
© 2022 Taiwan J Ophthalmol | Published by Wolters Kluwer - Medknow 123

Understanding required to consider 
AI applications to the field of 
ophthalmology
Hitoshi Tabuchi1,2*

Abstract:
Applications of artificial intelligence technology, especially deep learning, in ophthalmology research 
have started with the diagnosis of diabetic retinopathy and have now expanded to all areas of 
ophthalmology, mainly in the identification of fundus diseases such as glaucoma and age-related 
macular degeneration. In addition to fundus photography, optical coherence tomography is often used 
as an imaging device. In addition to simple binary classification, region identification (segmentation 
model) is used as an identification method for interpretability. Furthermore, there have been AI 
applications in the area of regression estimation, which is different from diagnostic identification. 
While expectations for deep learning AI are rising, regulatory agencies have begun issuing guidance 
on the medical applications of AI. The reason behind this trend is that there are a number of existing 
issues regarding the application of AI that need to be considered, including, but not limited to, the 
handling of personal information by large technology companies, the black-box issue, the flaming 
issue, the theory of responsibility, and issues related to improving the performance of commercially 
available AI. Furthermore, researchers have reported that there are a plethora of issues that simply 
cannot be solved by the high performance of artificial intelligence models, such as educating users 
and securing the communication environment, which are just a few of the necessary steps toward 
the actual implementation process of an AI society. Multifaceted perspectives and efforts are needed 
to create better ophthalmology care through AI.
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Introduction

The application of deep learning to 
ophthalmology research started with 

AI diagnoses of diabetic retinopathy by 
a group at Google, published in JAMA.[1] 
Our group also has reported a wide range 
of AI applications in ophthalmology studies 
from various fundus diseases such as 
retinal detachment,[2] glaucoma,[3] and 
myopic fundus disease,[4] to meibomian 
gland infarction,[5] lacrimal duct disease,[6] 
cataract surgery,[7] corneal surgery,[8] and 
instillation adherence.[9] Although the vast 
possibilities of AI deep learning applications 
in ophthalmology have been recognized,[10] 

many guidelines have been proposed by 
policymakers.[11] The clinical application of 
deep learning to ophthalmology is still in 
its infancy. The purpose of this review is 
to promote a greater understanding of the 
current state of deep learning as applied to 
research and development.

Deep Learning Led by Large IT 
Companies

The development boom of deep learning 
began when a University of Toronto 
team led by G. Hinton won the 2012 
ImageNet Large Scale Visual Recognition 
Challenge (ILSVRC) by a substantial 
margin, leaving all other teams at 10%.[12] 
Currently, the world’s largest AI system 
is YouTube’s inappropriate video removal 
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system, part of Google. As of 2015, 500 h of video had 
been uploaded to the platform every second from all 
over the world; it is impossible for humans to manually 
review the content.[13] Improving operational efficiency 
through a data algorithm platform is an essential 
business requirement for tech companies with such a 
huge number of users. The social implementation of deep 
learning is realized in areas where a large amount of data 
must be processed. This contradicts the general policy of 
physicians, tasked with taking proper care of each and 
every patient. Nonprofit organizations have pointed out 
that it is highly likely that Google is making decisions, 
prioritizing its company logic without the consent of 
patients who have provided the images.[14] We should 
always keep in mind that corporations have different 
values from health‑care professionals which they need 
to prioritize, at least in the short term.

