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Abstract

Resource distribution networks are the infrastructure facilitating the flow of resources in both

biotic and abiotic systems. Both theoretical and empirical arguments have proposed that

physical systems self-organise to maximise power production, but how this trajectory is

related to network development, especially regarding the heterogeneity of resource distribu-

tion in explicitly spatial networks, is less understood. Quantifying the heterogeneity of

resource distribution is necessary for understanding how phenomena such as economic

inequality or energetic niches emerge across socio-ecological and environmental systems.

Although qualitative discussions have been put forward on this topic, to date there has not

been a quantitative analysis of the relationship between network development, maximum

power, and inequality. This paper introduces a theoretical framework and applies it to simu-

late the power consumption and inequality in generalised, spatially explicit resource distribu-

tion networks. The networks illustrate how increasing resource flows amplify inequality in

power consumption at network end points, due to the spatial heterogeneity of the distribution

architecture. As increasing resource flows and the development of hierarchical branching

can both be strategies for increasing power consumption, this raises important questions

about the different outcomes of heterogeneous distribution in natural versus human-engi-

neered networks, and how to prioritise equity of distribution in the latter.

Introduction

Both biotic and abiotic systems require energy for maintenance and growth, necessitating the

relocation of energetic resources from points of supply to points of consumption and end use.

This need for energy drives the development of resource acquisition, distribution, and end-use

(RADE) networks [1] in all earth systems. RADE networks are by definition spatial structures,

constructed with both physical materials, such as asphalt, wire, or connective tissue, and infor-

mational cues, such as scent trails or memories. Additionally, all RADE networks can be con-

ceptualised as a collection of resources, where the energy flow is generated and supplied; end-

use consumers, where the energy flow is required; and the links between them. The construc-

tion, maintenance, and use of these networks inevitably requires a considerable proportion of

the resources available to consumers. As it is evolutionarily advantageous to maximise the net
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resources available for further growth and development [2,3], there is significant adaptive pres-

sure to drive RADE network development toward increasing efficiency. Additionally, these

networks often share common forms such as hierarchical branching, and serve end consumers

operating in highly heterogeneous states. Rarely, if ever, are these two observations explicitly

associated, but given the role of RADE networks in determining the states of the consumers

they support, correlation between network topology and variance in supply to these points of

end use should be expected. Establishing this connection is crucial, not only in natural systems

as a means of accounting for variability, but especially in social systems where inequality is of

such profound importance.

Inequality in human society is typically conceived as an outcome of combined social, politi-

cal, psychological, and economic influences. Although many theories about the origins of

inequality include discussion of resources, such as their economic defensibility, most theories

still invoke cultural or technological arguments as well [4]. Additionally, even arguments

based on instincts and social behaviour rarely connect these to resource distribution explicitly

[5], despite the essential role of resource movement in giving rise to any cultural, technological,

and social forces. This gives the appearance of resource distribution and emergent inequality

in social systems as having fundamentally different causes than hierarchies in environmental

and biological systems, or energetic niches in ecosystems. Moreover, while energy consump-

tion is not typically the named objective of economic management, the drive toward ever-

increasing economic growth still requires energetic resources to build and maintain the infra-

structure that generates returns [6], paralleling the energy used for growth and maintenance

within natural systems. As both natural and human-engineered systems rely on resource dis-

tribution networks to relocate energetic resources, it seems logical to consider heterogeneity

within the networks and resources themselves as potentially foundational causes of inequality

[7]. However, a formal, quantitative linkage between RADE network architecture, inequality

in resource distribution, and the rate of increase of that inequality during network develop-

ment, has not yet been elucidated.

RADE networks are theorised to develop in a way that maximises the availability of

resources to points of end use, such that these end consumers capture the maximum free

energy for their own purposes in doing ‘useful work’ [2], such as increases in growth, develop-

ment, or storage [8]. This is formalised in the Maximum Power Principle (MPP), which states

that, given adequate degrees of freedom, a system will self-organise so as to maximise its power

output, or capture and use of free energy per unit time [9]. An explanation for why such behav-

iour would emerge is that increasing the availability of useful energy currently within a system

allows the system to capture more free energy in the future, such that MPP is simply the

expression of a growth-orientated positive feedback, which inevitably evolves to some bound-

ary or constraint. Often these constraints can be considered thermodynamic limits on effi-

ciency [10]. Hereon, this maximisation of energy consumption and power production will be

referred to as ‘maximum power,’ to include the transfer or capture of free energy, and its con-

sumption in performing useful work. MPP is closely related or equivalent in many systems to

the Maximum Entropy Production Principle (MEPP) and related thermodynamic extremisa-

tion principles (see e.g. [11,12]). While criticisms of both MPP and MEPP [13–15] have been

put forward, these have mostly been resolved through clarification and restrictions to the theo-

ries [16,17]. As such, these extremisation principles provide a framework and directionality for

evolution and systems progression, and can be used to help understand broader trajectories

for systems development, and network development within that [12].

