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Background: Hydrogels, a type of three-dimensional (3-D) crosslinked network of
polymers containing a high water concentration, have been receiving increasing
attention in recent years. Self-healing hydrogels, which can return to their original
structure and function after physical damage, are especially attractive. Some self-
healable hydrogels have several kinds of properties such as injectability, adhesiveness,
and conductivity, which enable them to be used in the manufacturing of drug/cell delivery
vehicles, glues, electronic devices, and so on.

Main Body: This review will focus on the synthesis and applications of self-healing
hydrogels. Their repair mechanisms and potential applications in pharmaceutical,
biomedical, and other areas will be introduced.

Conclusion: Self-healing hydrogels are used in various fields because of their ability to
recover. The prospect of self-healing hydrogels is promising, and they may be further
developed for various applications.

Keywords: self-healing, hydrogel, repair mechanism, biomedical application, biomaterials

INTRODUCTION

Hydrogels are a type of 3-D chemically or physically cross-linked polymeric network with a high
water content. They have a wide range of uses in biomedical fields. However, as soft materials, many
hydrogels tend to be damaged or fatigued easily. Self-healing hydrogels are hydrogels that are able
to recover their structures and restore their functions after physical damage either in an autonomic
way or by relying on external stimuli. Some self-healing hydrogels have additional properties, such
as injectability and conductivity, which enable them to be further used in several areas, including
cell/drug delivery, tissue engineering, soft electronic devices, and so on.

Abbreviations: 3-D, three-dimensional; 4a-Phe, 4-amino-DL-phenylalanine; AM, acrylamide; BA, biogenic amine; CIT,
cross-linking induced response; CS, chitosan; DA, Diels–Alder; DAA, diacetone acrylamide; DFO, desferrioxamine; DN,
double network; ECFCs, endothelial colony-forming cells; EPCs, endothelial progenitor cells; HPR, horseradish peroxidase;
IPN, interpenetrating polymer network; LA, lipoic acid; PA, phytic acid; PAAM, polyacrylamide; PBA, phenylboronic
acid; PDA, polydopamine; PEG, poly(ethylene glycol); PLGA, poly(lactic-co-glycolic acid); RPC, retinal progenitor cell;
STMS, stellate mesoporous silica; TNBC, triple negative breast cancer; TPE, tetraphenyl ethylene; UPy, 2-ureido-4[1H]-
pyrimidinone; UV, ultraviolet; ZIB, zinc-ion battery.
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Self-healing mechanisms can be divided into intrinsic ones
and extrinsic ones. The mechanism of intrinsic type self-healing
hydrogels is mainly attributed to the reversible networks formed
by the polymers themselves. Those networks can be mainly
divided into two cross-linking types: (1) dynamic chemical
covalent bonds and (2) physical non-covalent interactions.
Dynamic covalent bonds include imine bond (Qu et al., 2017; Yan
et al., 2017; Chen H. et al., 2018; Chen et al., 2019e; Khan et al.,
2018; Wei and Gerecht, 2018; Zhang et al., 2018; Guo B. et al.,
2019; Jiang F. et al., 2019; Li Q. et al., 2019; Qian et al., 2019; Wang
et al., 2019b; Wang W. et al., 2019; Zhou et al., 2019), Diels–
Alder (DA) reaction (Oehlenschlaeger et al., 2014), boronate-diol
complexation (Hong et al., 2018; Pan et al., 2018; Smithmyer
et al., 2018; Zhi et al., 2018; Han et al., 2019), acylhydrazone
bond (Yang et al., 2017; Shen et al., 2019; Sun C. et al., 2019),
dynamic disulfide bond (Song L. et al., 2019), and dynamic metal
oordination (Shao et al., 2018; Chen et al., 2019a; Qin et al., 2019).
Physical non-covalent interactions include hydrogen bonding
(Fan et al., 2018; Uzumcu et al., 2018; Cao et al., 2019; Chen et al.,
2019c; Hu et al., 2019; Huang et al., 2019; Kuddushi et al., 2019;
Li R. et al., 2019; Liao et al., 2019; Su et al., 2019; Wang L. et al.,
2019), hydrophobic interaction (Liu P. et al., 2019), host-guest
interaction (Deng Z. et al., 2018; Li Q. et al., 2018; Liu L. et al.,
2019; Wang W. et al., 2019), and ionic interaction (Ma et al., 2018;
Wang Y. et al., 2018; Becher et al., 2019). Some intrinsic type self-
healing hydrogels even have several kinds of networks, containing
either one type or several types of mechanisms. In addition, some
intrinsic type self-healing hydrogels consist of materials that can
heal by themselves under certain circumstances (Lee et al., 2018),
and thus achieve self-healing. There are also some self-healing
hydrogels that do not rely on the reversible bonds or interactions
of the polymers themselves to recover; instead, healing agents
are stored in reservoirs and embedded in the polymer matrix to
aid the self-healing (Chen et al., 2019d; Liu S. et al., 2019; Rao
et al., 2019). These kind of hydrogels are called extrinsic type
self-healing hydrogels.