Performance Limitations of Diagnostic 
Imaging AI

Most medical diagnostic imaging AI systems use deep 
learning techniques. As mentioned above, the change 
of the winning score of the ILSVRC, an international 
competition for image classification, gives a very 
important perspective concerning the performance 
limitations of medical diagnostic imaging AI. The 
changes in the error rate of the winning team (the lower 
the rate, the higher the performance) are as follows: 26% 
in 2011, 16.4% in 2012, 11.7% in 2013, 6.7% in 2014, 3.6% in 
2015, and 3.1% in 2016.[15] Since the human classification 
error rate was reported to be 5%, the winning team’s 
error rate has surpassed the humans since 2015. It was 
exactly in 2016 that Hinton said at the seminar that we 
would no longer need to train radiologists.[16] However, 
it has recently been noted that the performance in image 
classification competitions after 2015 is due to overfitting, 
which is one of the biggest problems with deep learning 
technologies. An analysis of a huge dataset to be used 
for classification, called ImageNet, containing 14 
million images in 22,000 categories, shows that as many 
as 10% incorrect labels were included in the dataset, 
which caused overfitting through the remembering 
of mistakes.[17] Human classification error rates of 
about 5% are a performance limitation of current AI 
diagnostic applications,[18] which suppress unreasonable 
expectations for AI diagnostics. The aforementioned 
diabetic retinopathy diagnostic model created by training 
a total of 128,175 digital fundus photographs using 
the database already accumulated by the Google team 
showed 90.3% sensitivity and 98.1% specificity (AUC of 
0.99) for the EyePACS‑1 dataset. The performances of 
each AI diagnostic model created using a total of 494,661 
fundus photographs by the Singapore Eye Center team 
were as follows: AUC of 0.958 (100% sensitivity and 

91.1% specificity) for diabetic retinopathy with risk of 
blindness, AUC of 0.942 (96.4% sensitivity and 87.2% 
specificity) for glaucoma, and AUC of 0.931 (93.2% 
sensitivity and 88.7% specificity) for age‑related macular 
degeneration.[19] These representative reports using large 
datasets and the best available AI technology provide an 
indication of application performance when considering 
the social implementation of a fundus photography AI 
diagnostic model.

Issues Regarding Borderline Cases

When constructing a diagnostic AI model for medical 
images, one encounters the problem that it is nearly 
impossible to perform training 100% correctly due 
to the many borderline cases that are difficult to 
classify.[20] However, a report claimed that researchers 
achieved a performance of 100% in optical coherence 
tomography (OCT) image classification applied to 
ophthalmology. According to a paper published 
in Cell by a Chinese team, researchers created 
a four‑class classification model by training the 
model with 108,312°CT images obtained using the 
same device (SPECTRALIS OCT, HEIDELBERG 
ENGINEERING GmbH, Heidelberg, Germany) 
from multiple facilities. The four‑class classification 
model identified choroidal neovascularization (CNV), 
drusen, diabetic macular edema (DME), and normal 
eyes (normal). The model achieved a correct response 
rate of 96.1%, and the highest performance was observed 
with the binary classification of CNV and normal, 
achieving AUC of 1.0 (100% sensitivity and 100% 
specificity).[21] The results of four‑class classification 
by six expert doctors showed that only one doctor 
mistakenly identified 3 of 250 CNV images as normal, 
and the remaining five doctors did not misidentify any 
CNV images as normal. Furthermore, all six doctors 
did not misidentify any normal images as CNV. This 
means that the binary classification of normal and CNV 
OCT images is a task that has almost no borderline 
cases, even in the human eye. On the other hand, in the 
abovementioned four‑class model AI, which test dataset 
contained a total of 1000 images with 250 images of each 
class, none of the 250 images of CNV were identified as 
normal. However, five CNV images were identified as 
DME, and three CNV images were identified as drusen. 
For misidentification of other diseases as CNV, seven 
drusen images were misidentified as CNV, and nine 
DME images were misidentified as CNV. This means 
that if CNV was defined as “positive,” the sensitivity was 
242/250 = 96.8%, and the specificity was 734/750 = 97.9%. 
Drusen and DME have sporadic cases that expert doctors 
would diagnose as CNV; therefore, the performance 
of the model decreases when the task includes such 
borderline cases when compared to the classifying task 
between CNV and normal eyes. In general, CNV and 
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DME, CNV and drusen in OCT are different findings 
for ophthalmologists. Nevertheless, in this article’s 
diagnostic study of 250 cases per one finding, all six 
expert ophthalmologists confused drusen and CNV in at 
least two cases. Four of the six also confused DME with 
CNV. The discrepancy between expert ophthalmologists’ 
diagnoses is more remarkable than between normal and 
CNV. In other words, it suggests that the fluctuating 
learning content itself is one of the factors that discourage 
the AI from achieving 100% performance.

