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Abstract: Oxidative stress, caused by the accumulation of reactive species, is associated with the
initiation and progress of inflammatory bowel disease (IBD). The investigation of antioxidants to
target overexpressed reactive species and modulate oxidant stress pathways becomes an important
therapeutic option. Nowadays, antioxidative nanotechnology has emerged as a novel strategy. The
nanocarriers have shown many advantages in comparison with conventional antioxidants, owing to
their on-site accumulation, stability of antioxidants, and most importantly, intrinsic multiple reactive
species scavenging or catalyzing properties. This review concludes an up-to-date summary of IBD
nanomedicines according to the classification of the delivered antioxidants. Moreover, the concerns
and future perspectives in this study field are also discussed.

Keywords: oxidative stress; reactive species; inflammatory bowel disease (IBD); antioxidant path-
ways; nano-delivery systems

1. Introduction

Oxidative stress is the imbalance between the generation of reactive species and the
ability to defend against oxidative damage that may lead to the disruption of biological
systems. Both oxidation and reduction processes can be generated from endogenous and
exogenous sources [1]. It is a cause of a wide range of diseases, including chronic obstructive
pulmonary disease, cardiovascular diseases, neurodegenerative diseases, chronic kidney
disease, and cancer as well as IBD [2,3]. In intestinal tissues, the response of oxidative stress
and inflammation, in turn, involves multiple cell types such as intestinal epithelial cells,
innate immune cells as well as adaptive immune cells [4,5]. Meanwhile, in the immune cells,
two key transcription factors, Nuclear factor kappaB (NF-κB) and NF-E2p45-related factor
2 (Nrf2), are crucial transcription pathways that regulate a broad range of physiological
functions and related genes [3,6–9]. The products are suggested as either therapeutic targets
or biomarkers.

In comparison with the traditional treatment for IBD, nano-drug delivery systems are
capable of precisely targeting the inflammatory site, instead of the entire gut. It is beneficial
for maintaining long-term remission to cure chronic diseases. Owing to their small size and
versatile physiochemical properties, nanomedicines are of particular interest among the ac-
cumulation in the inflamed site and response approaches in IBD. Thus, they can effectively
enhance the stability of antioxidants and penetrate the antioxidants into inflammatory
sites [10–12]. In this review, we will focus on the up-to-date antioxidative nanomedicines
that have emerged, mainly within the last five years, concerning the management of IBD by
oral administration. Depending on the delivery compounds, the antioxidant nanosystems
are classified into four catalogs: protein and peptide nanocarriers, nucleic acid nanocarriers,
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small antioxidant compound nanocarriers, and nanozymes. The last part deals with a
general conclusion of concerns in the study and potential research ideas.

2. The Reactive Species and Oxidative Stress

The oxidation-reduction reaction is related to all fundamental biological processes [2,3].
The reactive spices are produced by several oxidation processes and can be partially neu-
tralized by the antioxidant defense. In addition to reactive oxygen species (ROS) (e.g.,
superoxide, peroxides, hydroxyl radical, α-oxygen, and singlet oxygen), other types of
reactive spices also have remarkable impacts on cellular redox processes, including reactive
nitrogen species (RNS) (e.g., nitric oxide and nitrogen dioxide), reactive sulfur species
(RSS) (e.g., persulfides, polysulfide, and thiosulfate), and reactive carbonyl species (RCS)
(protein aldehydes and protein carbonyls) [1]. The reactive species are generated from both
endogenous and exogenous sources. Reactive species produced primarily rely on endoge-
nous enzymatic reactions [2]. The metabolism processes, mitochondrial respiratory chain,
prostaglandin synthesis, and phagocytosis are all involved. For instance, myeloperoxidase
(MPO), nicotinamide adenine dinucleotide phosphate (NADPH), oxidase, angiotensin II,
and lipoxygenase are noticeable [13]. The exogenous sources of reactive species production
can occur as a result of exposure to environmental pollutions, heavy metals (e.g., cad-
mium [Cd], mercury [Hg], lead [Pb], and arsenic [As]), certain drugs (e.g., cyclosporine,
tacrolimus, gentamycin, and bleomycin), organic solvents, alcohol, and radiations [14].
Correspondingly, the antioxidant defense from free reactive species’ toxicity can be divided
into endogenous and exogenous pathways [2]. Endogenous antioxidants include en-
zymes, for instance, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidases
(GSH-Px), thioredoxin (Trx), and peroxiredoxins (Prxs), as well as the low-molecular-mass
antioxidants, such as bilirubin, β-carotene, Vitamin E, albumin, and uric acid in plasma.
Exogenous antioxidants refer to Vitamin C, Vitamin E, polyphenols, flavonoids, metals (e.g.,
selenium [Se], copper [Cu], zinc [Zn]), metal oxides, and drugs [1,15–17]. Some compounds
act as scavengers of reactive species, whereas the others have no such effect directly. The
metals or metal oxides are referred to as antioxidant minerals because they defend against
oxidative stress by chelation of transition metals and preventing them from catalyzing the
production of endogenous reactive species. For instance, Se and Zn have no direct antioxi-
dant function but are necessary for the activity of antioxidant enzymes [18–20]. Notably,
as has been commonly acknowledged, in comparison to the individual antioxidants, the
mixtures exhibit synergistic effects [21–23].