In this review, some recent research in self-healing hydrogels
will be explained, including the mechanism and synthesis of
self-healing hydrogels. The emphasis of this review will be put
on intrinsic type self-healing hydrogels, and the extrinsic type
will also be briefly introduced. In addition, the application of
these materials will be introduced, such as their use in cell/drug
delivery, or as glues, sensors, and wound healing materials, and
future potentials of self-healing hydrogels will be discussed.

MECHANISM OF INTRINSIC TYPE
SELF-HEALING HYDROGELS

Most intrinsic self-healing hydrogels are synthesized by either
one or both types of interactions: dynamic chemical covalent
bonds and physical non-covalent actions. Figure 1 shows some
major types of these two kinds of mechanisms.

There are also some exceptions of self-healing hydrogels.
Hydrogels that consist of certain materials are able to recover by
themselves in certain conditions. For example, self-healing can be
achieved due to gelatin’s denaturation with temperature changes.

Dynamic Chemical Covalent Bonds
Disulfide Bond
Being strong and sensitive to exchange reactions in various
conditions, such as heating (Canadell et al., 2011), a disulfide
bond was used in rubbers to obtain self-healing properties
(Canadell et al., 2011; Xiang et al., 2019). The disulfide exchange
can occur and repeat multiple times under several circumstances,
including heating, photoirradiation, and mechanical stress. Song
L. et al. (2019) used this kind of bonding to develop a multi-
responsive, self-healing hydrogel with a single component.
Pluronic F127, a thermo-responsive copolymer, and LA, an
antioxidant, were first conjugated. The hydrogel was then formed
by cross-linking the F127-LA polymer, starting with self-assembly
into micelles, and was followed by disulfide exchange induced by
ultraviolet (UV) light. The prepared hydrogel could respond to
temperature and reduction, as well as realize self-healing. Stress-
relaxation experiments and stress-strain curves of the F127-LA
hydrogel showed that the mechanical properties, such as tensile
strength, could be influenced by gel concentration or tensile rate;
cytocompatibility assay showed that the hydrogel would not have
a negative impact on cellular metabolism.

Diels–Alder (DA) Reaction
Diels–Alder covalent bonds can be dynamic under physiological
conditions (Chen et al., 2002) and have thermal reversible
characteristics (Oehlenschlaeger et al., 2014). DA kinetics is slow;
as a result, it is easy to handle (Ghanian et al., 2018). This may
be the reason why many researchers have combined DA covalent
bonds with physical non-covalent interactions to prepare DN
hydrogels. Ghanian et al. used furan substituted alginate and
maleimide functionalized four-arm PEG cross-linker to trigger a
DA click reaction (Ghanian et al., 2018). Calcium was also bound
to the alginate to form an ionic interaction. The ionic interaction
was sacrificed under loading, and the covalent DA bonds could
thus avoid severe plastic deformation. Once the load was released,
the DA bonds would guide the gel back to its initial position.
Besides its self-healing ability, these two networks also made the
hydrogel tough, moldable, and easily accessible for injection.

Imine Bond
Imine bond [sometimes also called Schiff base (Meyer et al.,
2007)] is a reversible covalent bond prepared by the dehydration
of hemiaminal intermediate, which is produced by a primary
amine and an aldehyde or a ketone. Aromatic Schiff base
is more stable for stabilizing mechanical properties compared
to aliphatic ones (Engel et al., 1985). Zhang et al. (2018)
reported a self-healing, pH-responsive, and injectable hydrogel
based on aromatic Schiff base using agarose-ethylenediamine
and dialdehyde-functionalized polyethylene glycol. The hydrogel
exhibited good tissue adhesiveness because of the interaction
between the imine bond and tissue protein, which made it a
potential candidate for hemostatic material. Figure 2 showed the
self-healing process conducted by Zhang et al. (2018).

Besides self-healing, there are many other properties that
hydrogels based on imine bonds possess. For example, pH-
responsiveness can be achieved because of the nature of
Schiff base (Qu et al., 2017). Degradability can be achieved
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FIGURE 1 | Major dynamic chemical covalent bonds and physical non-covalent interactions as self-healing mechanisms.

by using chitosan hydrochloride and oxidized dextran to
form a dynamic imine bond, because both components could
be degraded completely in vivo (Jiang X. et al., 2019).
Additionally, many of them contain antimicrobial properties.
Wang W. et al. (2019) used an ABA triblock copolymer
and polyethylenimine to fabricate an antimicrobial self-healing
hydrogel. This is achieved because the quaternary amine groups
of the copolymer, together with partially protonated amine
groups of polyethylenimine, can have electrostatic interaction
with the lipid membrane of microorganisms, which is negatively
charged, resulting in lysis and cell death. Also, Chen et al.

(2019e) studied chitosan-alginate hydrogel and used it for
sustained 5-fluorouracil delivery. Targeted therapy was realized
by incorporating a magnetic microspheres-loaded anti-cancer
drug into the hydrogel scaffold.