Specifically, systems often maximise power via changing state with respect to available

energy inputs and constraints; changing network architecture to take advantage of untapped

resources or minimise energy consumption in transporting resources; or both. Some theorise
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that the development of self-similar hierarchical branched networks, seen in a diverse array of

naturally-occurring and human-engineered systems, including vascular networks in plants

and animals, power grids, and river basins, is an example of the latter strategy [18,19].

Resource flows transmit energy using a mass carrier, such as food or electrons; and during

transmission these carriers experience frictional dissipation when moving over distances. This

creates the evolutionary pressure to minimise transmission distance to maximise the energy

transferred, hence the development of optimal space-filling structures such as hierarchical

branching. Despite the theoretical universal drive toward increasing levels of energy consump-

tion, there has been limited study on the relationship between this increasing trajectory, the

architectures favourable to it, and the impact that has on the inequality of energy distribution

in ecological and socio-ecological systems, as introduced above.

Since frictional dissipation derives from distance, spatially explicit modelling of RADE net-

works is crucial to understanding their development and dynamics, and the impacts these

have on inequality. The dynamics of energy-mass flows over distances are described by a

group of phenomenological linear flow laws, including Ohm’s law for electrical current,

Darcy’s law for fluid flow, Fick’s law for diffusion, and Fourier’s law for heat transport. These

flow laws state how force and flux are closely related to one another [20], making them useful

for modelling a diverse range of energy-mass flow systems. It is hypothesised that, when

viewed from the appropriate perspective, physical systems such as ecosystems and socio-eco-

logical systems should all follow these force-flux relationships [21]. Odum in particular made

extensive use of electrical analogue modelling, which calculated the flows through a system

using Ohm’s law, by identifying the analogous concepts to voltage, current, and resistance or

conductance in a system (see e.g. [22,23]). While his focus was on interactional models such as

food webs, less work has been done applying this type of modelling to spatially-explicit net-

works, where the friction or resistance term, or equivalently the latter’s inverse, conductance,

is related to the physical distance the flows must cover (although see specific case studies in

[24,25]). Drawing analogies between resource flows in complex coupled socio-ecological sys-

tems and electrical circuits can be criticized because the formulas underlying analysis of elec-

trical systems are linear, while those of the former are nonlinear. However, Wang et al. (2012)

argue that many systems show linear behaviour at macroscales or microscales, and these can

be modelled individually and recombined. Such linear models thus remain useful analogies for

exploring generalized realistic systems [26], and may still result in the emergence of complex

properties. Exploration of the effects of nonlinear formulas on these observations is the poten-

tial subject of future work.

Given the theoretical argument and empirical evidence for systems to evolve toward a state

of maximum power, this paper will explore the potential relationships between the trajectory

towards maximum power, RADE network structure, and inequality. It will thereby generate fur-

ther insight into the characteristics of complex spatially explicit RADE networks as they develop

toward and operate at maximum power. Specifically, systems will be modelled with representa-

tive electrical circuits to elucidate the dynamics and characteristics of generalised RADE net-

works evolving toward maximum power transfer, explore characteristics of those networks and

the evolutionary levers employed in their development, and discuss how these relate to the exis-

tence and development of inequality between end consumers in those networks.

Inequality as a function of network architecture and resource flows

Modelling framework using an electrical analogue

In mass-flow networks, the flow through the network is generally conceptualised as a function

of the driving potential gradient, and the characteristics of the material through which it flows.
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As introduced above, this relationship can be represented in a given system using an analogue

of one of the phenomenological flow laws, such as Ohm’s law,

I ¼
DV
R
: ð1Þ

In the framework here, ΔV is the potential gradient driving the flow between two points in

the network, I is the resource flow, and R is the resistance of the associated link, a measure of

the friction encountered by the flow, given by the ratio of link length to link strength or capac-

ity, R ¼ L
S. The power output P delivered to a given end-point consumer ci in the network, or

final power, is defined as

PCi
¼ ICiVCi

: ð2Þ

Alternatively, ΔV can be conceptualised as the energy consumed in transport, whether

active or passive, as the power consumed in transport between two points, PL, is given by com-

bining Eqs 1 and 2 as

PL ¼ IDV ¼ I2R: ð3Þ

The relationship between this power consumption in transport and the spatially-related

resistance term clarifies the evolutionary pressure for a system to minimise resistance, such as

through the development of increasingly efficient structures that are hypothesised to minimise

frictional losses [18]. Specifically, minimising the frictional losses maximises the rate of energy

transfer, or power, at the spatially disparate points of final dissipation or consumption.