Oxidative stress takes place owing to the imbalance between reactive species and
antioxidants. It leads to a disorder of redox signaling and damage to biomolecules [24].
The accumulated reactive species, which originate from either endogenous or exogenous
sources, cause oxidative modification of the cellular macromolecules: nucleic acids, proteins,
lipids, and carbohydrates [2] (Figure 1). The oxidative macromolecules in turn can be
employed as biomarkers to quantify oxidative stress [25]. A considerable number of studies
demonstrate that oxidative stress has existed in all the aerobic cells and can be responsible,
with different degrees of importance, for the onset and/or the progression of common
age-related diseases (e.g., cardiovascular disease, cancer, and diabetes) or inflammatory
diseases (e.g., metabolic disorders, autoimmune disorders, and IBD) [2,15].
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Figure 1. The imbalance between the generation of reactive species and the antioxidant defense sys-
tem results in oxidative stress and further damage to cellular macromolecules. ROS—reactive oxy-
gen species; RNS—reactive nitrogen species; RSS—reactive sulfur species; RCS—reactive carbonyl 
species; VC—ascorbic acid; VE—tocopherol. Created by BioRender.com. 
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response to gut microbiota in genetically vulnerable individuals [26]. Ulcerative colitis is 
limited to the colon, whereas Crohn’s disease is regarded as inflammation in the whole 
gastrointestinal tract in a non-continuous fashion [5,27]. The precise etiology of IBD has 
been studied for decades and remains unclear. The interaction of various factors, includ-
ing genetic factors, the immune system, and environmental factors interrupt the homeo-
stasis of the gut (e.g., oxidative stress), leading to inflammatory responses of the intestinal 
tissue [4,28]. Numerous research pieces of evidence suggest that IBD is associated with 
the increased production of reactive species. To be exact, multiple studies in colitis animal 
models proved an augmented formation of reactive species, including superoxide, perox-
ynitrite, hypochlorous acid, and hydrogen peroxide; meanwhile, the levels of endogenous 
reactive species-related compounds in colonic tissue, such as glutathione and Cu/ZnSOD, 
are decreased [28]. Studies using genetically modified animal models to select the appro-
priate modifications of antioxidant enzymes were the most convincing proof for the cause-
and-effect relationship between oxidative stress and IBD [29]. For instance, transgenic 
overexpressed Cu/ZnSOD significantly attenuated DDS-induced colitis. Depletion of 
GPx1 and GPx2 or additional glutathione biosynthesis inhibitors (e.g., buthionine sul-
foximine) caused the generation of colitis in mice [28,30]. 

Oxidative stress not only directly damages the intestinal epithelial cells but also 
causes dysregulated pro-inflammatory reactive species-sensitive pathways in immune 
cells [7]. The NF-κB signaling and Nrf2 signaling pathways are two key transcription 
pathways that regulate a broad range of biological functions to respond to oxidative stress 
and inflammation [9]. The multi-subunit transcription factor NF-κB serves as a pivotal 
mediator of multiple aspects of both innate and adaptive immune systems. It controls the 
expression of a series of pro-inflammatory genes, encoding cytokines and chemokines. 
Additionally, NF-κB directs the survival, migration, and differentiation of immune cells. 
While reactive species can react with proteins, lipids, polysaccharides, and nucleic acids 

Figure 1. The imbalance between the generation of reactive species and the antioxidant defense
system results in oxidative stress and further damage to cellular macromolecules. ROS—reactive
oxygen species; RNS—reactive nitrogen species; RSS—reactive sulfur species; RCS—reactive carbonyl
species; VC—ascorbic acid; VE—tocopherol. Created by BioRender.com.

3. Oxidative Stress and IBD

IBD is idiopathic chronic and relapsing inflammatory disorder of the gut, which
comprises ulcerative colitis and Crohn’s disease [5]. Both are caused by an overactive
immune response to gut microbiota in genetically vulnerable individuals [26]. Ulcerative
colitis is limited to the colon, whereas Crohn’s disease is regarded as inflammation in the
whole gastrointestinal tract in a non-continuous fashion [5,27]. The precise etiology of
IBD has been studied for decades and remains unclear. The interaction of various factors,
including genetic factors, the immune system, and environmental factors interrupt the
homeostasis of the gut (e.g., oxidative stress), leading to inflammatory responses of the
intestinal tissue [4,28]. Numerous research pieces of evidence suggest that IBD is associated
with the increased production of reactive species. To be exact, multiple studies in colitis
animal models proved an augmented formation of reactive species, including superox-
ide, peroxynitrite, hypochlorous acid, and hydrogen peroxide; meanwhile, the levels of
endogenous reactive species-related compounds in colonic tissue, such as glutathione and
Cu/ZnSOD, are decreased [28]. Studies using genetically modified animal models to select
the appropriate modifications of antioxidant enzymes were the most convincing proof
for the cause-and-effect relationship between oxidative stress and IBD [29]. For instance,
transgenic overexpressed Cu/ZnSOD significantly attenuated DDS-induced colitis. Deple-
tion of GPx1 and GPx2 or additional glutathione biosynthesis inhibitors (e.g., buthionine
sulfoximine) caused the generation of colitis in mice [28,30].