Boronate-Diol Complexation
Boronate-diol complexation is also referred to as a boronate
ester bond (Liu and Hsu, 2018) because it is made from a
boronic acid and a diol. The stability of the boronate-diol bond
mainly depends on the pH of the solution (Yan et al., 2004).
Some researchers (Zhi et al., 2018) combined this kind of bond

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 3 July 2020 | Volume 8 | Article 654

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00654 July 18, 2020 Time: 19:20 # 4

Fan et al. Self-Healing Hydrogels

FIGURE 2 | The process of self-healing of (A) Two pieces or (B) Four pieces of hydrogels prepared by Zhang et al. (2018) (reproduced with permission from Zhang
et al. (2018). Copyright 2018 American Chemical Society).

with bioconjugate chemistry and filamentous viruses to prepare
a hydrogel system, which was shown to be stimuli-responsive,
injectable, and self-healing. The researchers first conjugated PBA
derivative with the M13 virus, and then poly(vinyl alcohol) was
used to make cross-linkage with the PBA-M13 via boronate-
diol complexation. In addition, the hydrogel exhibited good
sugar responsiveness at physiological pH, making it a candidate
for release-controlled insulin delivery. Other researchers (Pan
et al., 2018) prepared a self-healing and ultra-flexible hydrogel
based on hydrogen bonding and boronate-diol ester bond. The
hydrogel was prepared with borax, guar gum, and glycerol,
forming a glycerol-water-borax net. The dynamic interaction of
the net could act as sacrificial bond energy for stretchability and
injectability. Due to the stable network of dynamic chemical
bonds, the hydrogel could achieve 92.9% healing efficiency of
stress and 98.8% healing efficiency of strain when it was put
under 25◦C for 24 h, and the healing efficiency does not decrease
obviously when surface aging happens, including erosion by
acid, alkali, or salt. Wu et al. reported a self-healing hydrogel
with a wide healing pH range (from 8.5 to 1.5) based on a
dual-crosslink network (Wu et al., 2019). One of the crosslinks
was based on a rigid nopoldiol-benzoxaborolate bond and
the other on a sugar-benzoxaborolate bond. The researchers
used several other common diols to form a single network
with MAAmBO (the benzoxaborole provider) to compare with
nopoldiol, and they were found to be either not dynamic
enough or to only have a narrow pH range. Thus, the hydrogel
composed of nopoldiol is promising to be used under acidic
environment. The dual-crosslink system makes the hydrogel
recover very rapidly. Without external forces, two cubes of
hydrogel could self-heal in 20 s. Chen et al. (2019f) reported a
self-healing hydrogel based on benzoxaborole-diol complexation
on nanointerfaces. Interestingly, the “diol” was provided by the
galactose residues on the nanosurface of the nanogel, which is
temperature-responsive. The naonogel part endows the hydrogel
with the same property. This is a promising method to prepare
multifunctional hydrogels.

Acylhydrazone Bond
Acylhydrazone bond is another reversible chemical bond used in
self-healing hydrogels (Yang et al., 2017; Shen et al., 2019; Sun
C. et al., 2019). It is formed by combining either acylhydrazine
and aldehydes, or acylhydrazine and ketones (Tu et al., 2019).
Like the imine bond, an acylhydrazone bond can go through
hydrolysis and exchange reactions (Nguyen, 2003). Based on

this mechanism, the authors (Yang et al., 2017) prepared a
dual responsive hydrogel with very good self-healing efficiency.
Carboxyethyl cellulose-graft-dithiodipropionate dihydrazide was
mixed with dibenzaldehyde-terminated PEG solutions and
4a-Phe to form the hydrogel, which could potentially be
used for three-dimensional (3-D) cell culture scaffolds and
drug delivery systems. Without any external intervention, the
hydrogels could completely recover themselves within 6 h.
In fact, the more 4a-Phe was added in the synthesis of the
hydrogel, the better healing efficiency was achieved. This is
because the acylhydrazone bonds can exchange in a slightly
acidic environment (pH = 4.0–6.0), but they were kinetically
locked in neutral conditions (Deng et al., 2012; Wei et al.,
2015). 4a-Phe, which is a nucleophilic catalyst, can dramatically
increase the exchange reaction. This effort partly addressed the
acylhydrazone bond’s problem of only being self-healable in a
mildly acidic environment.

Metal-Ligand Coordination
Metal-ligand coordination is also called chelation (Carlin, 1988).
A coordinate bond is a special kind of covalent bond because
only the ligand, which is often organic and can also be called
a chelating agent, donates electrons instead of one electron
from each atom. Silver, iron, calcium, and aluminum ions are
common candidates to form the chelation in preparation of self-
healing hydrogels. Chen et al. (2019a) studied the coordination
between silver ions and S. An injectable, self-healing hydrogel
was prepared by simply mixing 4-arm-PEG-SH and silver
nitrate (AgNO3) aqueous solution. The rheological properties
were determined by viscosity measurement. The result was
532,342 ± 2,616 at lower shear rates and 63,056 ± 15,113
at higher shear rates, indicating a high recovery rate of
the hydrogel’s structure. Meanwhile, the elastic modulus (G’),
which was ∼5700 Pa, and the loss modulus (G”), which was
∼3300 Pa, could both withstand ∼50% strain increase. Also,
when cut into two fragments, they could fuse and return to
their original state in 15 min at room temperature, indicating
a self-healing capacity of the prepared hydrogel. Figures 3A–
C show the rheological properties, tensile strength, and self-
healing process.