Along with reorganisation of network architecture to minimise resistance, systems can

evolve toward higher final power by adapting network state with respect to the quantity and

potential of available resources. For example, the increased availability of resources in summer

months allows mammals to operate at a higher metabolism and in a greater geographic range,

whereas hibernation is an adaptation to decreased resource availability in the same range dur-

ing winter months [27]. In the framework here, adaptation of network state can be represented

by changing I, or by changing the potentials that comprise VC. In the former case, increasing I
causes PCi

to increase (Eq 2), until the increased frictional losses from higher resource flow (Eq

3) causes a large enough increase in ΔV, such that PCi
decreases. In this way, the trade-off

between I and ΔV is mediated by R, again providing evolutionary pressure for a system to

develop lower resistance, as it increases resource flows.

Due to this trade-off between I and ΔV, maximum final power occurs in this framework

when the potential at the consumer is half the potential at the resource (see S1 Text for deriva-

tion). This is consistent with the Maximum Power Transfer theorem for electrical circuits [28],

empirical findings of maximum power in natural systems such as streamflow [29], muscle con-

traction [30], sediment transport [11], and the Maximum Power Principle as extended to gen-

eralised interacting components [9]. In electrical circuits, simplification algorithms such as

Thévenin’s theorem [28] allow for complex circuits to be represented by simpler equivalents.

Similarly, in the framework presented here, the relationship between consumer and resource

potential can be extended over the entire network using the network mean values for power

consumption, resource flow, resistance, and potentials. Specifically, the network-wide maxi-

mum final power state is then

VC ¼
VR

2
; ð4Þ
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where VC and VR are the network mean values for consumer and resource potential,

respectively.

In order to extend this framework to explore the heterogeneity among consumers within

the network, and how this is affected by increasing consumption and changing network orga-

nisation, the relationship between consumer potential, resource flow, and resistance can also

be expressed in terms of the respective standard deviations. Although it is more common to

use the Gini coefficient or other relative measures to quantify inequality in economic and simi-

lar analyses, these can obfuscate increases in absolute inequality when the relationship between

variables stays constant [31,32]. For example, if each number in a distribution is increased by

50%, the standard deviation of the distribution increases by 50% and the range by 67%, but the

Gini coefficient remains the same as the relative relationships are unchanged. Moreover, the

Gini coefficient and similar metrics are unitless measures, whereas the standard deviation has

the same units as the mean. Any relationships elucidated involving standard deviation will

therefore be more consistent with those identified above using means.

The distributions of consumer potentials and final power consumption in a network are the

result of the spatial distribution of consumer and resource nodes and links, and the magnitude of

resource flow. In networks where there is a single direct connection from each consumer to a

resource point, equal resource flow to all consumers, and no interconnections between consum-

ers, the standard deviation of the consumer potentials is sVC
¼ sRI, derived from Eq 1, and the

standard deviation of consumer final power is sPC
¼ sRI2. Therefore, in networks with equal

resistances along all links, such as an idealised radial burst network, the standard deviations of

consumer potentials and final power consumption would be zero. In contrast, increasing resource

flows along links with unequal resistance would cause an increase in the standard deviations of

potential and final power consumption, due to unequal decreases in consumer potentials.

In more interconnected networks, however, the standard deviations of consumer potential

and final power consumption are complex properties, as changes in potential at one node

would propagate to interconnected nodes throughout the entire network. As such, determin-

ing the baseline structural heterogeneity of the network helps isolate the effects of spatial distri-

bution and connectivity from those of resource flow in increasing the distributions of

consumer potential and final power consumption. Here, the ‘effective resistance’ REi
is the

resource flow-normalised drops in potential from a resource to a given consumer i,

REi
¼

VR � VCi

Ii
: ð5Þ

As opposed to the traditional measure of resistance, which is calculated for a given link, the

effective resistance is calculated along the whole path between a given consumer and resource,

even if the two nodes are connected indirectly via multiple links. The effective resistance there-

fore considers the interaction effects along the links, as well as the real resistances of the link or

links between a consumer and resource: its standard deviation relates the heterogeneity in

physical distances around the network that the flows cross, network connectivity, and the

quantity of flow, to the disparities in consumer potential or power.