Oxidative stress not only directly damages the intestinal epithelial cells but also
causes dysregulated pro-inflammatory reactive species-sensitive pathways in immune
cells [7]. The NF-κB signaling and Nrf2 signaling pathways are two key transcription
pathways that regulate a broad range of biological functions to respond to oxidative
stress and inflammation [9]. The multi-subunit transcription factor NF-κB serves as a
pivotal mediator of multiple aspects of both innate and adaptive immune systems. It
controls the expression of a series of pro-inflammatory genes, encoding cytokines and
chemokines. Additionally, NF-κB directs the survival, migration, and differentiation of
immune cells. While reactive species can react with proteins, lipids, polysaccharides, and
nucleic acids of NF-κB pathways, this pathway is sensitive to the molecules [6]. In one
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classic study, NF-κB responded to micromolar concentrations of H2O2 and this activation
was reversed by treatment with antioxidant N-acetyl cysteine (NAC) [31]. Strong evidence
indicates that NF-κB is associated with the pathogenesis of IBD patients. The irregulation
of NF-κB precursors, NF-κB, the NF-κB stimulating immune receptors (e.g., NOD2), and
the down-regulation gens (e.g., interleukins (IL)-12, IL-23) has been found in inflamed
colonic tissue of IBD patients [30]. On the other hand, Nrf2 belongs to another family
of transcription factors, being capable of inducing a set of antioxidants and detoxication
enzymes [3]. The factor-induced transcription of antioxidant proteins is able to protect
against the accumulation of overproduced reactive species. The most studied Nrf2-related
proteins or protein subunits are NAD(P)H, heme oxygenase-1 (HO-1), dehydrogenase
quinone 1 (NQO1), catalytic subunit (GCLC), and the γ-glutamyl cysteine ligase modulatory
subunit (GCLM). It is also related to pro-inflammatory cytokines like IL-6, IL-1β, and IL-17,
extracellular matrix degradation proteins including matrix metalloproteinase (MMPs),
and autophagy modulations [32,33]. Additionally, the cellular level of Nrf2 is strictly
regulated. For example, the binding with Kelch-like ECH-associated protein1 (Keap1)-
Cullin2-Rbx1 complex causes Nrf2 ubiquitination. The stability of the Nrf2/Keap1 complex
is sensitive to oxidant stress, while Keap1 protein contains 27 cysteine residues, which can
be modified by reactive species [34]. Interestingly, the complex interplay of NF-κB and
Nrf2 pathways under conditions of oxidative stress could cause the fine-tuning of dynamic
responses by either transcriptional or post-transcriptional mechanisms. For instance, NF-
κB directly modulates the Nrf2 transcription and activity, whereas using Nrf2 inhibitor
or Nrf2 knockout cells improves the activity of NF-κB leading to increased production
of cytokines [35]. Additionally, NF-κB and Nrf2 compete also for the transcriptional co-
activator CREB-binding protein (CBP) [9] (Figure 2).
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Figure 2. Schematic representation of the inflammatory response of antioxidant pathways in the
intestinal environment. In the immune cells, oxidation stress can enhance the dissociation of the NF-
κB/IκB complex and the Nrf2/Keap1 complex, which cause the induction of pro-inflammation genes
(e.g., cytokines, chemokines) and antioxidant genes (e.g., enzymes). The crosstalk between these two
pathways through a complex molecular interaction plays an important role in IBD. NF-κB—nuclear
factor-kappaB; Ub—ubiquitination; CBP—CREB-binding protein; Nrf2—NF-E2p45-related factor
2; Keap1—Kelch-like ECH-associated protein 1; ARE—antioxidant responsive element. Created by
BioRender.com.
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Above all, oxidative stress plays an important role in the generation and development
of IBD. Therefore, besides the conventional methods, targeting the oxidative stress in the
intestine by either diminishing the overproduced reactive species or managing antioxidant
pathways can effectively treat the disease.

4. Antioxidative Nanotherapeutic Approaches for IBD

The classical IBD treatment contains anti-inflammatory drugs (e.g., 5-aminosalicylic
acid, glucocorticosteroids), immunosuppressive agents (e.g., azathioprine, 6-mercaptopurine),
and anti-tumor necrosis factor (TNF)-α monoclonal antibodies (e.g., infliximab, adali-
mumab) [36–38]. Unfortunately, because of non-specific distribution and low retention
time, direct administration of the current drugs has the potential to cause side effects and
fails to diminish symptoms for a considerable number of patients. As mentioned above,
antioxidants, or the compounds targeting oxidative pathways, are capable of balancing
oxidative stress and effectively treating IBD. Although experimental and clinical investiga-
tions proved the benefits of antioxidants, only limited success has been achieved because of
the subsequent challenges. First, the gastrointestinal tract is an enzyme-abundant microen-
vironment with changeable pH conditions. Thus, the activities of many antioxidants may
be significantly compromised. Second, the antioxidants are limited to on-site accumula-
tion [17]. For that reason, many antioxidative NP-mediated strategies have been considered
as a remarkably promising platform for IBD treatment. As the physiochemical properties of
the NPs (size, surface charge, and surface functionalization) have a strong influence upon
their permeation, distribution, and cellular uptake, several targeting strategies to design
nanocarriers for IBD treatment are employed [39]. The size-dependent accumulation of NPs
is mostly studied. To be more concrete, since intestinal inflammation induces the enlarging
of tight junctions and increasing permeability, NPs with appropriate sizes can passively
accumulate at the inflammatory site [40]. The surface charges are another important char-
acter that needs to be tuned for the NPs designed for IBD treatment. The optimal surface
charges for them are negative, because the targeting inflammation of the colonic mucous
membrane is accumulated of positively charged proteins [41]. Another welcomed delivery
strategy is to develop NPs responses to high levels of reactive species at the intestinal
inflammatory area [42]. On the other hand, chemical and molecular mechanisms of the
delivered antioxidants also have a strong impact on the therapeutic effect. In the following
sections, the IBD nanomedicines will be introduced and summarized according to the
classification of transported antioxidants (Table 1) (Figure 3).
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inflammatory site (intestinal epithelial cells or the intestinal immune system), the size, shape, surface
charge, and surface functionalization should be taken into consideration. The classification of the
generally-used antioxidants to treat IBD has been summarized. IBD—inflammatory bowel disease.
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Table 1. Examples of new innovative antioxidant nanotherapeutic approaches against IBD within the last 5 years.