Physical Non-covalent Interactions
Hydrophobic Interaction
Hydrophobic interaction is a typical physical non-covalent
interaction. When hydrophobic chains are exposed to water, they
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FIGURE 3 | (A) Viscosity measurements; (B) Strain sweep measurements; (C) Self-healing process (reproduced with permission from Chen et al. (2019a). Copyright
2019 Springer Nature).

tend to aggregate in order for their hydrophobic parts to avoid
contact with water as much as possible. In many recent cases,
hydrophobic interaction has been used along with other types of
cross-linkages to synthesize self-healing hydrogels, such as metal-
ligand coordination (Tang et al., 2018), ionic interaction (Sun and
Deming, 2019), or even through multiple ones (Deng et al., 2019).
Liu P. et al. (2019) studied a thermo-responsive hydrogel made
from poly(lactic-co-glycolic acid)-PLGA-PEG-PLGA copolymer,
which is widely used in drug delivery (Joo et al., 2009), and was
the first to discover the self-healing property of this polymer. The
experiment showed that once strain was reduced, the gel quickly
recovered almost to its initial state in 10 s.

Hydrogen Bond
Hydrogen bond, or H bond, is formed between a hydrogen
atom and another atom, which is known as the hydrogen bond
acceptor and has a lone pair of electrons. One quality of the H
bond is thermo-sensitivity, and thus it has great potential to be
used to achieve temperature-responsive self-healing hydrogels.
2-ureido-4[1H]-pyrimidinone (UPy) is extensively used for
multiple hydrogen-bonding formation, taking advantage of the
quadruple hydrogen bonds. Chen et al. (2019c) prepared a
self-healing hydrogel using UPy. Firstly, a hydrogel composed
of UPy and negatively charged poly(4-styrenesulfonate) was
prepared via one-pot free radical polymerization. After heating
and cooling with added polyaniline, the hydrogel was immersed
into a solution of acid and FeCl3, and through electrostatic
interaction the hydrogel was crosslinked with polyaniline. The
prepared hydrogel could achieve self-healing within 30 s, and
possessed thermoplasticity because of the H bonds. Kuddushi
et al. (2019) reported a hydrogel with exciting load-bearing,
dye-absorbing, stimuli-responsive, and self-healing properties.
This hydrogel was prepared by using a morpholinium-based
ester-functionalized surfactant. The self-healing property was
determined by observing the cut segments recombining within
12 h in ambient conditions without any external stimuli.
Diffusion of methyl orange from doped to undoped gel pieces
was also observed during the formation of the self-supporting
bridge, which was made up of five gel pieces. Tensile strength
comparison between the gels before and after 12-h self-healing
demonstrated self-healing efficiency. The self-healed gel could

bear 300% stress without interface fracture, and the self-healing
efficiency was 78.68%.

Host-Guest Interaction
Supramolecular host-guest interaction is a non-covalent force
between two components of a compound consisting of a host
molecule and a guest molecule or ion. The formations of polymer
architectures with host-guest interaction are summarized in
Figure 4 (Yang et al., 2015). Common molecules used to form
host-guest interaction include crown ethers (Xue et al., 2015),
calixarenes (Yan et al., 2012), cucurbiturils (Appel et al., 2012),
pillararenes (Ogoshi et al., 2016), and cyclodextrins (CDs) (Deng
Z. et al., 2018; Li Q. et al., 2018; Liu L. et al., 2019; Wang
et al., 2019e; Wu et al., 2008). The authors (Li Q. et al., 2018)
used β-cyclodextrin and N-vinylimidazole to achieve hydrogel
fibers. The self-healing experiment showed that the cut hydrogel
fibers could adhere together within 24 h, and the healed fiber
could withstand a reversible stretch. The self-healing efficiency
was measured through strain-stress experiments. The originally
prepared fibers displayed strength of 0.047 MPa, and the healed
ones could achieve 0.045 MPa, indicating an 84% self-healing
efficiency. The authors (Wang et al., 2019e) developed a host-
guest supramolecule with 3 arms, which were cross-linked with
a polymer, and prepared a hydrogel with improved mechanical
properties, 3-D printing capacities, and self-healing properties.
The supramolecule was prepared via host-guest interaction
between modified β-cyclodextrin and modified adamantane.
Then, the arms of it went through copolymerization with gelatin
methacryloyl to form the hydrogel. Experiments showed that the
two pieces of the gel could achieve self-healing after being in close
contact for 1 h, and the healed hydrogel would not separate even
under a large tensile force. Continuous cyclic deformation was
also used to examine the dynamic properties of the hydrogel,
showing that when the gel was under a lower shear strain for
140 s after the higher one, the initial modulus value could
achieve an almost full recovery. Also, the self-healing efficiency
could be controlled when the concentration of the host-guest
supramolecule increased, and the efficiency could rise to 80%.