In the special case of direct connections between consumers and a resource, the effective

resistance simplifies to the link resistance. In all networks, therefore, the standard deviation of

effective resistance is the constant of proportionality between the standard deviation of con-

sumer potential or power, and resource flow, such that sVC
¼ sRE

I, and sPC
¼ sRE

I2. As with

the traditional measure of resistance, effective resistance and its standard deviation are station-

ary for any quantity of resource flow through a given link in the network architecture. It is

clearly influenced by the connectivity and symmetry of the network, as asymmetry in path
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length, Euclidean distance, or number of intermediary or downstream nodes all increase the

inequality in consumer potential and final power consumption. Notably, since effective resis-

tance includes the effects of both physical structure and connectivity, it could potentially be a

useful mapping between spatial and relational dimensions of networks, which have typically

been analysed separately.

Simulations to illustrate framework

To illustrate these described dynamics of resource flow in networks, generalised RADE net-

works were modelled using the relationships presented above. Initially, the networks were com-

prised of only two types of nodes distributed in space: resource supply nodes and consumer

nodes. Consumer nodes could be connected to one another, such that the consumers who were

more directly connected to resource nodes passed resource flow along the network to more dis-

tant consumers. However, this was limited to the excess resource flow remaining after the initial

consumers had met their requirement: consumer nodes could not act as resources to generate

additional flow. The resistance was held constant across all links, and was modelled as the ratio

of link length to strength, as described previously. The networks were evolved toward maximum

power by increasing the resource flows through them and determining the distribution of

power consumption across the network using a matrix inversion. The full details are provided

in Section 5. This approach, modified from load flow analysis in electrical grids [33], ensured

that the resource flows calculated for each node were consistent with the constraints of the first

and second laws of thermodynamics, as resource flow was conserved, and power losses around

the network were proportional to the size of the network. A sample of the networks simulated is

shown in Fig 1, and complete results are in S1 Table.

Fig 1. A sample of the networks used to simulate evolution toward maximum power. The green squares are

resource nodes, and the blue circles are consumer nodes. The grey lines are links between them. Maximum power was

calculated by varying the resource flow through the network and calculating the total final power across all consumer

nodes.

https://doi.org/10.1371/journal.pone.0229956.g001
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The outcomes of a representative sample of the simulations are shown in Fig 2. As consis-

tent with Eq 4 above, in all simulations maximum power occurs when the mean consumer

operates at 50% of the potential of the mean resource (Fig 2A). Moreover, the relationship

between resource flow per consumer squared, I2
c , and the standard deviation of consumer

power, sPC
; is linear (Fig 2B), with slope sRE

, as calculated by least-squares regression and plot-

ted against the estimate using Eq 5 (Fig 2C). This heterogeneity of distances and connections

between the consumers and resource causes a distribution of consumer potentials, reflected in

sPC
: The relationship between consumer potential and power heterogeneity for the different

networks, and the resource flow per consumer, is also shown in Fig 3, where increasing IC over

the course of the simulation, and hence decreasing VC=VR , causes sPC
to increase.

The networks that show more heterogeneity in the Euclidean distance, path distance, or

both, and less connectivity between consumers, have higher inequality as measured by sRE

(Figs 1 and 2C). This suggests that connectivity among consumers can also play a role in limit-

ing the inequality in frictional losses and the resultant consumer potential heterogeneity. This

mechanism is perhaps similar to the translocation of nutrients through fungi, where symbiotic

connections between the mycelium and plant root systems allow for the redistribution of het-

erogeneously-located nutrients, providing more remote portions of the mycelial network

greater access to resources [34].

While the resource nodes in these simulations operated at a constant potential, similarly to

time-averaged behaviour of renewable resources, or a system observed over a short timeframe,

these results suggest that inequality would increase even more quickly in systems with dimin-

ishing resources. This would be because the less optimally located and connected consumers

would experience larger decreases in power, due to the decreasing resource potential amplify-

ing the effects of their higher effective resistance. This is a current line of investigation for an

extension of this work.

Inequality in branching networks

Branching as a strategy to increase the maximum power of a system

Although changes in state variables, such as potential, allow any given network architecture to

achieve its maximum power, this maximum can be increased further through the evolution of

the network architecture itself, as discussed. In the framework presented here, this would be

illustrated by network reorganisation or otherwise reducing R, such that higher resource flows

do not cause as much frictional loss (Eq 3). This does not necessarily require decreasing sRE

however, as theoretically the distribution of effective resistances could remain the same for a

different configuration of actual resistances.