Antioxidants Type of Compounds Nanosystem Components Size and Surface Charge Colitis Model References

Protein/peptide
SOD/CAT Antioxidante enzyme WCC ~156 nm DSS-induced mice [43]

TNF-α antibody/tannic acid/ EGCG Protein/polyphenol DSPE-PEG ~100 nm DSS-induced mice [44]
Ac2-26 Peptide PBAP conjugatedβ-CD 202 ± 4 nm, −37.4 ± 0.6 mV DSS-induced mice [45]

SEP Protein Chitosan/Fucoidan tunable LPS-induced macrophage [46]
Anti-TNF-α antibody Protein Galactose/PLGA ~261 nm, ~−6 mV DSS-induced mice [22]

KPV Peptide PLGA/PVA/HA/chitosan ~270 nm, −5.3 mV DSS-induced mice [47]
Nucleic acid
IL-10 mRNA Modified mRNA Lipid 63.7 ± 1.59 nm DSS-induced mice [48]

Anti-miRNA-31/Curcumin MiRNA inhibitor/polyphenol α-lactalbumin/OKGM (nano-in-micro) ~25 µm, ~−7 mV AOM-DSS-induced [49]
TNF-α siRNA/Dexamethasone SiRNA/small molecule TKPR-PEG-P(TMC-DTC),

PEG-P(TMC-DTC)-PEI ~500 nm, ~0.6 mV DSS-induced mice [50]
TNF-α siRNA SiRNA PEG-b-PLGA ~120 nm, −17 mV~31 mV DSS-induced mice [41]
TNF-α siRNA SiRNA PVA/PLGA ~300 nm, ~20 mV DSS-induced mice [51]

Small molecule
Curcumin/Dex Polyphenol/ glucocorticoid PLGA/HPMCAS-HF (nano-in-micro) ~176 nm HT29-MTX/T84 cell line [52]

Curcumin Polyphenol Chitosan/alginate/cellulose 421 ± 14 nm, −47 ± 3 mV DSS-induced mice [53]
Curcumin/tannic acid Polyphenol Genipin-crosslinked HBA ~220 nm, −28.8 mV TNBS-induced mice [54]

Curcumin Polyphenol Silk fibroin/Chondroitin sulfate ~175.4 nm, −35.5 mV DSS-induced mice [55]
Curcumin Polyphenol Eudragit®S100 DSS-induced mice [56]

Resveratrol Polyphenol β-Lactoglobulin 165 ± 2 nm, −34 ± 0.6 mV Winnie mice [57]
Resveratrol Polyphenol PLGA/chitosan/alginate 255.9 ± 12.0 nm, 13.5 ± 3.9 mV DSS-induced mice [58]

Resveratrol Polyphenol Chitosan/pHEMA/in pDMAEMA
(nano-in-gel) 121 ± 1 nm, −170 ± 90 mV DSS-induced mice [59]

Rosmarinic acid Polyphenol Chitosan/nutriose 63.5 ± 4.0 nm, −33.70 mV DSS-induced mice [60]
Rosmarinic acid Polyphenol PEG 141.2 ± 12.3 nm, −25.30 ± 2.7 mV DSS-induced mice [10]

Oleuropein Polyphenol Lipid ~ 150 nm, −25 mV DSS-induced mice [61]
EGCG Polyphenol Amyloid - DSS-induced mice [62]

Tannicacid/EGCG/catechin Polyphenol/glucocorticoid Block PEG ~130 nm, −27 mV DSS-induced mice [63]
Quercetin Flavonoids Silk fibroin 175.8 ± 0.9 nm, −24.5 ± 4.1 mV DSS-induced mice [64]

Genistein/Tempol/VE Flavonoids/ β-CD/HMPBA/TPGS 636 ± 94 nm/304 ± 60 nm DSS-induced mice [65]
Silymarin Synthetic antioxidant compound Silica-derived −21.08 ± 1.51/6.63 ± 1.91 mV DSS-induced mice [66]

Ginsenoside Flavonoids Glycogen-derived ~110 nm DSS-induced mice [67]
Grape seed extract/ Steroid glycosides Grape seed extract/ 128.9 ± 0.3 nm, 1.3 ± 0.08 mV DSS-induced mice [68]

Horseradish peroxidase Plant extract/antioxidant enzyme Horseradish peroxidase
Lycium barbarum Plant extract Lipid ~189.2 nm, ~−34.9 mV DSS-induced mice [69]
Green tea extract Plant extract PLA-PEG ~163.1 nm, ~−7.92 mV TNBS-induced rat [70]

Bilirubin Small molecule HA 86 ± 5 nm to 416 ± 9 nm DSS-induced mice [71]
−35.6 ± 1.6 mV to −46.2 ± 5.2 mV

Nanozyme
CeO2 Nanozyme Red blood vesicle/exosome ~3 nm DSS-induced mice [11]
CeO2 Nanozyme MMTCeO2 1.6 ± 0.2 nm, −30.3 ± 0.3 mV DSS-induced mice [19]

Prussian blue/Mn Nanozyme PVP 60 nm~120 nm, −27.0 mV DSS-induced mice [18]
Prussian blue Nanozyme PVP ~60 nm DSS-induced mice [20]

Se Nonozyme Lactobacillus casei produced 50~80 nm NCM460 cells [72]
Se Nanozyme Enterobacter cloacae Z0206 produced 139.43 ± 7.44 nm DSS-induced mice [73]
Se Nanozyme Ulva lactuca polysaccharide 30 to 150 nm DSS-induced mice [74]