Ionic Interaction
Ionic interaction, or ionic bonding, is formed due to the
electrostatic attraction between oppositely charged ions,
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FIGURE 4 | Formations of polymer architectures with host-guest interaction (reproduced with permission from Yang et al. (2015). Copyright 2015 The Royal Society
of Chemistry).

so it is also known as electrostatic interaction (Wang and
Heilshorn, 2015). One quality of the hydrogels based on such
an interaction is conductivity. Wang Y. et al. (2018) prepared
a self-healing, conductive, and metal adhesive DN hydrogel
based on ionic interaction and hydrogen bonds by one-pot
synthesis. The researchers conjugated graphene oxide with
soluble starch and poly(sodium 4-vinyl-benzenesulfonate-co-
N-(2-(methacryloyloxy)ethyl)-N,N-dimethylbutan-1-aminium
bromide) via γ-radiation. The ionic interaction made the
hydrogel not only self-healable but also conductive. When
the gel was cut into two parts and brought together, they
could achieve ultrafast self-healing without any external
stimuli. According to the rheological recovery tests, the
storage modulus (G’) of the self-healed hydrogel could
nearly be regained within 80 s, indicating good self-healing
ability. Also, the ionic conductivity of the healed gel could

still achieve more than 80% of its original value after 10
cut-healing cycles.

π-π Stacking
π-π stacking happens between aromatic rings. The attraction
forces between different electron clouds in an aromatic system
form the stacking force (Mcgaughey et al., 1998). Many recent
works combined π-π stacking with other covalent bonds or
non-covalent interactions to prepare self-healing hydrogels (Liao
et al., 2017; Gavel et al., 2018; Liang et al., 2019; Xu H. et al.,
2019). Liang et al. (2019) prepared a hydrogel for wound dressing
based on the hydrogen bonding and π-π stacking by mixing
hyaluronic acid-graft-dopamine with reduced graphene oxide
in an H2O2/HPR (horseradish peroxidase) system. A rheology
test was performed to measure the self-healing ability. The
continuous step strain test showed that after the first high
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strain (2000%), the hydrogel network collapsed, and the storage
modulus (G’) of the recovered gel decreased largely, while
G’ < G” (loss modulus). When at low strain, the G’ partially
returned, showing that the hydrogel was partially re-crosslinked.
After 4 cycles, nearly the same G’ and G” values, as in the
second cycle, could be achieved, indicating the self-healing
process. Xu J. et al. (2019) prepared a self-healing hydrogel
for strain and pressure sensors based on hydrogen bonding
and π-π stacking. The researchers first mixed sodium casein,
polydopamine, and acrylamide at 40◦C and then used potassium
persulfate and N,N,N′,N′-tetramethylethylenediamine as radical
initiators and triggered a free-radical polymerization at room
temperature. Finally, the samples were molded and placed
at 40◦C for 5 h to obtain the hydrogel. The synthesized
hydrogel could display ultrasensitive resistance responsiveness.
Because of the sodium casein, which possesses many amino acid
residues with hydrophilic and hydrophobic blocks, the hydrogel
was also adhesive. Thus, it is ready to be used for human
motion monitoring.

Other Physical Non-covalent Interactions
Other physical non-covalent interactions include dipole-dipole
association (Sinclair et al., 2018; Wang L. et al., 2019, Wang et al.,
2019f), supramolecular donor-acceptor interaction (Li Z. et al.,
2018), and so on. Here, we introduce dipole-dipole association as
the mechanism of self-healing hydrogels.

The dipole-dipole association can be formed from zwitterionic
polymers, molecules that contain a pair of cationic and anionic
groups (Sinclair et al., 2018) to remain neutral. The two opposite
charges of the molecules make a strong dipolarity, and thus
the hydrogel can have good adhesion to many surfaces (Wang
L. et al., 2019). The association of polymers can also provide
physical cross-linking, and thus mechanical properties can be
improved (Talebian et al., 2019). Zwitterions can help ions
transport along the depolarized skeleton, making the hydrogel
conductive (Wang et al., 2019c). Thus, based on dipole-dipole
associations, a conductive, strong, and adhesive hydrogel is able
to be prepared. Figure 5 shows a hydrogel based on dipole-dipole
association prepared by Wang L. et al. (2019).

Other Self-Healing Mechanisms
Another mechanism is to take advantage of the properties
of components. For example, the structure of some materials
changes with temperature. A self-healing hydrogel based on
an IPN made up of polyacrylamide (PAAM) and gelatin was
developed by Lee et al. (2018). The self-healing behavior was
based on the gelatin’s denaturation with temperature changes.
The cut pieces of the gel could self-heal to its original
form if kept for 1 h at 60◦C and cooled down. At high
temperatures, free coils will be generated from denatured
gelatin and gain mobility according to the second law of
thermodynamics (Cuppo et al., 2001; Gornall and Terentjev,
2008). During the cooling process, gelatin froze and the
reversible triple helix structure re-networked (Huang et al.,
2016), and the new physical entanglement induced the self-
healing process.