One means by which systems evolve toward increased consumption through network

change is through self-organisation into hierarchical branching structures, which are prevalent

in both naturally-occurring and human-engineered systems [18,19]. In these networks, multiple

downstream consumers may draw resource flow from the same resource, although this causes

increased frictional losses by increasing the I term in Eq 3. This is offset in many systems by the

development of higher-capacity links along shared pathways, such as preferential flow paths

[11,35]. This is equivalent to varying the link strength in the equation for R (see Methods).

Branching simulations

To illustrate the dynamics of branching networks more clearly, another set of simulations was

performed, featuring idealised self-similar hierarchical branching networks. In these simula-

tions, two networks were constructed. In the first, the network had consumers arranged in a
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Fig 2. For the six example networks, (a) the relationship between total final power (P) and the ratio of mean consumer potential to mean resource potential

(VC=VR ), (b) the relationship between the standard deviation of consumer final power (σPC) and resource flow squared (I2), and (c) the relationship between the
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branching pattern around a single resource (‘fully branched’ network, Fig 4A). In the second, a

branching network was artificially evolved from a nearly radial burst pattern, by adding in

consecutive levels of non-demand junctions or ‘branch points,’ and re-calculating the con-

sumption (‘evolved branching’ networks, Fig 4B). In the ‘evolved branching’ networks, at each

iteration of the evolution, the average link length became shorter, and the network became

more similar to a fractal branching structure. This was done to observe how power consump-

tion was affected by changing the architecture to reflect known optimal distribution patterns,

without increasing the number of consumers in the network.

In the ‘fully branched’ network, both the total quantity of power consumption, and inequal-

ity of consumer potential and power, were considerably higher than in the other architectures

illustrated in Fig 5 (see S1 Table). In contrast, the ‘evolved branching’ simulations showed

lower total power consumption and no inequality present in the final stage of network evolu-

tion, as the consumers were all placed equal path distances from the resource, despite being at

slightly differing Euclidean distances. This demonstrates that the self-similar branching archi-

tecture itself does not lead to inequality, but rather the hierarchical or otherwise heterogeneous

distribution of consumers.

In the fully branched network, the underlying hierarchical spatial distribution of consumer

nodes and links led to a highly skewed distribution of consumer potentials and final power at

slope of (b) and the standard deviation of effective resistance (σRE). These illustrate the main equations derived in the presentation of the modelling framework.

Here, each coloured point range represents a different network topology over which the simulations were run. The slope of (c) is exactly 1. Units are generalised

units of power, potential, and resource flow. A copy of (a) with raw data is included in S1 Fig.

https://doi.org/10.1371/journal.pone.0229956.g002

Fig 3. Density plots of normalised consumer final power (PC) for the six example networks, shown over decreasing ratios of mean consumer to mean resource

potential, VC=VR . Each plot shows the density for the normalised consumer final power at VC=VR = 0.75, 0.5, and 0.25, from left to right, as the ratio decreases due to

increased resource flow during the simulation. The data were normalised by subtracting the mean consumer power at each ratio level, and dividing by the standard

deviation of consumer power at VC=VR = 0.75, such that the width of the first subplot for each network is one standard deviation.

https://doi.org/10.1371/journal.pone.0229956.g003
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network maximum final power, which appears to show power-law properties (Fig 6). While

the focus of the work here is on spatial networks, hierarchies can also emerge in relational

‘scale-free’ networks. These are often represented as hub-and-spoke topologies, with power

Fig 4. (a) A ‘fully branched’ network, with consumers at each junction, and (b) ‘evolved branching’ networks

illustrating the addition of branch points and links over the course of the simulations. In each network, the green

square is the resource, and the blue circles are consumers. In the ‘evolved branching’ networks, the branch points,

represented by triangles, and links of the same colour denote when they were added during the evolution of branching:

black links are the original network with no branch points, purple links and branch points are the first level of

branching, and gold links and branch points are the second level, which also includes some branch points from

previous levels. The network shown here is simplified for illustration purposes: the simulated ‘evolved branching’

networks contained seven levels of branch points at the final stage of development, and 512 consumers.

https://doi.org/10.1371/journal.pone.0229956.g004

Fig 5. The total final power consumption (P) against the ratio of mean consumer potential to mean resource

potential (VC=VR ) for each level of the ‘evolved branching’ networks. With additional levels of branching, the

network became more similar to a fractal branching structure: average link length shortened, and resource flow was

concentrated onto fewer, more shared links. Here, each coloured point series represents the trajectory of final power

consumption as the network became more branched: Level 0 had no branch points, and Level 7 was a fully self-similar

fractal. Relative total final power is the sum of final power consumption at all consumer nodes, normalised by the

maximum power achieved by the network, which preserves relative differences. A copy of the figure with raw data is

included in S2 Fig.