Gold Nanozyme PVP/Citrate ~5 nm DSS-induced mice [75]
ZnO Nanozyme ZnO 29.7 ± 4.0 nm, −59.4 ± 3.8 mV DSS-induced mice [76]
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4.1. Nanosystem Delivery of Protein and Peptide Drugs to Impact Oxidative Stress

Oral administration of proteins and functional peptides is particularly challenging
for therapeutic approaches to IBD treatment because of their instability in the gastroin-
testinal tract. Nevertheless, some researchers reported nanoplatforms to encapsulate poor
soluble proteins, which are native antioxidant enzymes, naturally derived products with
antioxidant activities, or immune system-specific targeting antibodies [22,43–47]. Zen et al.
reported SOD and CAT can be directly one-step co-loaded in the nanoparticles and self-
assembled by amphiphilic wind chimes like cyclodextrin (WCC) in an aqueous solution
under physiological conditions. SOD/CAT co-loaded WCC NPs could not only maintain
the activity of endogenic SOD and CAT but also effectively promote the cellular uptake
of exogenous antioxidant enzymes. Consequently, the ability to scavenge reactive species,
produced by lipopolysaccharide treated macrophages, was increased. The secretion of
inflammatory factors decreased, indicating inflammation was inhibited [43]. Another eco-
nomic protein NP product has been investigated as a carrier for this application as well.
In 2019, Huang and coworkers designed NPs by associating chitosan with fucoidan, an
anionic long chain sulfated polysaccharide obtained from brown algae for targeting the
delivery of soluble eggshell membrane protein (SEP). SEP is extracted from egg products
and shows antioxidant and anti-inflammatory activities in intestinal tissues. The chitosan
and fucoidan-formed NPs protected the protein from acidic degradation and controlled
its release by the response to pH variation in the gastric intestinal tract. Furthermore, the
antioxidant activities of encapsulated SEP were significantly enhanced [43]. Administration
of TNF-α antibodies is another promising class of drugs owing to enormous achievement in
the treatment of inflammatory diseases [41,44]. TNF-α plays a crucial role in IBD, since it is
the main pro-inflammatory cytokine primarily secreted by macrophages further targeting
the mitochondrial metabolism and leading to an augmented consequence during IBD [77].
However, the immunosuppression caused by systemic exposure to antibodies leads to
adverse effects as well as low efficiency. In order to improve antibody therapy for IBD, Yang
and coworkers recently demonstrated a nano-platform to orally deliver TNF-α antibody,
infliximab, by using hydrogen bonding supramolecular NPs assembled with tannic acid
and 1,2-distearoy-sn-glycero-3-phsphoethanolamine-N-[methoxy(polyethylene glycol)]
(DSPE-PEG). In this way, Infliximab was protected in the intestinal tract without denatura-
tion/degradation and targeted the intestinal inflammatory site with a high level of reactive
species. Thus, a significantly increased therapeutic strategy compared to unprotected
antibodies was achieved [44].

In comparison with the proteins, peptides have a smaller molecular size and better
solubility in the physiological aqueous environment. The encapsulation of peptides into
NPs could ensure that the peptides are more stable and effective due to targeted delivery
and sustained release. For instance, naturally occurring tripeptide KPV (Lys-Pro-Val),
derived from α-melanocyte-stimulating hormone (MSH), shows anti-inflammatory effect
and antioxidative properties on treating colitis. However, the tripeptide is not stable in
the intestinal environment without protection. For that reason, Xiao et al. fabricated KPV-
loaded hyaluronic acid (HA)-functionalized PLGA NPs with a negative surface charge and
desirable size (approximately 270 nm). NPs were biocompatible with intestinal cells and
accelerated mucosal healing by attenuating inflammation. The NPs were further loaded in
the chitosan/alginate hydrogel system. The HA-KPV NPs encapsulated chitosan/alginate
hydrogel system displayed a strong capacity to protect mucosa and down-regulate TNF-α.
The results demonstrated that the nano-in-gel system can long-term release HA-KPV NPs
in the colon. Then the NPs penetrated colitis tissues and enabled antioxidative tripeptide
internalization to alleviate inflammation [47].

4.2. Nanosystem Delivery of Nucleic Acid Drugs to Interfere with Antioxidant Pathways

The development of another macromolecule, nucleic acids’, delivery nanomaterials is
attracting great attention in antioxidant therapy. The nucleic acids-mediated antioxidative
nanotechnology has the potential to precisely inhibit oxidative stress-induced molecular
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damages, meanwhile, unexpected interference can be avoided [78]. The nanocarriers are
typically designed for oral administration, which is the most appropriate and cost-effective
approach to deliver encapsulated nucleic acid to gastrointestinal tissues [43,79]. Therapeu-
tic nucleic acids such as messenger ribonucleic acids (mRNAs), micro ribonucleic acids
(miRNAs), and small interfering ribonucleic acids (siRNAs) can be delivered by nanocarri-
ers to regulate oxidative stress-related genes for IBD treatment. Since the physicochemical
properties of polymers can be carefully tuned, the utility of functional polymers as intracel-
lular delivery systems for nucleic acids has been wildly used in clinical trials [80]. Various
polymers such as modified nature-derived polymers, amphiphilic copolymers, and siRNA-
polymer conjugates can condense the nucleic acids (negatively charged and hydrophilic)
into the carriers via electrostatic interactions and hydrophobic interactions [79].