Framing in AI

The frame problem[22] is a fundamental problem 
consisting of the impossibility for AI to learn all of the 
infinite conceivable possibilities. When considering a 
diagnostic device incorporating AI, the first thing one 
must do is frame “to which area it is to be applied.” IDx’s 
diabetic retinopathy diagnostic system, which became 
famous as the first AI diagnostic device approved by 
the Food and Drug Administration (FDA), has set a 
framing of patients who have visited a diabetes clinic to 
be covered by insurance.[23] AI performance fluctuates 
depending on which dataset is applied. For example, 
it was reported that an X‑ray diagnostic model with a 
diagnostic capability of AUC 0.931 on average at two 
facilities showed a 10% or more reduced performance 
with AUC 0.815 when using X‑ray images taken at other 
facilities.[24] Caution needs to be exercised when an AI 
diagnostic application is applied to an area outside the 
prescribed frame.

Trade‑off Relationship between 
Interpretability and Performance

Deep learning is a machine learning (ML) model 
consisting of a comprehensive search by scanning 
each pixel of an image, and its interpretability is very 
low, meaning that it is hard to know what AI based 
its recognition of the image on. This is known as 
the black‑box problem.[25] In spite of such problems, 
deep learning methods are sought due to their high 
performance. According to Arrieta et al., deep learning 
provides the highest accuracy and lowest interpretability 
among various ML models, followed by support vector 
machines in which humans determine image features, 
Bayesian models, decision trees, and linear/logistic 
regression; in this order, as performance decreases, 
interpretability increases [Figure 1]. Finally, the model 
that provides the lowest performance and the highest 
interpretability is the rule‑based learning model.[26] A 
well‑known rule‑based learning model application in 
ophthalmology is a model for diagnosing glaucoma 
using the cup‑to‑disc ratio (C/D ratio), which represents 
the diameter of optic disc depression to that of the optic 
disc. The study was published in ophthalmology in early 

2000. A glaucoma diagnosing model incorporating C/D 
ratio using a nerve fiber layer analyzer GDx (Carl Zeiss 
AG, Oberkochen, Germany) with laser light achieved 
a correct answer rate of 74%.[27] On the other hand, the 
performance of glaucoma detection using deep learning 
was reported in ophthalmology in 2018, achieving AUC, 
0.986; sensitivity, 95.6%; and specificity, 92.0%.[28] The 
performance difference between the rule‑based model, 
which provides high explainability, and the deep 
learning model, which has the lowest interpretability, 
is as much as 20%.

Binary Classification and Segmentation 
Model

In binary classification with the deep learning model, it 
is possible to indicate the gaze point in the calculation 
process called the heat map by the Grad‑CAM method; 
however, there are always multiple gaze points that are 
not absolute. Deep learning is the so‑called black‑box 
AI.[29] Therefore, it has become common to use the 
segmentation model as a simple, explainable AI model 
to identify the area of the lesion itself. However, the 
segmentation model also uses deep learning algorithms 
and belongs to the black‑box AI category.[30] There 
is an important segmentation study on OCT images 
conducted by DeepMind, a Google company.[31] An AI 
model was constructed to perform fundus diagnosis 
by the segmentation model using a total of 15,761°CT 
images (3D OCT, TOPCON Corporation, Tokyo, Japan) 
acquired at multiple facilities in Moorfield, England. 
Their results showed that the error rate of 5.5% for doctors 
to refer their patients to the central facility was exactly 
the same for AI. The model provided high explainability 
by identifying the area with characteristic findings 
such as subretinal fluid and retinal pigment epithelial 
detachment (PED), which showed similar judgment to 
the diagnostic algorithm of the doctors. Compared to 
binary classification, age‑related macular degeneration 
or not, for the given image, this segmentation AI is easier 

Figure 1: The trade‑off between the model accuracy and the model interpretability 
from reference[26] (Arrieta et al., Information Fusion 2020[26])
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to understand for doctors as well as patients as it at least 
identifies its findings, such as PED.