https://doi.org/10.1371/journal.pone.0229956.g005
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law distributions of node degrees. Power law or similarly heavy-tailed distributions in physical

systems are typically described as resulting from interactions between interdependent compo-

nents [36], but the simulations here demonstrate how this distribution can also occur as a

result of the spatial organisation of interacting components. It is therefore possible that similar

processes give rise to scale-free characteristics both spatially, as in self-similar hierarchical

branching, and relationally, as in a power-law distribution of node degrees.

Notably, although self-similar hierarchical branching networks such as the ‘fully branched’

network can achieve a higher maximum power at the network level, most individual consum-

ers would have higher power if they had direct links to the resource, such as in the radial burst

networks. Therefore, branching is still only energetically advantageous to the overall system,

and those positioned close to the resource within the network architecture. In addition, these

optimally located and connected consumers experience increased final power even after the

total network final power begins to decrease (Fig 7), due to the larger frictional losses experi-

enced by the more distant consumers along the bottom level of the network, who have higher

effective resistance (Fig 4A). This suggests that hierarchical organisation is only beneficial to

the system if the consumers located further from the resource benefit from the overall system

operating at a higher maximum power: the more peripheral elements need to gain some of the

system-level returns. One example of hierarchical branching as a system-optimal configuration

in this way is in the circulatory system of some organisms, where more distant organs and

limbs may benefit from the hierarchical organisation of the whole system, even if their individ-

ual blood pressure and oxygen levels are lower. Alternatively, if the consumers in more ener-

getically privileged locations exerted enough dominance over the system, the hierarchy could

Fig 6. The frequency distribution of consumer potentials (VC) at maximum network final power for a

hierarchically branched network, plotted on log-log axes. The highly heterogeneous consumer potentials are due to

the hierarchical network structure shown in Fig 4A.

https://doi.org/10.1371/journal.pone.0229956.g006
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be enforced despite being sub-optimal for more distant consumers, and potentially the net-

work as a whole (Fig 7).

Conclusion

This work has explored the characteristics of complex networks evolving toward maximum

power production, and the relationship between the development and dynamics of these net-

works and the inequality of resource distribution through them. The derived equations and

illustrative simulations related the potential, resource flow, power, and resistance across a net-

work of resources and consumers, and illustrated how those relationships changed as the net-

work evolved toward maximum power, through adaptation in network state, architecture, or

both. Specifically, it was shown that if the network structure consists of unequal link resis-

tances, resulting from heterogeneity in path distance or connectivity in the network, the

inequality of resource distribution will increase as the quantity of resource flow across the net-

work increases. The potential for this architecturally-driven inequality is seen most promi-

nently in hierarchical structures, such as the branching architectures common across in

biological, environmental, and human-engineered systems (see e.g. [19,37–39]).

Additionally, this hierarchical branching was shown to only increase the energy transferred

through the network at maximum power at the scale of the entire network, and for the con-

sumers located and connected closely to the resources. In contrast, more distant consumers in

Fig 7. The relative final power of consumers (PC) at each level of the ‘fully branched’ network, as related to the relative resource flow to each consumer (IC). The

vertical black line denotes the relative resource flow associated with network-wide maximum final power. Each series represents the relative final power consumption of

consumers at that level in the network, where Level 0 is the consumers closest to the resource, and Level 7 are the consumers furthest from the resource in the network.

As the resource flow increases across the network, the more distant consumers experience disproportionally greater frictional losses and therefore power losses, while

consumers closer to the resource continue to increase in power. Values have been normalised by the maximum consumer final power and maximum consumer resource

flow, which preserves relative differences. A copy of the figure with raw data is included in S3 Fig.

https://doi.org/10.1371/journal.pone.0229956.g007
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these architectures experienced rapid decreases in energy consumption as the resource flow

through the network increased, due to higher frictional losses of energy in transport. While

prescription is not a focus of the current work, it has illustrated how RADE networks, and spe-

cifically hierarchical branching architectures, can be fundamentally linked to the deep inequal-

ity experienced by those served by these networks. Explicitly structuring these networks in an

attempt to equalise distribution could take the form of co-locating resources and end-users to

the greatest extent possible, such as locating solar panels or other forms of renewable energy

on homes and businesses [40], or increasing the integration of locally-sourced products into a

community’s food system [41]. Additional efforts, such as intentionally improving RADE net-

work infrastructure to currently underserved populations of end users [42], could also be a sig-

nificant step in the right direction. The question remains, however, as to whether even the best

efforts at improving equality of distribution can offset the argued thermodynamic trajectory

for systems to develop increasing patterns of consumption and dissipation (see e.g. [12]),

which appears to be most effectively facilitated by inherently unequal distribution networks.