In 2018, the modified mRNA molecule for expressing a desired anti-inflammatory
cytokine (e.g., IL-10) was developed by Dan Peer and his coworkers to effectively treat IBD.
The modified mRNA-loaded lipid NPs were mainly formed by distearoylphosphatidyl-
choline(DSPC), cholesterol, 1,2-Dimyristoyl-rac-glycero-3-methoxy(DMG)-PEG and 1,2-
distearoyl-sn-glycero-3-phosphorylethanolamine(DSPE)-PEG. In order to precisely target
Ly6c+ inflammatory leukocytes, the NPs were further functionalized by anti-Ly6c mono-
clonal antibodies [48].

MiRNAs are endogenous single-stranded non-coding RNAs (approximately 22 nu-
cleotides). They act on post-transcriptional regulators of gene expression [81,82]. Recently,
miRNAs have been found to regulate responses to oxidative stress. A significant number
of publications have described the targeting of miRNAs on the Nrf2 pathways or GSH
biosynthetic enzymes [83,84]. Therefore, the delivery of miRNAs or synthetic miRNA
inhibitors by nanotechnology can be promising medical treatments of IBD. For instance,
miRNA-31 has been found to be elevated in colon tissues from both Crohn’s patients and
colitis patients. MiRNA-31 inhibitors or miRNA-31 inhibitors/curcumin encapsulated
α-lactalbumin NPs in Konjac glucomannan (sOKGM) microspheres successfully reduced
features of colitis and further treated colorectal cancer [49].

Similar to miRNAs, siRNAs also have the potential to treat wide-ranging classes of
diseases, because they are capable of reversibly silencing target genes [85]. Several studies
have documented that targeted siRNA nanocarriers ensured the penetration of siRNA from
the surface of inflamed tissue into the immune system. siRNAs could target macrophage
cells, directing against pro-inflammatory cytokines (e.g., TNF-α) and cytokines related
kinase (e.g., mitogen-activated kinase kinase kinase kinase 4 abbreviated as Map4k4) to
treat intestinal inflammatory diseases [41,50,51,86,87]. Given the important role of TNF-
α in IBD progression, Murthy and his co-workers operated a thioketal delivery system,
which locally released TNF-α siRNA in response to reactive species at the site of inflamma-
tion to treat DSS-induced colitis in mice. The nanomaterial was formed from a polymer,
poly-(1,4-phenyleneacetone dimethylene thioketal) (PPADT), which enabled the protection
of siRNA from the harsh environment. Most importantly, PPADT NPs degraded selec-
tively in response to reactive species. Taken together, the TNF-α siRNA-loaded PPADT
NPs effectively silenced TNF-α expression in mice suffering from colitis [88]. Since then,
the smart reactive species-response polymer has made a significant contribution to the
treatment of numerous gastrointestinal inflammatory diseases such as IBD and gastroin-
testinal cancers. In the subsequent studies, galactosylated low molecular weight chitosan
(gal-LMWC), mannosylated poly (amido amine)/sodium triphosphate (TPP), calcium
phosphate (CaP)/poly (lactic acid-co-glycolic acid) (PLGA), poly(ethylene glycol)-block-
poly(lactic-co-glycolic acid)(PEG-b-PLGA)/cholesterol, poly(lactic-co-glycolic acid)(PEG-b-
PLGA)/galactosylated chitosan and poly(ethylene glycol)-b-poly(trimethylene carbonate-
co-dithiolane trimethylene carbonate)-b-polyethylenimine (PEG-P(TMC-DTG-PEI)) triblock
copolymer have also been reported in the literature as TNF-α siRNA carriers to treat colonic
inflammatory diseases [25,41,50,51,89,90]. The TNF-α siRNA-loaded NPs were also used
as a matrix for the co-delivery of inflammatory drugs such as dexamethasone sodium
phosphate (DXMS) and curcumin [50]. Studies also showed that the regulation of Map4k4
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not only mediated TNF-α signaling but also promoted its expression. Upon oral admin-
istration, the Map4k4 siRNA, encapsulated in galactosylated trimethyl chitosan-cysteine
(GTC)/tripolyphosphate (TPP) or GTC/HA NPs, significantly decreased the expression
of TNF-α in colonic cells and related parameters in the DSS-induced colitis in a mouse
model [91,92].

4.3. Nanosystem Delivery of Small-Molecule Antioxidants to Act as Reactive Species Scavengers

Both natural and synthetic small-molecule antioxidants have been widely studied for
IBD treatment. The commonly used natural antioxidants include bilirubin, polyphenols,
flavonoids, genipin, glutathione, etc., whereas synthetic antioxidants are edaravone, lipoic
acid, NAC, 4-Hydroxy-2,2,6,6-tetramethylpiperidinyloxyl (Tempol), etc. [17].

Given that naturally derived antioxidants are vulnerable, researchers have attempted
to develop naturally derived antioxidants delivery nanomaterials. As a result, antioxidants
can be effectively delivered to specific inflammatory intestinal sites [78]. For example, biliru-
bin has been suggested as a potent endogenous antioxidant that is capable of scavenging
reactive species to protect cells/tissues from oxidative damage. Although the physiological
role of bilirubin has been investigated for decades, the clinical application of bilirubin has
been restricted due to its poor water solubility [71,93–95]. To overcome the critical prob-
lem of natural bilirubin, Jon and his coworker worked on PEGylated bilirubin NPs. The
self-assembled particles, with a diameter of approximately 110 nm, are highly efficient hy-
drogen peroxide scavengers, which protect cells from hydrogen peroxide-induced damage.
In vivo, the PEGylated bilirubin NPs showed preferential accumulation at the inflammatory
site and significantly inhibited the inflammatory response in the colon [94,95]. Moreover,
another bilirubin-derived NP, HA-bilirubin, has been developed. The NPs accumulated
in the inflamed colonic epithelium in mice and have multiple positive effects including
restoring epithelium barriers, augmenting the overall abundance of gut microbiota, and
effectively regulating innate immune responses [71].

