 72 (7.7x10713) 0.574
PSI-BLAST MSAs Local 400 0.642 16 (0.103) 0623 0.2 (0.874) 0621
Global 22000 0.330 37 (22x107%) 0334 49 (12x107°) 0.321
Local (max ext) 2500 0496 53(12x1077) 0499 63 (28x10719) 0477
Global (max ext) 5000 0471 5.1 (3.0x1077) 0474 56 (2.1x1078) 0457

The sensitivity and alignment quality (Local and Global evaluation modes) of versions of the COMER method are evaluated. Maximally extended (max ext) COMER alignments
are included in the evaluation. Profiles were constructed from HHblits and PSI-BLAST MSAs. ROC, is the ROC score calculated up to x false positives (FPs; Sensitivity) or
low-quality alignments (LQAs; alignment quality in the Local and Global modes). The number of FPs or LQAs, x, depends on the evaluation mode (see also Fig. 5). Z is the
difference between the areas (ROC, scores) obtained for a new and the previous (v1.4) versions of the COMER method, divided by the estimated standard error. The statistical

significance of Z is indicated in parentheses

Example of reduced significance for a false positive
Reranking alignments using the proposed estimation of
statistical significance has been shown to increase sensi-
tivity and the rate of HQAs. This is demonstrated by an
example.

Two domains d2hi7b1 (a.29.15.1) and d2cfqa_ (£.38.1.2)
are alpha-helical proteins but represent different SCOPe
classes. They have different topology and do not share
statistically significant structural similarity.

Alpha-helical structure implies a high compositional
similarity A, = 0.296 between the profiles constructed
for the two domains (low values of A, correspond to high

compositional similarity; Supplementary Sections S6.1
and S6.2, Additional file 1). Significance estimation
dependent upon compositional similarity allowed the new
COMER version to correctly remove the alignment from
the list of statistically significant alignments. In contrast,
the alignment was considered significant by the previous
COMER version. Note that both versions estimated the
significance of the same alignment with the same score.

Discussion
Profiles represent sequence families, and this fact alone
suggests that a profile contains information whose content

Table 2 Increase in the number of true positives or high-quality alignments.

) COMER new COMER new (alt.)
Input Evaluation
TPs (+%) TPsy14 FDR TPs (+%) TPsy14 FDR
HHblits MSAs Sensitivity 34902 ( 74) 32483 0.001 33474 ( 3.1) 32483 0.001
PSI-BLAST MSAs Sensitivity 27666 (34.2) 20612 0.002 26266 (27.4) 20612 0.002
HHblits MSAs Local 75622 ( 2.9) 73526 0.002 0(C0 0 0
Global 16699 (15.9) 14414 0.001 18670 (29.5) 14414 0.001
Local (max ext) 46608 ( 8.8) 42857 0.005 38090 (10.8) 34367 0.001
Global (max ext) 43603 ( 7.6) 40531 0.008 42165 ( 8.9) 38704 0.006
PSI-BLAST MSAs Local 61222 ( 44) 58627 0.004 13423 (13.4) 11842 0.001
Global 10248 (43.9) 7123 0.001 11523 (61.8) 7123 0.001
Local (max ext) 25208 ( 8.9) 23146 0.004 28819 (24.5) 23146 0.004
Global (max ext) 25161 ( 7.3) 23453 0.007 15588 (24.6) 12515 0.003

Shown are the results of the evaluation of the sensitivity and alignment quality (Local and Global evaluation modes) of versions of the COMER method using profiles
constructed from HHblits and PSI-BLAST MSAs. TPs stands for the number of true positives (Sensitivity) or high-quality alignments (in the Local and Global evaluation modes)
at a specified false discovery rate (FDR) for a new version of the COMER method. TPsy1 4 represents the same number for the previous COMER version. The percentage
improvement with respect to TPsy1 4 is given in parentheses. 0 indicates no improvement
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largely depends on the family the profile describes. It
means that the degree of (dis)similarity (distance) between
unrelated sequence families strongly affects the distri-
bution of scores of alignments between profiles that
represent these families. The challenging aspects of char-
acterizing the distribution of profile-profile alignment
scores, however, are not limited to diversity across
unrelated profiles. Similarity between SS, context and
other predictions that accompany profiles complicate the
characterization of alignment score distribution too.

The importance of a null model of profiles motivated
us to develop an algorithm for generating random pro-
files. According to the algorithm, profiles are generated by
concatenating fixed-length fragments sampled randomly
from real unrelated profiles (seeds) with added noise.
Controlling the noise level and fragment length allows to
produce random profiles that are neither overly divergent
nor share an excessive similarity. In this way, random pro-
files possess features characteristic to real profiles, but
correlations that do not allow them to be considered unre-
lated do not dominate. Alignments between randomly
generated profiles allowed us to determine the depen-
dence of statistical parameters on profile length and ENO
and also on compositional similarity between profiles.

The results suggest two important implications. First,
profiles generated using long fragments (fragment length
9) represent real unrelated profiles much more accurately
than do those obtained by randomly sampling profile
columns. Statistics obtained from their alignments lead to
higher statistical accuracy. On the other hand, randomly
sampling of columns destroys higher-order dependencies
inherent in real proteins and leads to the opposite result.

Second, the compositional similarity between profiles
has a large impact on estimating the statistical significance
of alignments. Improvements in sensitivity and HQA rate
can be accounted for in part by that a high compositional
similarity may indicate that the proteins share common
structural elements or the profiles involve false positives.
Significance estimation dependent upon compositional
similarity, therefore, has a positive effect.

In fact, the issues of profile composition and random
profile model are factors that hinder the application of
techniques such as importance sampling [47] to accurately
estimating statistical parameters. While composition can
be measured in different ways, choosing a random profile
model is more complicated because every profile repre-
sents a model. For example, the composition of two pro-
files, one of them obtained by randomly rearranging the
positions of the other, will be the same. However, the dis-
tribution of alignment scores of profiles generated using
the profile with rearranged positions as a seed (model) will
differ from that obtained for profiles generated using the
other profile as a seed. In this study, close match to the dis-
tribution of alignment scores of real unrelated reference
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profiles constituted one of the criteria for random pro-
file model selection. However, a supplementary approach
might be beneficial.

Based on the above considerations and the results
obtained by generating random profiles using one seed
profile, we suspect that further improvements may result
from introducing a new measure of profile “sequence
affinity” (as opposed to the quantitative measure of the
effective number of observations). The benefit may come
from including into the model the statistical parameters
dependent upon the new measure through, e.g., the appli-
cation of the conditional mean estimator. The present
study already demonstrated the conditional mean esti-
mator to be both easily interpretable and effective when
the calculation of compositional similarity or divergence
between profiles was in use. And it provides possibilities
for further improvements.

Conclusions

We developed a methodology for estimating the statis-
tical significance of profile-profile alignments such that
improved statistical accuracy accompanies both increased
sensitivity to homologous proteins and rate of high-
quality alignments. The combination of statistics depen-
dent upon different profile measures, an integral part of
the methodology, may prove useful for future research,
including developments of sensitive iterative search meth-
ods based on profile-profile comparison, where the
importance of controlling false positives is particularly
stressed.
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