Materials and methods

Required simulation inputs

The simulation code required a Comma-Separated Values (CSV) file to specify parameterisa-

tion, including the number of nodes of each type, the size and shape of the spatial topology

where they were distributed, whether links were all unit strength or potentially heterogeneous,

and the file paths of the CSV files storing the locations of the nodes, or specifying random con-

sumer placement. A complete list of the parameters required, and a description of each, is

listed in Table 1.

Table 1. Modified load flow methodology input parameters and description.

Parameter name Description

topology The name of the shape in or on which the nodes are distributed. Values: SPHERE (nodes

located within a sphere of a given radius), SPHERE_SURFACE (nodes located on the surface

of a sphere a given radius),PLANE (nodes located on the surface of a plane).

pNoConnection The probability of two nodes not connecting, in a network with random links.

noConnection The placeholder value in the connections matrix for non-connected nodes.

resourcesFile The file path of the CSV file storing the coordinate locations and potentials of the resources.

planeMaxCoords The maximum coordinates of the plane, stored as a pair of values separated with a semi-colon

(e.g. 100;100).

sphereR The radius of the sphere, or sphere surface.

nBranchPoints The number of branch points.

nConsumers The number of consumers.

useStrength Whether or not to use link strength in calculating the resistance between nodes. Values:

TRUE/FALSE.

strengthExponent The exponent to which the link strength, if used, should be raised.

manualNetwork Whether to read in a pre-specified connections matrix or generate the links randomly. Values:

TRUE/FALSE.

randomConsumers Whether to distribute the consumers randomly in the topology or use specified locations.

Values: TRUE/FALSE.

consumersFile The file path of the CSV file storing the coordinate locations of the consumers (if not random).

matrixFile The file path of the CSV file storing the connections matrix, if a pre-specified one is used.

branchPointsFile The file path of the CSV file storing the coordinate locations of the branch points (if used).

outputCSV The file path to the CSV file where the output of the code run is stored. Includes the resource

flow specification per consumer, the power and potential at each resource and consumer, and

the total link length of the network.

https://doi.org/10.1371/journal.pone.0229956.t001
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The topologies simulated here included planes, spheres, and sphere surfaces. Planes and

spheres can be classed as two- and three-dimensional spaces, respectively, while sphere sur-

faces are of a more ambiguous dimension (see e.g. [1]). The exploration of these three relevant

topologies, commonly used to represent idealised spaces in physical systems, allowed identifi-

cation of any effect on power consumption or resource distribution due to dimensionality. In

these networks, the size of the topology, measured in generalised units as the radius of the

sphere or sphere surface, or one side of the square plane, was determined by the number of

nodes of each type,

Size ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10nC � 100nR
p

; ð6Þ

where nC is the number of consumers, and nR is the number of resources. This was chosen as

it allowed for meaningfully large distances between nodes in networks with multiple consumer

and resource nodes. The branched networks had set lengths for each link, such that topology

size was not a factor.

The relationship between spatial size and power distribution and consumption was not

directly explored, such as by spreading the same network architecture across a larger area, but

the linearity of the equation for resistance with unit-strength links suggests that inequality in

consumer potential would increase linearly, and power consumption would decrease linearly,

with increases in topological size. Similarly, the resource potentials were chosen to provide a

clear visualisation of the maximum power ‘curve’ (Fig 2A), but a range was not explored, as

increasing or decreasing the resource potential(s) would simply linearly increase or decrease

the consumer potentials (see Eq 1).

In all simulations with random and radial burst topologies, link strength was set to 1. In the

branching simulations, it was set to be proportional to the resource flow, squared, to offset the

increased frictional losses from higher resource flow along shared links. Specifically, by re-

arranging Eq 1, the potential gradient along a link can be calculated as a product of resource

flow I and link resistance R. Recall that power loss along a link PL is a product of this potential

gradient and resource flow along it (Eq 3), which when combined with Eq 1 gives

PL ¼
I2L
S
: ð7Þ

Since losses are proportional to the resource flow squared, it rapidly dominates the energy

losses. Therefore, as branching networks combine resource flows onto shared branches, they

experience higher flow-driven losses on those shared links, despite having lower total network

resistance, due to the shared links shortening the total path length around the network. It fol-

lows that, for the branching to be energetically advantageous, the link strength must be a func-

tion of resource flow, S = f{I}. If PL/I2, then S/I2, resulting in the power loss becoming a

function exclusively of link length (Eq 7). This allows the advantages of shorter total link length

in a branching network to be realised.