Moreover, polyphenols are a large family of phytochemicals that are abundant in
food and derived from plants characterized by multiples of phenol units. However, their
drawbacks such as intrinsic poor water solubility and low bioavailability after generally
oral administration need to be overcome. The utility of polyphenol in nano-formulations
aims to improve its solubility, activity, and stability, making the compound therapeutically
more effective without adverse effects. Many nano-encapsulated polyphenols (curcumin,
resveratrol, berberin, epigallocatechin gallate (EGCG), tannic acid, rosmarin acid, oleu-
ropein, and ginsenoside) have recently been proved to have anti-inflammatory properties
and have an important role in the management of IBD [10,52–62,67]. For the same rea-
son, the polyphenol-rich extracts such as grape seed extract, green tea extract, and lycin
barbarum extract have the potential to treat intrinsic inflammation as well [66,68–70]. Cur-
rently, a compound used worldwide is curcumin, which is derived from Curcuma longa
extracts. Regarding its antioxidant and anti-inflammatory effects, multiple treatments
have been remarkably highlighted [96]. To overcome the drawbacks of curcumin, a novel
fibroin/chitosan-based macrophage-targeted curcumin delivery system was developed
by Gou et al. The fibroin/chitosan NPs have well-controlled size distribution (approxi-
mately 175.4 nm), negative surface charge, and effective curcumin encapsulating. Upon
the stimulation by pH/GSH/reactive species, curcumin can be controlled released. Due
to the surface characteristics of the NPs, they can specifically recognize and bind to the
glycoprotein CD44 on the surface of macrophages. As a result, the cellular uptake capacity
of NPs is improved through the CD44 mediated endocytosis pathway. Through both oral
administration and intravenous therapy, the particles could improve the specific internal-
ization and exhibit controlled release of the compound [58]. In addition, HA-functionalized
chitosan/PLGA, hydrophilic Eudragit® S100, hydroxyethyl starch-curcumin conjugates,
genipin-crosslinked human serum albumin, chitosan/sodium alginate/cellulose acetate ph-
thalate polyelectrolyte multilayer, and α-lactalbumin/sOKGM have been recently explored
to encapsulate or co-encapsulate curcumin for IBD treatment [56,57,59,87,97,98].
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Accumulating studies have reported that flavonoids (e.g., quercetin, catechin, sily-
marin) showed beneficial effects in treating IBD [63,64,66]. The reasons for the powerful
effects are first, that they can act as strong antioxidants, and second, that they can act as cel-
lular modulators of protein kinase and lipid kinase signaling pathways. [99] Most recently,
genistein has been delivered by β-cyclodextrin(β-CD) and 4-(hydroxymethyl)phenylboronic
acid pinacol ester-modified genistein nanosystems (defined as Gen-NP2). Gen-NPs could
effectively release genistein to the inflamed colon instead of absorption by the stomach or
intestines. Gen-NPs effectively scavenged reactive species and regulate the inflammasome-
autophagy pathway. Spontaneously, gut microbiota were modulated. Eventually, intestinal
mucosal healing and barrier integrity were promoted [65].

On the other hand, synthetic antioxidant compounds can also be potentially useful
in IBD therapy. The synthetic antioxidant-loaded NPs not only have enzyme-mimicking
functions but also spontaneously scavenge reactive species during the catalyzing [17].
Thus, they have been engineered as another type of candidate for IBD treatment. Nagasaki
designed a ROS-nitroxide radical-containing particle (RNPo), having a diameter of 40 nm,
by establishing an amphiphilic block copolymer with Tempol, which is a stable nitroxide
radical-containing ROS trapper. They could specifically accumulate in the IBD model.
In comparison with Tempol and 5-aminosalicyclic acid, RNPos were more effective in
reducing inflammation. The RNPos could further load silymarin, an active compound with
anti-inflammatory and antioxidant properties, resulting in a synergic effect for the recovery
in the colonic mucosa of the DSS-induced model [100]. A different approach was followed
by Zhang and coworker. They fabricated a series of SOD/CAT-mimetic nanomedicine
based on PBAP-conjugated β-CD material. Tempol and annexin A1-mimetic peptide Ac2-26
were effectively packed into smart-responsive nanocarriers. Benefiting from the protection
and site-specific accumulation of the nanomaterial, both Tempol and Ac2-26 were control
released at the inflammatory sites. Owing to the therapy by RBAP-conjugated β-CD-based
nanomaterial, the inflammatory symptoms were reduced, the wound healing of intestinal
mucosal accelerated, and the composition of gut microbiota reshaped [45]. Another method
is to develop a nanoscale prodrug. IBD targeting Janus-prodrug (Bud-ATK-Tem) was
conjugated by the anti-inflammatory drug budesonide (Bud) conjugated ROS-responsive
aromatized thioketal (ATK) and Tempol. Due to macromolecular interaction, hydrophobic
interactions, and π-π interaction of the amphiphilic conjugate, the prodrug self-assembled
into NPs with the size of approximately 100–120 nm. The 98% drugs (Bud and ATK) were
released in the inflammatory macrophages. In the DSS colitis model, the drug-loaded NPs
were passively accumulated in the inflamed tissue, thus ensuring they can improve the
antioxidative and anti-inflammatory efficacy [101].