Multi-Mechanism Cross-Linking
Recently, many self-healing hydrogels depend not only on a
single kind of mechanism, but on two or more different types
of mechanisms. The related mechanisms can combine several
dynamic chemical covalent bonds; for example, combining imine
bonds with acylhydrazone bonds (Wang L. et al., 2018) or with
boronate-diol complexation (Balakrishnan et al., 2019). On the
other hand, the rest combines different physical non-covalent
interactions, such as combining hydrogen bonds with ionic
interaction (Long et al., 2018; Jiang X. et al., 2019; Li S. et al.,
2019; Lin et al., 2019; Song D. et al., 2019; Yuan et al., 2019;
Zhang et al., 2019), with π-π stacking (Liao et al., 2017; Gavel
et al., 2018; Liang et al., 2019; Xu J. et al., 2019), and others
(Chen et al., 2019b; Qiao et al., 2019), combining ionic interaction
with hydrophobic interaction (Chen et al., 2019b), or combining
multiple non-covalent interactions (Wang S. et al., 2018; Deng
et al., 2019). Additionally, some belong to both categories, such
as using both boronate-diol complexation and hydrogen bonds
(Ding et al., 2018; Peng et al., 2019; Shao et al., 2019; Wang
M. et al., 2019), both imine bond and hydrogen bonds (Liu
et al., 2018; Cheng et al., 2019), both host-guest interaction and
boronate-diol complexation (Yang et al., 2019), both metal-ligand
coordination and hydrophobic interaction (Tang et al., 2018),
both dipole-dipole association and boronate-diol complexation
(Chen Y. et al., 2018), and multiple ones (Jing et al., 2018; Qu
et al., 2018; Pan et al., 2019; Xu H. et al., 2019).

Recently, mussel-inspired chemistry has been extensively
studied. The mussel-inspired hydrogels typically consist of
polydopamine (PDA), based on which multiple interactions can
happen, including hydrogen bonds, π-π stacking, and, mainly,
metal-ligand coordination between metals and catechol groups
from 3,4-dihydroxyphenyl- L-alanine, an amino acid (Li et al.,
2015; Wang W. et al., 2018). Additionally, PDA has abundant
functional groups and thus can be easily modified (Fan et al.,
2019). Sun Z. et al. (2019) developed a hydrogel based on
hydroxypropyl guar gum and dopamine-coated graphene oxide.
To prepare the hydrogel, PDA coatings were used to adhere
and reduce graphene oxide to obtain nanocomposites. Then
hydroxypropyl guar gum and the nanocomposites were mixed
in the glycerol/water solvent, while borax solution was gradually
dropped into the mixture to form the hydrogel. Because of the
multiple interactions, the hydrogel could recover immediately
after 1000% strain deformation and also had the ability to detect
human motion to large scales from−20 to−30◦C.

MECHANISM OF EXTRINSIC TYPE
SELF-HEALING HYDROGELS

Healing agents are stored in reservoirs and embedded in the
polymer matrix to achieve self-healing hydrogels, which are
called extrinsic type self-healing hydrogels, compared with the
intrinsic ones previously mentioned. Microcapsule (Song et al.,
2013; Chen et al., 2019d; Liu S. et al., 2019; Rao et al., 2019),
microvascular (Toohey et al., 2007), and hollow fibers (Fifo
et al., 2014) are widely used reservoirs for storing and releasing
healing agents. Among them, microcapsules are especially
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FIGURE 5 | Illustration of a hydrogel based on dipole-dipole association (reproduced with permission from Wang L. et al. (2019). Copyright 2019 American Chemical
Society).

researched and have the most potential because they are easy
to incorporate into the matrix and the microencapsulation
technology is already mature (Zhu et al., 2015). The main
healing chemistries applied for self-healing materials based on
healing agents stored in microcapsules include ring-opening
metathesis polymerization (most extensively researched),
anionic ring-opening polymerization, cationic polymerization,
polycondensation, and free radical polymerization. Based on
factors such as external environment, the most suitable chemistry
can be chosen (Zhu et al., 2015).

A recent trend in research has been to try to combine
extrinsic and intrinsic mechanisms, for example, by modifying
the surfaces of the reservoirs. Chen et al. (2019d) reported
a self-healing hydrogel based on both hydrogen bonds and
a healing agent. To synthesize the hydrogel, STMS was
first wrapped by polydopamine (PDA) to achieve functional
microcapsules, in which it was then loaded with healing agents,
as well as photo-initiators. Finally, poly(methyl-2-ureido-4[1H]-
pyrimidinone-co-butyl acrylate) was used to modify their surface.
The experiment showed that the 2 hydrogel pieces could heal
together within 4 h at an ambient temperature, and the healed
hydrogel could withstand a 200 g tensile load.

APPLICATIONS OF SELF-HEALING
HYDROGELS

Being mostly biocompatible due to their high-water content,
hydrogels are always one of the top choices for biomedical
uses. Thanks to their ability to recover their structure after
damage, self-healing hydrogels are competitive candidates for
pharmaceutical, biomedical, and other applications. Self-healing
capability in natural tissues is a fascinating property, which can
extend life span and enhance reliability and durability (Wang
M. et al., 2019). Some self-healing hydrogels also have other
properties, such as conductivity, strong adhesion, and stimuli-
responsiveness, enabling them to be used in more specific fields.
Table 1 summarizes the main categories of the applications of
self-healing hydrogels.

Cell/Drug Delivery
The injectability or stimuli-responsive property of many
self-healing hydrogels makes them potential candidates for
pharmaceutical applications, such as cell or drug delivery.