Cost and Variation Problems of the 
Segmentation Model

The biggest problem with the segmentation model is 
the cost of creating annotation images (colored images) 
to train the AI model. In the aforementioned study by 
DeepMind, they had to color the areas of 15 feature 
findings in different colors for 877 images of the total 
of 15,761°CT images in the beginning stage. These 
colored images were used to train and construct an AI 
model, and the remaining 14,884°CT images were then 
automatically colored by the model. The paper shows 
one possible methodology for streamlining the labor 
of coloring work. It also focuses on the issue regarding 
model transplant to other manufacturers’ OCT systems. 
When 527 additional segmentations of OCT images taken 
by another system (SPECTRALIS OCT, HEIDELBERG 
ENGINEERING GmbH, Heidelberg, Germany) were 
used to train and optimize the model, its error rate for 
the referral judgment was 3.7%. In an effort to realize 
the social implementation of AI, such methodology for 
improving work efficiency in the process of building an 
AI model is also an issue to consider. As of 2018, while 
the required computing power had increased more than 
1000 times, the performance had not improved so much. 
This fact has raised a question.[32]

Compared to the classification of general objects, such 
as dogs, cats, and cars, the targets to be classified in 
medical applications include bleeding or vitiligo, 
which requires specialized knowledge. The differences 
in ability between image processing personnel known 
as annotators can be problematic. There is a study 
that investigated the inter‑rater agreement for the 
identification range among radiological assessors 
evaluating honeycomb lungs.[33] Cohen’s weighted κ of 
43 assessors was 0.40–0.58, showing a moderate degree 
of agreement. Moreover, disagreement in diagnosis was 
observed in 29% of the actual findings. It makes sense 
to think that similar problems would be observed in the 
field of ophthalmology.

Prevalence and AI Performance

Regardless of AI diagnosis, the performance (sensitivity 
and specificity) of any diagnostic method and the 
prevalence of the diagnosis target allows prior estimation 
of its effectiveness under implementation. We should pay 
attention when targeting diseases with low prevalence 
particularly.

If AI diagnosis is performed for diseases with low 
prevalence, the false‑positive rate will be extremely 

high no matter how high the performance of the model 
is, which can cause confusion in the clinical setting. 
For example, the prevalence of diabetic retinopathy 
in Japan is 1.1%,[34] and even if the highest theoretical 
value of AI performance with a sensitivity of 95% 
and specificity of 95% can be achieved in a real 
environment, the positive predictive value would 
be <10%. A common challenge in developed countries 
is increasing health‑care costs; the economic loss 
due to performing unnecessary tests on too many 
healthy individuals cannot be ignored. I would like 
to introduce a paper on optic nerve papilledema 
published in NEJM for considering the positive 
predictive value.[35] This study attempted to use AI to 
assist nonophthalmologists with determining whether 
the abnormal findings of the optic disc on the fundus 
images are due to an ophthalmic disease or to a visual 
pathway lesion. The model is intended to be used by 
nonophthalmologists. The reported AI performance 
was AUC of 0.96 (95% confidence interval [CI], 0.95–
0.97) with a sensitivity of 96.4% (95% CI, 93.9–98.3) and 
specificity of 84.7% (95% CI, 82.3–87.1). The prevalence 
is reported to be 9.8%, and the positive predictive 
value, as a result, is 39.8%.

This means that the test will indicate a positive result 
for papilledema in one in three people. Prevalence 
varies greatly depending on the clinical phase in 
which the AI diagnosis is performed. For example, 
the prevalence of brain tumors, the main cause of 
papilledema, has been reported to be 0.024% of 
emergency outpatients.[36] Not all patients with brain 
tumors present with papilledema.[37] Assuming that the 
incidence rate of the papilledema finding is roughly 50%, 
the prevalence of papilledema is 0.012% among 10,000 
subjects. Taking into account the possibility of other rare 
causes and using 0.02% as the prevalence, the positive 
predictive value drops to merely 0.12%. In order to 
find one true case of papilledema, 100 healthy cases are 
required to be judged abnormal. In other words, if we 
perform fundus imaging and AI diagnosis on all patients 
who visited the emergency outpatient unit, it would 
cause confusion for the site. This AI model cannot be 
used in reality unless the prior probability is raised by a 
doctor in some way. As mentioned above, IDx’s diabetes 
diagnosis AI can improve the positive predictive value 
and improve the efficiency in actual operations by 
limiting the target population to patients visiting the 
internal medicine department, or further limiting it 
to patients with diabetes. As mentioned earlier, the 
prevalence of diabetic retinopathy in Japan is 1.1%; 
however, the prevalence of retinopathy among diabetic 
patients is 15%.[38] Inevitably, the diabetes diagnosis AI 
can significantly increase the positive predictive value 
by targeting people with diabetes.
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Challenges in the Social Implementation of 
AI