4.4. Nanozymes to Catalyze Oxidative Defense

Some specific metals and metal oxides have inherent enzymatic properties which
have been known for decades. In 2007, Yan and coworkers investigated iron oxide formed
peroxidase mimic nanomaterials. Since then, metal-based antioxidative nanomaterials were
defined as nanozymes [102]. The new generation of artificial enzymes not only has the
advantages of unique properties of nanomaterials but also exhibits high catalytic activity,
superior stability, and economical price, among others. Therefore, various nanomaterials
formed with metals and metal oxides have been rapidly studied and industrialized for
therapeutic applications [103]. As mentioned above, Se represents the most significant
part of the active center of antioxidant enzymatic activities (selenoproteins) [104]. To date,
various Se-based compounds have attracted great attention due to their inherent antioxidant
enzyme-like property. Se-NPs produced by L.casei ATCC 393 significantly alleviated
the increase of reactive species and maintained permeability of intestinal epithelial cells
(NCM460 cell line). Particularly, the Se-derived NPs diminished the ultrastructure damage
of mitochondria caused by oxidant stress [72]. Besides the above-mentioned nanozymes,
some other inorganic NPs have also been investigated, such as NPs derived from Prussian
blue, manganeses (Mn), Cerium oxide (CeO2), ZnO, and Gold (Au) [11,18–20,50,73–76]. A
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remarkable work was reported by Chen and coworkers, who synthesized Mn-Prussian
blue NPs with multi-enzyme-like properties to mediate catalytic IBD therapy. Owing to the
positively charged artificial surfaces and desired sizes, NPs significantly improved colitis in
mice via the toll-like receptor (TLR) signaling pathway with no adverse effects [18]. Another
notable versatile nanozyme for biological application was CeO2 NP. Upon the mixed-
valence states between Ce3+ and Ce4+ on the surface of NPs, it has been demonstrated
to possess SOD and CAT-mimetic activity as well as the activities of scavenging reactive
species. Due to the presence of surface oxygen vacancies, Ce4+ can be reduced to Ce3+,
resulting in effectively decreasing ROS levels [105]. An in situ growth NPs was performed
by Zhao and coworkers. They reported a system for IBD treatment coupled with multi-
enzyme mimicking CeO2 NPs and montmorillonite (MMT). When the CeO2/MMT ratio
was 1:9, the nanozyme was stable in the gastric tract by oral administration. The NPs were
more effective and stable than free enzymes. Moreover, upon electrostatic interactions,
negatively charged MMT was associated with specific targeting to positively charged
inflamed colon tissue [19].

5. Conclusions and Prospects

To date, IBD has evolved into a worldwide disease in not only developed countries
but also newly industrialized countries [106]. Accumulated studies suggest that IBD is
caused by commensal microbe-induced continuing inflammation in a genetically vulnerable
host [26]. During the inflammatory process, the inflammatory cells related to the immune
system secrete a large number of cytokines and chemokines, which stimulate reactive
species overproduction and eventually cause oxidative stress [5]. Given oxidative stress
plays a crucial role in the pathogenesis of IBD, multiple antioxidant therapeutic strategies
are being explored including the removal of reactive species, enhancing the synthesis of
antioxidant enzymes, mimicking the antioxidant enzymes, and the inhibition of abnormal
redox signaling for reactions.

Engineering materials with either naturally derived polymers or synthetic polymers
at the nanoscale enables the arrangement of several above-mentioned strategies into one
delivery system with multicomponent and multifunction. In other words, using nanotech-
nology can spontaneously co-carry antioxidant pathways related macromolecules (proteins,
peptides, and nucleic acids) and small molecules (antioxidants and metal oxides) to treat
IBD. Meanwhile, many benefits can be achieved, including improving the delivery of
poorly water-soluble antioxidants, targeting delivered drugs in an inflammatory manner,
and transcytosis of functional compounds across the epithelial barriers to immune cells [39].
However, to successfully translate current nanotherapeutic approaches from laboratory
investigation to clinical application, numerous limitations still need to be overcome. In
general, minimizing the batch-to-batch variation, improving pharmacokinetic properties,
enhancing loading efficiency, handling cost-efficiency, and simplifying synthesis progress
are key points.

There are several concerns and challenges associated with antioxidant monotherapy
for IBD treatment. First, oxidative stress might not be the primary contributor to disease.
In other words, avoiding overproduced reactive species may not have a key impact on
the progression of inflammatory diseases. Thus, future experimental and clinical studies
should not only evaluate the therapeutic efficacy of the antioxidants (macromolecules or
small molecules) alone but also study the synergic effects of antioxidants, combined with
conventional drugs and engineered stem cells (e.g., allogeneic expanded adipose-derived
mesenchymal stem cells). Second, complex pathophysiological mechanisms should be
taken into consideration. Systematic exploration of protein complex composition and net-
work analysis between NF-κB and Nrf2 pathways can provide new insight to manipulate
IBD [9]. To our knowledge, the crosstalk of Nrf2 and NF-κB has not been systematically
investigated. In the coming future, researchers can focus on the direction of the crosstalk
between the NF-κB and Nrf2 pathways by nanotechnology. Third, future studies should
also define the correlation between the endogenous attenuation of oxidative stress and
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exogenous antioxidant treatment. It should always be kept in mind that reactive species
have important physiological functions, especially in immunity against pathogenic mi-
croorganisms. The ideal antioxidant-based therapeutic approaches should be designed and
evaluated precisely to decrease oxidative damage without significantly diminishing the
influence of reactive species on physiological activities. Last but not the least, researchers
can also cooperate with the diagnostic materials (e.g., graphene quantum dot) in addition
to the antioxidant nanomaterials [107]. Thus, multifunctional antioxidative nanomedicines
can monitor the pharmacokinetics and pathological process for designing accordingly
personalized antioxidant therapy.
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