Being glucose-responsive and injectable at a physiological
pH, the hydrogel based on poly(vinyl alcohol), M13 virus,
and PBA developed by Zhi et al. (2018) was suitable for
controlled insulin delivery. A tumor responsive self-healing
prodrug hydrogel was developed by Balakrishnan et al. (2019).
This hydrogel had an in situ gelling property and is pH-
and glucose-responsive, meaning this hydrogel can achieve a
triggered release of doxorubicin, an antitumor drug, and thus
realize targeted therapy. When the doxorubicin prodrug was
doped with miltefosine, a synergistic effect on the inhibition
of drug-resistant MDA-MB-231 triple-negative breast cancer
(TNBC) cells could be observed.

Cell therapy is becoming a more and more promising
treatment. Many injectable and cytocompatible self-healing
materials are potential candidates for cell delivery. After exposure
through a needle without scaffold protection, the cell viability
will be largely reduced (Zhang et al., 2001; Kong et al., 2003).
Being able to protect cells, the hydrogel developed by Wei
and coworkers was ready for the delivery of ECFCs, a kind of
endothelial progenitor cell (EPC) (Wei and Gerecht, 2018).

Smithmyer et al. (2018) developed a boronic acid-based
hydrogel, which was suitable for cell culture and complex
material construction. The cytocompatibility of the hydrogel
made the two encapsulated types of cells able to exhibit good
viability over 7 days when cultivated in serum-containing media
at 37◦C, 5% CO2 incubator.

Glues
Some self-healing hydrogels are adhesive and have other
properties, like being stimuli-responsive or conductive. These
characteristics mean they could have possible uses in biomedical
applications of special glues.

Hong et al. (2018) reported a hydrogel with stimuli-responsive
(including glucose-responsive and pH-responsive), remoldable,
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TABLE 1 | Several main categories of the applications of self-healing hydrogels.

Potential application References

Artificial tissue Deng Y. et al., 2018; Deng Z. et al., 2018; Ghanian et al., 2018; Lee et al., 2018; Chen et al., 2019b; Guo Z. et al.,
2019; Shao et al., 2019; Sun C. et al., 2019

Drug/cell delivery Qu et al., 2017; Yang et al., 2017; Deng Z. et al., 2018; Khan et al., 2018; Sharma et al., 2018; Wang L. et al., 2018; Wei
and Gerecht, 2018; Zhi et al., 2018; Balakrishnan et al., 2019; Chen et al., 2019e; Guo B. et al., 2019; Jiang F. et al.,
2019; Li Q. et al., 2019; Liu P. et al., 2019; Qian et al., 2019; Shen et al., 2019; Sun C. et al., 2019; Xu H. et al., 2019

Electrical devices Liao et al., 2017; Ding et al., 2018; Jing et al., 2018; Li Z. et al., 2018; Li R. et al., 2019; Pan et al., 2018; Shao et al.,
2018; Wang S. et al., 2018; Wang L. et al., 2019, Wang M. et al., 2019; Becher et al., 2019; Chen et al., 2019c; Deng
et al., 2019; Han et al., 2019; Hu et al., 2019; Lin et al., 2019; Peng et al., 2019; Qiao et al., 2019; Qin et al., 2019; Rao
et al., 2019; Shin et al., 2019; Sun C. et al., 2019; Xu J. et al., 2019; Zhang et al., 2019

Glues Hong et al., 2018; Wang Y. et al., 2018

Wound-healing/tissue regeneration Nejadnik et al., 2014; Shi et al., 2017; Chen H. et al., 2018; Chen et al., 2019a; Qu et al., 2018; Tian et al., 2018; Zhang
et al., 2018; Cheng et al., 2019; Chouhan et al., 2019; Jiang X. et al., 2019; Liang et al., 2019; Wang et al., 2019b

Others Gavel et al., 2018; Li Z. et al., 2018; Tang et al., 2018; Huang et al., 2019; Kuddushi et al., 2019; Song D. et al., 2019

pressure-sensitive, and adhesive properties. After feeding the
hydrogel to mice, increased in vivo retention in the intestine
region could be observed 24 h after administration. This is due
to the mucoadhesive property of the hydrogel, which makes it a
potential candidate to be applied as stretchable, self-healing, and
multi-responsive biological glues to biomedical platforms.

A hydrogel with conductivity, low cytotoxicity, metal
adhesion, and self-healing properties was prepared by Wang
Y. et al. (2018). The hydrogel was very adhesive to metal and
organic substrates because of the internal adhesive components,
which endows the potential application of glues for electronic
biomedical products.

Sensors
Resembling biological soft tissues, conductive hydrogels have the
potential to improve wearable health monitoring sensors and
electronic skins of soft robots. Because flexible and wearable
sensors tend to suffer abrasion and damage easily, the self-healing
property can extend the lifespan of them.

Xu J. et al. (2019) designed a strain and pressure sensor with
a self-healing hydrogel. This hydrogel, at a pH of around 7.0,
had a tough and reusable adhesive behavior. Results also showed
that the hydrogel was fatigue resistance and had conductivity.
Most importantly, the electric resistance of the gel could increase
smoothly and immediately after undergoing increasing tensile
strains. The sensor could thus respond to both large-scale and
subtle motions, such as saying different words when adhered to
the throat, deep breath when adhered to the rib cage, different
bending speed of the knuckles when adhered to them, etc. When
it comes to pressure sensing, the hydrogels could distinguish
standing, jumping, and walking when installed in the volunteer’s
shoes, without any large change in electric resistance during
repeated motion.