Simulation code operation

An overview of the simulation code is shown in Fig 8. After the program read in the specified

parameters above, it created a customised data structure to store the node locations, resource

potentials, and connections matrix. If the consumer locations were random, the program

placed each consumer in space by drawing each coordinate from a uniform distribution

bounded by the maximum topology coordinates supplied. If the links were random, the pro-

gram put a link between each node, except for resources, with the probability of 1 –pNoCon-

nection parameter described above (Table 1).
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To calculate the resource flows and power consumption of the network, the program con-

structed a Jacobian matrix representing the conductance of the network, or the inverse of the

resistance, using the connections matrix. This was inverted to solve for the mismatch between

specified and received resource flow at each consumer node, based on the consumer poten-

tials. These were determined by the load flow equations using a matrix form of Eq 1.

The potentials at the consumers, and branch points if used, were then adjusted to counter

the mismatch. The matrix inversion and mismatch calculations were repeated until the

Fig 8. Code flow diagram for flow calculator program. The main controller of the program reads in the parameters

and creates the network, and eventually terminates the program when complete, while the main calculations of the

program are based on an iterative matrix inversion process in the flow calculator class.

https://doi.org/10.1371/journal.pone.0229956.g008
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mismatches were within the specified error threshold of 0.001. After convergence, the total

power consumption of the network PNetwork was calculated as the sum of the power consump-

tion at each consumer PCi
, which was the product of potential VCi

and resource flow ICi (Eq 2):

PNetwork ¼
PnConsumers

i¼1
PC: ð8Þ

Initially, the total power consumption was calculated for 1 unit of resource flow arriving at

each consumer. With each iteration, the specification was incremented by 0.1 unit, and the

resource flows were re-calculated. This was repeated until either 1000 units of resource flow

was arriving at each consumer, or the power consumption of the network was negative, due to

the inverse relationship between consumer potential and resource flow (Eq 1). In the evolving

branching simulations, an additional level of branch points was added, and the links between

nodes re-arranged, after the iterations had completed for a given network, until there were 7

levels of branch points between the resource and consumers (Fig 4B).

Simulation outputs

The program output was a single CSV file, with the potential at each resource and consumer,

and the power production and consumption of each resource and consumer, respectively, at

each resource flow specification tested. It also included the total link length of the network,

which does not change over the duration of the simulations.

Code availability statement and languages used

A complete copy of the code, along with usage instructions, a sample parameter file, and sam-

ple resource, consumer, branch point, and matrix CSVs, is available upon request. The code is

written in Java Version 8. All figures and analyses were generated using R, including the base

R package version 3.6.1 [43], ggplot2 [44], and the rgl package [45].

Supporting information

S1 Text. Maximum power derivation.

(DOCX)

S1 Table. Parameterisation and power consumption details of networks simulated: a)

branched networks, and b) random and radial burst networks. The slope of the linear relation-

ship between sPC
and I2 shown in Fig 1 was calculated for each plot using least-squares regres-

sion, and compared to the value of sRE
calculated using Eq 5 and the consumer and resource

potentials for each network, shown in the table here. The least-squares regression estimate of

sRE
is shown in brackets below the original estimate using consumer and resource potentials,

for the networks plotted.

(DOCX)

S1 Fig. Non-normalised version of Fig 2A, showing the relationship between total final

power (P) and the ratio of mean consumer potential to mean resource potential (VC=VR)

for six example networks. Each coloured point range represents a different network topology

over which the simulations were run. The units are generalised units of power, rather than

units only applicable to a specific type or types of resource distribution network.

(TIF)

S2 Fig. Non-normalised version of Fig 5, showing total final power consumption (P)

against the ratio of mean consumer potential to mean resource potential (VC=VR), for the
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‘evolved branching’ networks. The units are generalised units of power, rather than units

only applicable to a specific type or types of resource distribution network.

(TIF)

S3 Fig. Non-normalised version of Fig 7, showing final power of consumers (PC) at each

level of the ‘fully branched’ network, as related to the resource flow to each consumer (IC).
The units are generalised units of power and resource flow, rather than units only applicable to

a specific type or types of resource distribution network.

(TIF)
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