Google’s team has developed a tool for diagnosing 
diabetic retinopathy with fundus photographs and 
reported on its efforts to socially implement it in 
multiple clinics in Thailand.[39] The fundus diagnosis 
AI system, which boasts an accuracy of 90% or 
more in an experimental environment, succeeded 
in interpreting more than 1000 fundus photographs 
a day in facilities where the implementation was 
successful; however, overall, the system could not 
diagnose more than 20% of the target patients. The 
researchers stated that the results were due to the 
network environment in Thailand, traffic access, and 
variations in the understanding and cooperation of 
inspectors at each facility. Although this system was 
intended to perform a diagnosis of diabetic retinopathy 
using fundus images in just 10 min, which could take 
10 weeks in some cases, there are a huge amount of 
issues to be addressed before it can realize its technical 
assumptions. The cost and resources to reach such a 
point are estimated to be enormous. Any system, not 
only AI diagnostics, must consider that the efficiency 
improvement obtained under ideal conditions cannot 
be demonstrated when implemented in society.

Fixed Issues of AI Responsibility and AI 
Performance

The research paper on social implementation in Thailand 
by Google’s team contains an important remark, stating 
that patients did not care whether the diagnosis was made 
by a doctor or by AI. This is a problem that leads to issues 
regarding responsibility in AI diagnosis. Recently, a view 
has been shared that the engineering team that built the 
AI model should bear responsibility.[40] In addition, the 
FDA requires that the performance of AI technology be 
fixed at the time of clinical trials.[41] That is, modifying 
the performance by AI feedback after marketing is not 
allowed. There are many disagreeing opinions on this, 
suggesting that only trusted architects should be allowed 
to make improvements to AI models.[42] This means 
that regulatory agencies are calling on AI architects to 
create an organizational culture that considers constant 
checking of ML processes essential.

Risk Assessment using AI

In  regress ion  es t imat ion ,  unl ike  automat ic 
diagnosis (identification), there is no correct answer 
in the first place. Therefore, the accepted range for 
application performance on the user side is large. It has 
been reported that an ML model that combines a visual 
field test and other clinical data showed a performance 

of AUC, 0.89–0.93 in a binary estimation between 
progressed and remained unchanged of glaucomatous 
visual field changes.[43] Medeiros et al. estimated, using 
AI, the average thickness of the retinal nerve fiber 
layer (RNFL) around the optic disc from OCT images 
and fundus photographs of the optic nerve head taken 
with a nonmydriatic stereo fundus camera.[44] The 
results showed that the actual mean RNFL thickness 
by OCT was 82.5 ± 16.8 μm, the estimated mean 
RNFL thickness by AI was 83.3 ± 14.5 μm, and the 
correlation coefficient of Pearson was r = 0.832. These 
results indicated a very accurate AI estimation model. 
There has been another study that applied this method 
to predict the risk of glaucoma progression using 
fundus photographs only.[45] According to the study, 
the mean RNFL of the papilla estimated by AI was 
88.7 ± 9.4 mm (mean observation period: 4.4 ± 3.8 years) 
in the group that progressed to glaucoma while it was 
92.1 ± 7.2 mm (mean observation period: 6.3 ± 3.7 years) 
in the group that did not progress to glaucoma, showing 
a significant difference (P < 0.001). Every time AI 
estimated the mean RNFL to be 10 μm thinner than the 
baseline, the risk of developing glaucoma increased 
by 56%, and when the annual decrease in the mean 
RNFL estimated by AI was >1 μm, the glaucoma risk 
also increased by 99%. The level of increase when 
determining the risk of visual field progression used in 
actual practice is 108%, which is comparable to the AI 
estimation performance.

Conclusion

The evaluation of medical applications of AI starts after it 
is implemented in society. Medical artificial intelligence 
has the characteristics of software services that are 
thought to be best for lean startup management,[46] 
which run a cycle of quick feedback and improvement 
after release. Feedback from actual clinical practice 
should be utilized to improve the performance of AI. 
The FDA, however, does not allow such methodology at 
this time, and it is not absolutely clear if feedback‑based 
performance improvements will be the best solution.

In an effort to determine which area to apply AI, what 
kind of legal framework should be established, and 
the best solutions for intricately complex problems, the 
wisdom of all ophthalmologists around the world must 
be brought together to provide better ophthalmological 
care in future.
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