Wound Repair
The ideal hydrogels for skin repair are those that are able to
endure external strain, exhibiting self-healing properties, and
preferably with drug-loading capacities for therapeutic purposes
(Chen et al., 2019a).

Chitosan (CS) has properties such as being antibacterial, pain-
relieving, and hemostatic, and it can be easily modified and cross-
linked (Jayakumar et al., 2011; Xu et al., 2015; Lu et al., 2017).
Chen H. et al. (2018) prepared an adhesive and antibacterial
self-healing hydrogel with CS via a cross-linker. The cross-linker
was an oxidized polysaccharide: oxidized konjac glucomannan.
Animal experiments showed that the hydrogel could help the
wounds of rabbits fully heal 4 days earlier than CS, which was
much earlier than the control group. Histological examinations
indicated that the gel could accelerate the re-epithelialization of
damaged tissues.

Wang et al. (2019b) reported an injectable and antibacterial
hydrogel to repair diabetic skin wounds, which was based
on polypeptide with stimuli-responsive adipose-derived
mesenchymal stem cells exosomes release. According to
the animal experiments, the neovascularization and cellular
proliferation of treated areas were improved, while tissue
formation, re-epithelialization, and collagen remodeling were
faster. Meanwhile, Chen et al. (2019a) also prepared an injectable
hydrogel for diabetic skin wound repair. This hydrogel was
incorporated by desferrioxamine (DFO), making it angiogenic.
Moreover, the hydrogel was based on an Ag-S coordination
bond, and the silver ions exhibited an antibacterial property. The
hydrogel could help the wound heal in 14 days, according to
animal experiments.

Others
In addition to pharmaceutical and biomedical applications (for
example, drug delivery and tissue regeneration), some self-
healing hydrogels with interesting properties can also be used
in other areas, such as batteries (Huang et al., 2019), in
environmental protection (Kuddushi et al., 2019; Song D. et al.,
2019), in food spoilage monitoring (Tang et al., 2018), and so
on. Some applications take advantage of the self-healing property
directly, while others are improved due to the self-healing
property, for example, lifetime extension.

Huang et al. (2019) reported a self-healing ZIB which
could improve the durability of devices and decrease electronic
waste. The battery was based on a poly(vinyl alcohol)/zinc
trifluoromethanesulfonate hydrogel, which was prepared by a
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freezing/thawing strategy. Experiments showed that the battery
had good consistency. After cutting and self-healing, the
electrochemical performance could nearly recover completely,
making it possible to be tailored into complicated shapes and
patterns, and thus able to be recycled.

Song D. et al. (2019) prepared a self-healing hydrogel with
the capability of scavenging heavy metal ions. The hydrogel was
based on PA and chitosan (CS). Utilizing the coordination ability
of PA, the PA/CS hydrogel showed the ability to capture heavy
metal ions, such as Pb2+ and Cd2+. The porous structure could
also facilitate water to penetrate the polymeric network, making
the scavenging even better as a result. According to experiments,
the scavenging capacity of hydrogel was 1750.66 mg per gram for
Pb2+ and 1772.4 mg per gram for Cd2+, in 12 h.

Tang et al. (2018) prepared a self-healing hydrogel with a
color change for BA vapors, which will be generated during food
spoilage (Hernández-Jover et al., 1997; Erim, 2013). The hydrogel
was based on Ni2+ and salicylaldehyde benzoyl hydrazone-
terminal PEG (2SBH-PEG). SBH and its derivatives are able to
detect BAs by means of hydrogen and charge-charge interaction
(Tameem et al., 2010; Basheer et al., 2011). Experiments showed
a significant color difference between two hydrogels placed near
two pork samples stored for 4 days at 4◦C and 25◦C individually.

Summary
Many hydrogels have several properties, and thus have the
potential to be used in many fields, such as controlled drug
release, tissue engineering, actuators, and light-induced pumps
(Wang et al., 2019a). Some hydrogels are still in a theoretical
phase, and others have already been tested on animals, most
of which have a more specific application, focusing on a
certain treatment.

CONCLUSION

Self-healing hydrogels are soft materials with robust
and recoverable properties. Nowadays, many self-healing
mechanisms have been used to achieve intrinsic type self-healing
hydrogels, and combining several mechanisms is a growing trend
to achieve better physical properties. Another trend is to make
modifications to the reservoirs of extrinsic type self-healing
hydrogels, to take advantage of both intrinsic and extrinsic self-
healing mechanisms. Despite the current problems, such as the
self-healing properties of some mechanisms being good only at
a certain pH or some self-healing processes happening only at
a certain temperature, recent solutions have been in progress.
For example, some have tried to solve these problems by adding

other components or using them as stimuli-responsive factors.
Many self-healing hydrogels with fantastic properties, such as
adhesiveness, conductivity, injectability, and so on, increase
their potential to be used in multiple areas. Some hydrogels
have already been tested in more specific fields and treatments
for certain diseases. In the future, hydrogels depending on
combined self-healing mechanisms may be further studied,
and new kinds of polymers may be used. Although there are
remaining concerns to be addressed, the prospect of self-healing
hydrogels is promising, and they may be further developed for
various applications and specific fields.
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